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Abstract

Polyphosphonates and polyphosphates having good flame retardancy represent an important class of organophosphorus 
based polymer additives. In this analysis the flammability of 28 previously synthesized polyphosphoesters, modelled 
as dimmers, was explored using the multiple linear regression (MLR) and Partial Least Square (PLS) methodology. 
The statistical quality of the final MLR and PLS models was estimated using the following parameters: the squared 
correlation coefficient (r2

training = 0.917 and 0.976), the training root-mean-square errors (RMSEtr = 0.029 and 0.016) and 
the leave-seven-out cross-validation correlation coefficient (q2

L70 = 0.748 and 0.881), respectively. External validation 
was checked for a test set of seven compounds using several criteria. The MLR models had somewhat inferior fitting 
results. The final MLR and PLS models can be used for the estimation of limiting oxygen index (LOI) values of new 
polyphosphoester structures. The presence of phosphonate groups and increasing molecular branching in an isomeric 
series favour the dimer flammability.

Keywords: quantitative structure-property relationships, polyphosphonate, polyphosphate, limiting oxygen index, 
flame retardancy.

1. Introduction

An important feature of most commercial polymers is 
to be non-flammable or flame retardant[1]. Other polymer 
properties, like as: glass transition temperature, thermal 
decomposition temperature, etc., have been previously 
studied by quantitative structure-property relationships[2,3].

Flame retardant polymeric materials containing 
phosphorus, like poly(alkyl or aryl)phosphonates, display 
good flame retardancy[4].

Different polyphosphoesters with fire retardant properties 
were reported in the literature, being included in materials like: 
polycarbonates, polyamides, thermosets, etc[5]. The flammability 
of phosphorous polymers was investigated in order to determine 
structural–property relationships, too[6,7]. Two types (R and S) 
of chirality were found for the monomer polyphosphoesters, 
which were geometry optimized using the MMFF94s force 
field[6]. Multiple linear regression (MLR), artificial neural 
networks (ANNs) and support vector machines (SVMs) were 
applied to correlate the limiting oxygen index (LOI) values 
to the structural calculated descriptors. Good fitting results 
and predictable models were obtained using the MLR and 
ANN approaches, the SVM modelling providing the poorest 
results. It was concluded that the monomer geometry is 
important for flame retardancy.

Our goal was to develop robust multiple linear regression 
(MLR) and the partial least squares (PLS) models that 
select a set of variables that efficiently predict the limiting 
oxygen index (LOI) values and guide new information on 

the flammability mechanism of polyphosphoesters[6] dimers. 
This parallel approach gives the opportunity to compare the 
quality of results supplied by the two methodologies.

2. Materials and Methods

2.1 Data set

We used a series of 28 previously synthesized 
polyphosphoesters[6], which were modelled in the present 
study as dimers. The dataset in this investigation consisted of 
28 RR, RS, SR and SS phosphoester dimers for compounds 
1 to 14; compounds 15 to 28 had only one chiral centre, at 
the P2 phosphorous atom (see Figure 1).

Experimental data for the limiting oxygen index (LOI), 
expressed in % (Table 1), and used as dependent variable in 
this study, was previous reported in references[6] and[7]. Dimer 
molecular structures were built using the Marvin program[8], 
which was used for drawing, displaying and characterizing 
chemical structures. Dimer conformers were pre-optimized 
using the 94s variant of the MMFF (Merck Molecular force 
field)[9] with coulomb interactions and the attractive part of 
the van der Waals interactions, included in the OMEGA 
software[10-12]. The following parameters were used for the 
conformer generation: a maximum of 400 conformers per 
compound, an energy cut-off of 10 kcal/mol relative to a global 
minimum identified from the search. SMILES notation was 
used as program input. The stereoisomers were generated 
using the ‘Flipper’ utility inside the Omega program. To avoid 
redundant conformers, any conformer having a RMSD fit 
outside 0.5 Å to another conformer was removed.a	Dedicated to the 150th anniversary of the Romanian Academy.
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 2.2 Molecular descriptor calculation

Molecular descriptors were calculated for the optimized 
dimer structures, using the DRAGON[13] and InstantJchem 
(which was used for structure database management, search 
and prediction)[14] software. The 1511 Dragon molecular 
descriptors were divided into twenty-two logical blocks, as 
follows: constitutional descriptors, topological descriptors 
(MSD-mean square distance index (Balaban), PW4-path/walk 
4 - Randic shape index), walk and path counts, connectivity 
indices, information indices (IC5-information content index 
(neighborhood symmetry of 5-order)), 2D autocorrelations 
(Gats5e-Geary autocorrelation - lag 5/weighted by atomic 
Sanderson electronegativities), edge adjacency indices 
(EEig09d-Eigenvalue 09 from edge adj. matrix weighted 
by dipole moments), BCUT descriptors, topological charge 
indices (GGI1-topological charge index of order 1, JGI2‑mean 
topological charge index of order2), eigenvalue based indices, 
Randic molecular profiles, geometrical descriptors, RDF 
descriptors, 3D-MoRSE descriptors (Mor15e-3D-MoRSE - 
signal 15/weighted by atomic Sanderson electronegativities, 
Mor13p-3D-MoRSE - signal 13/weighted by atomic 
polarizabilities Mor13m-3D-MoRSE - signal 13/weighted by 
atomic masses), WHIM descriptors, GETAWAY descriptors 
(R2m+ - R maximal autocorrelation of lag 2/weighted by 
atomic masses), functional group counts (nP(=O)O2R-
number of phosphonates), atom-centered fragments, charge 

descriptors, molecular properties, 2D binary fingerprints, and 
2D frequency fingerprints. Then the molecular descriptors 
were verified and constant or near-constant variables were 
eliminated. The calculated molecular descriptors play a 
fundamental role in transforming the chemical information into 
a numerical code suitable for application in computation[15].

2.3 Training and test set selection

The series of phosphoester dimers were divided into training 
and test set using several approaches: the partition against 
medoids (PAM) algorithm[16] (“cluster” package available 
in R[17] based on the Euclidian distance), the decreasing 
response order and the random splitting. In order to use 
same test set in both MLR and PLS approaches, seven out 
of twenty eight (25%) phosphoester dimers (compounds 2, 
10, 11, 15, 17, 19 and 22, see Figure 1) were chosen as test 
set to validate the final models. The data structures and the 
LOI range values (in %), comprised in the test set (0.22‑0.50) 
and the training set (0.18-0.55), are commensurate.

2.4 Multiple Linear Regression (MLR) and Partial Least 
Square (PLS)

Multiple linear regression (MLR)[18] has been applied 
after variable selection carried out by means of a genetic 
algorithm included in the QSARINS v. 2.2 program[19,20] using 

Figure 1. Dimer phosphoester structure. RR series: R chiral centre at P1, R chiral centre at P2; RS series: R chiral centre at P1, S chiral 
centre at P2; SR series: S chiral centre at P1, R chiral centre at P2; SS series: S chiral centre at P1, S chiral centre at P2; compounds 
15 to 28 had only one chiral centre, at the P2 phosphorous atom.
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the RQK fitness function, with leave-one-out cross‑validation 
correlation coefficient, which constrained the function to 
be optimized. In MLR, the number of 1549  calculated 
descriptors is too high compared to the number of compounds 
(N = 28) and an appropriate variable selection method was 
required. MLR calculations were carried out separately for 
each dataset: RR, RS, SR, SS.

In MLR calculations the structural data was normalized 
based on the autoscaling method, which can be described as:

mj m
mj

m

X X
XT

S
−

= 	 (1)

where for each variable m, XTMJ and XMJ are the j values 
for the m variable after and before scaling, respectively, mX  
is the mean and SM the standard deviation of the variable.

The PLS methodology is a generalization of the MLR 
one, having as main advantage the possibility to analyze the 
data with correlated, noise, and large number of independent 
variables[21]. In the PLS equation the latent variables were 
transformed as function of the original XIJ (i =1, 2,..., N; j=1, 
2,..., K) variables, resulting following equation:

0 1 1 2 2
ˆ ... ...i i i j ij k ikY b b X b X b X b X= + + + + + + 	 (2)

where ŶI represents the calculated dependent variable, 
and bJ the PLS coefficients. The obtained models were 
optimized by a procedure of outlier detection and based 
on variables with significant coefficients different from 
zero. When the variable selection was achieved, only the 
significant descriptors with coefficients different from zero 
were preserved in the final models (for noise elimination).

Both methologies have as main goal to find out a 
mathematical model with minimum number of parameters 
and with good estimation capability.

2.5 Model validation

For the external validation of the MLR and PLS 
models several parameters were calculated: Q2

F1
[22]

, Q
2
F2

[23]
, 

Q2
F3

[24] (models with values higher than 0.7 were considered 
acceptable), the CCCext (the concordance correlation 
coefficient, with satisfactory values higher than 0.85)[25], 
RMSEext (root‑mean-square errors) and MAEext (mean absolute 
error)[26] and R2

pred (a higher limit than 0.5 was considered 
as acceptable)[27]. The comparable thresholds used in this 
study for different validation criteria have been rigorously 
previously determined[25,28]. Other statistical parameters[29] 
were used for the external test set: (i) squared correlation 
coefficient (r2

test) between the predicted and observed activities 
as well as squared correlation coefficient by cross-validation 
(q2); (ii) coefficient of determination for linear regressions 
with intercepts set to zero, i.e. r2

0 (predicted versus observed 
activities), and r′2

0 (observed versus predicted activities); 
(iii) slopes k and k’ of the above mentioned two regression 
lines. The following conditions should be satisfied for a 
model with acceptable predictive ability:

2 0.5q > 	 (3)
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For the internal validation of the final models other 
parameters were employed: r2

training (determination coefficient), 
q2

L70 (leave-seven-out cross-validation coefficient; values 
higher than 0.7 were considered as acceptable), q2

LOO 
(leave‑one-out cross-validation coefficient), RMSEtr, MAEtr 
and CCCtr, calculated for the training set.

In the mean time higher r2
training  values must be accompanied 

by q2 values as close to the r2
training ones as possible[30] (to 

avoid over fitting, which was, also, checked by the RMSE 
and MAE values).

The risk of chance correlation was, also, verified by 
the Y-scrambling procedure (r2

Scr and q2
Scr ) and must have 

lower values than the original model. For calculation of r2
Scr  

and  q2
Scr this process was repeated 999 times in case of PLS 

calculations and 2000 times in the MLR ones.
After the check of all validation parameters, the 

applicability domain for the models is required, because 
robust and validated models cannot be expected to reliably 
predict the modelled property for any type of compounds. 
The  applicability domain is a theoretical region in 
physicochemical of response and chemical structure space 
for which a QSAR model should make predictions with 
a given reliability[30]. In the applicability domain only the 
predictions for those compounds that fall within this domain 
can be considered as reliable, not extrapolations of the model. 
In the Williams plot the standardized residuals versus the 
leverages (hi) was exploited to visualize the applicability 
domain for our final MLR models.

3. Results and Discussions

The major objective of this paper was the estimation 
of limiting oxygen index (LOI) of phosphoester dimers 
using molecular descriptors that can be computed directly 
from molecular structure and guide new information on the 
flammability mechanism.

3.1 MLR results

The relationship between the molecular descriptors 
and LOI values of the dimer derivatives is illustrated by 
the following Equations 8-11:

RR model

2 2

0.56( 0.03) - 0.23( 0.03) -

0.19( 0.03) 09 0.20( 0.03) 2
0.05( 0.02) ( ) 2

0.03 0.896 44.09 0.864adj LOO

LOI MSD

EEig d R m
nP O O R

SEE r F q

+

= ± ±

± + ± +
± =

= = = =

	 (8)

RS model

2 2

0.55( 0.05) 0.18( 0.04) 4 -
0.26( 0.05) 1
0.16( 0.06) 2 - 0.35( 0.06) 13

0.05 0.787 19.48 0.745adj LOO

LOI PW
GGI
JGI Mor m

SEE r F q

= ± + ±
± +
± ±

= = = =

	 (9)
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SR model

2 2

0.38( 0.02) 0.19( 0.04) 5
0.13( 0.05) 15 - 0.33( 0.04) 13

0.04 0.839 35.60 0.790adj LOO

LOI IC
Mor e Mor p

SEE r F q

= ± + ± +
± ±

= = = =

	(10)

SS model

2 2

0.52( 0.04)
0.18( 0.04) 5 - 0.15( 0.04) 5 -
0.29( 0.03) 13

0.04 0.870 45.41 0.831adj LOO

LOI
IC GATS e
Mor p

SEE r F q

= ± +
± ±
±

= = = =

	(11)

where SEE represents the standard error of estimates, r2
adj - the 

adjusted r2, F- the Fischer test, q2
LOO -leave-one-out cross-validation 

coefficient. Other statistical results of models 8-11 are 
included in Tables 2, 3, 4.

The Williams (of the standardized residuals versus 
the leverage) plot was used to visualize the applicability 
domain of the final best MLR_RR model (Figure  2). 
This plot confirms the absence of outliers and influential 
points. All compounds were located within the applicability 
domain and were predicted accurately.

The MLR_RR model is completely satisfactory in the 
fitting and has high predictive power. The LOO (leave-one-out) 
cross-validation highlights that the model is stable, not 
obtained by chance, in fact the difference between r2

training  and 
q2

LOO is small: 5.3%. This model is internally predictive with 
differences between q2

LMO and q2
LOO  of -4.5%, and between 

r2
training  and r2

LMO  of 9.8%.
The risk of chance correlation was, also, verified by 

the Y-scrambling procedure. The extremely low calculated  
r2
Scr and q2

Scr scrambling values (Table 2) indicate no chance 
correlation for the chosen models.

The RMSE (root-mean-square error) values for the training 
and validation sets are similar. The chosen MLR_RR model 
demonstrate a satisfactory stability in internal validation, 
has high fitting, internal and external predictive power.

The high values of Q2
F1, Q

2
F2, Q

2
F3 and CCCext external 

validation parameters (see section 2.5) included in Table 3 

and all calculated terms of Golbraikh and Tropsha (Table 4) 
confirm the predictive power of all MLR models.

Better statistical results and a more stable model to 
simulate polymer flammability were noticed in case of the 
RR dataset model compared to the others.

The edge adjacency matrix encodes information about the 
connectivity between graph edges[15]. EEig09d (eigenvalue 
09 from edge adj. matrix weighted by dipole moments) takes 
into account the molecular polarity, being unfavourable for 
dimer flame retardancy.

The mean square distance index, denoted as MSD[15], 
is calculated from the second-order distance distribution 
moment[31]. The MSD index decreases with increasing 
molecular branching in an isomeric series, which is favourable 
for dimer flammability.

GETAWAYs (Geometry, Topology, and Atom-Weights 
Assembly) are geometrical descriptors encoding information 
on the effective position of substituents and fragments in 
the molecular space[15]. Moreover, they are independent of 
molecule alignment and they, also, account to some extent 
for information on molecular size and shape as well as for 
specific atomic properties. Increased R2m+ (R maximal 
autocorrelation of lag 2/weighted by atomic masses) values 
favour the dimer flammability. Compounds containing 
phosphonate groups are favourable for the dimer flame 
retardancy.

3.2 PLS results

PLS calculations were performed with SIMCA-P+12[32] 
program using 21 stereoisomers as a training set and 
7 stereoisomers as a test set with the taken ratio of 75% 
for training set and 25% for test set in whole series of 
compounds. The large difference between the r2

training and q2
L70  

values of the first calculated PLS model (lower than 0.3 is 
accepted) demonstrated the model over fit, and suggested 
the need for enhancement of the model quality. Therefore, 
the noise variables (with insignificant coefficient values) 
have been removed. Several PLS models were developed for 
the RR, RS, SR and SS datasets to increase their predictive 
power. In the final PLS_SS model compound 5 was omitted, 
being found as outlier, in accordance to the Hotelling’s T2 
range plot[32].

The final (four-components for the RR, RS, SR datasets 
and two-components for the SS dataset) PLS models are 
satisfactory in the fitting (Table 2). The over fitting of the 
models was exceeded by the remarkable high and close values 
of r2

training and q2
L70, and was, also, checked by the RMSE and 

MAE (mean absolute error) parameters. In the same time 
similar RMSE values for the training and validation sets 
are observed (Tables 2 and 3).

PLS models with predictive power were obtained 
(see Tables 3 and 4), except the PLS_SS one, as seen from the 
values of Q2

F1, Q
2
F2, Q

2
F3 and CCCext parameters. The predicted 

LOI values for the RR dataset are given in Table 1.
The PLS models were internally validated using, also, 

999 permutations in Y-scrambling. The calculated r2
Scr and q2

Scr  
scrambling values (Table 2) indicate no chance correlation 
for the chosen models.

Figure 2. Williams plot: standardized residuals of the MLR_RR 
model versus leverages, predicted by fitting. Training compounds 
are marked by white circles and test compounds by black circles.
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Table 1. Experimental and predicted LOI values, structural descriptors included in the final MLR_RR model.

No Exp. LOI Calc. LOI by  
MLR_RR

Calc. LOI by 
PLS_RR MSD EEig09d R2m+ nP(=O)O2R

1 0.38a 0.38 0.36 0.218 2.266 0.022 2
2 0.35a 0.41 0.37 0.228 2 0.023 2
3 0.30a 0.33 0.33 0.235 2.245 0.026 2
4 0.48a 0.45 0.45 0.213 2.058 0.023 2
5 0.55a 0.55 0.55 0.191 2.652 0.187 2
6 0.28a 0.26 0.28 0.235 2.569 0.043 2
7 0.29a 0.32 0.29 0.218 2.576 0.044 2
8 0.42b 0.44 0.41 0.2 2.271 0.021 2
9 0.44a 0.42 0.44 0.182 2.744 0.062 2
10 0.50a 0.45 0.54 0.212 2.467 0.117 2
11 0.47b 0.52 0.54 0.169 2.361 0.022 2
12 0.32a 0.31 0.32 0.209 2.621 0.016 2
13 0.40a 0.45 0.44 0.191 2.361 0.021 2
14 0.33a 0.28 0.31 0.219 2.619 0.019 2
15 0.28a 0.29 0.25 0.216 2.434 0.018 0
16 0.25a 0.28 0.25 0.226 2.359 0.025 0
17 0.22a 0.24 0.27 0.232 2.431 0.026 0
18 0.36a 0.31 0.37 0.211 2.454 0.025 0
19 0.40a 0.37 0.47 0.19 2.722 0.082 0
20 0.18a 0.19 0.18 0.232 2.691 0.04 0
21 0.20a 0.23 0.19 0.216 2.695 0.032 0
22 0.31a 0.35 0.32 0.198 2.434 0.017 0
23 0.33a 0.37 0.35 0.181 2.749 0.063 0
24 0.50a 0.49 0.50 0.21 2.514 0.204 0
25 0.48a 0.45 0.47 0.168 2.445 0.017 0
26 0.23a 0.24 0.25 0.207 2.723 0.016 0
27 0.37a 0.38 0.37 0.189 2.441 0.019 0
28 0.24a 0.21 0.23 0.217 2.724 0.016 0

a from reference [6] and b from reference [7].

Table 2. Internal validation parameters of the MLR and PLS models (training set).

Model Ntraining RX
2 r2

training q2
L70

RMSEtr MAEtr CCCtr r2
Scr q2

Scr

MLR_RR 21 - 0.917 0.748 0.029 0.025 0.957 0.198 -0.453
MLR_RS 21 - 0.830 0.658 0.042 0.032 0.907 0.199 -0.422
MLR_SR 21 - 0.863 0.743 0.037 0.029 0.926 0.149 -0.309
MLR_SS 21 - 0.889 0.800 0.034 0.025 0.941 0.152 -0.340
PLS_RR 21 0.726 0.976 (4)** 0.881 0.016 0.012 0.988 0.635 -0.510
PLS_RS 21 0.701 0.965 (4)** 0.754 0.019 0.014 0.982 0.627 -0.557
PLS_SR 21 0.702 0.972 (4)** 0.792 0.017 0.013 0.986 0.556 -0.571
PLS_SS 20* 0.461 0.885 (2)** 0.656 0.031 0.026 0.939 0.324 -0.398

* Compound 5 was found as outlier and omitted from the final model; ** Number of components is given in parenthesis.

Table 3. External validation parameters of the MLR and PLS models (test set).
Model Q2

F1 Q2
F2 Q2

F3
RMSEext MAEext CCCext

MLR_RR 0.811 0.808 0.833 0.041 0.037 0.900
MLR_RS 0.814 0.811 0.836 0.041 0.033 0.901
MLR_SR 0.713 0.708 0.747 0.051 0.044 0.856
MLR_SS 0.787 0.783 0.812 0.044 0.039 0.896
PLS_RR 0.777 0.773 0.803 0.045 0.039 0.912
PLS_RS 0.727 0.723 0.759 0.050 0.040 0.902
PLS_SR 0.716 0.711 0.749 0.051 0.042 0.898
PLS_SS 0.554 0.529 0.514 0.050 0.056 0.799
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In the PLS modelling the terms having VIP values 
greater than 1 are the most relevant for explaining the 
dependent variable, and usually only these descriptors 
were interpreted. The descriptors showing the largest 
VIP values can simulate polymer flammability and are 
discussed below.

For all models higher values of the Randic shape 
index (-path/walk 4 and path/walk 5 - PW4 and PW5) are 
favourable for the flammability, while the MSD (Balaban 
mean square distance index) descriptor is unfavourable for 
flammability. They are topological descriptors obtained 
from molecular graph[15].

Another group of significant descriptors is the class of 
2D autocorrelation descriptors, which are computed from 
molecular graph as the sum of products of atom weights 
of the terminal atoms of all the paths for the considered 
path length (the so called lag)[15]. The most important 2D 
autocorrelation descriptors involved in our model are the 
Geary parameters. The positive coefficients of GATS6m - 
Geary autocorrelation of lag 6 weighted by mass, increase 
the flame retardancy of RR, RS and SR series, while for 
SS dimers, the same effect was observed for descriptor 
GATS5v - Geary autocorrelation of lag 5 weighted by 
van der Waals volume.

The 3D-MoRSE descriptors provide 3D information from 
atomic coordinates using the same transform as in electron 
diffraction (which uses them to prepare theoretical scattering 
curves)[15]. For the RR and SR datasets, Mor13m‑ signal 
13/weighted by mass, decrease the flame retardancy, for 
the RS dataset Mor15m- signal 15/weighted by mass is 
favourable for flammability, while for SS dataset these 
descriptors are insignificant.

Class of topological and frequency fingerprints 
descriptors are expressed as sum of topological distances 
between two elements or frequency of two atoms at 
a topological distance. Descriptors T(O..P) - the sum 
of topological distances between O..P, F07[O-S] – the 
frequency of O - S at topological distance 7, and F10[C-S] 
- the frequency of C - S at topological distance 10, with 
negative coefficients are unfavourable for flammability 
for RR, RS and SS datasets.

Three GETAWAY descriptors: one in the RR set: 
R5m‑ the R autocorrelation of lag 5/weighted by mass, 
and two in the SR set: HATS6v – the leverage-weighted 

autocorrelation of lag 6/weighted by van der Waals volume 
and HATS6p- leverage-weighted autocorrelation of lag 
6/weighted by polarizability increase the dimer flame 
retardancy.

Better fitting and predictivity results were obtained 
by PLS calculations compared to the MLR ones. From 
MLR and PLS models better statistical results were 
observed in case of the RR series. Therefore R chirality 
of phosphorous atom is significant for dimer flammability. 
The final selected structural descriptors included in the 
MLR_RR model have VIP values > 1 in the PLS_RR model: 
EEig09d, VIP = 1.358, CoeffCS = -0.0086 (±0.0022), 
MSD, VIP = 1.670, CoeffCS = -0.0096 (±0.0021), R2m, 
VIP = 1.058, CoeffCS = 0.0025 (±0.0022) and nP(=O)
O2R, VIP = 0.994, CoeffCS = 0.0059 (±0.0030).

Compared to the MLR previously published monomer 
models[6], the statistical results for fitting are improved in 
case of MLR and PLS dimer models. Additional structural 
information which influences the flame retardancy was 
included in the final dimer MLR (e.g. the number of 
phosphonates) and PLS (e.g. 2D frequency fingerprints) 
models.

4. Conclusions

The MLR and PLS models developed for this series 
of dimer phosphoesters will be helpful to predict the LOI 
values of new untested compounds. Better statistical results 
and a more stable model to simulate polymer flammability 
were noticed in case of the RR dataset compared to the 
others, the presence of R chiral centre at the phosphorous 
atom being important for the dimer flammability. The mean 
square distance index and GETAWAY descriptors favour 
the dimer flammability, as well as increased number of 
phosphonates included in the dimer structure, as derived 
from both MLR and PLS methodologies. Better PLS 
fitting and predictivity results were obtained compared 
to the MLR ones for all datasets, except for the SS one.

Dimers including structures with R chiral centres 
gave more stable and predictive models compared to the 
previously published MLR monomer ones.

New structural information which influences the 
flame retardancy was included in the final MLR and 
PLS dimer models.

Table 4. Golbraikh and Tropsha criteria[29] calculated for external validation of the MLR and PLS models (test set).

Model 2
testr

2 2
0

2
r r

r
− 2 '2

0
2

r r
r
− k k’ 2 '2

0 0r r−

MLR_RR 0.832 0.000 0.039 0.963 1.028 0.032
MLR_RS 0.867 0.004 0.050 0.945 1.049 0.040
MLR_SR 0.732 0.032 0.022 0.994 0.987 0.008
MLR_SS 0.812 0.032 0.002 1.014 0.973 0.025
PLS_RR 0.941 0.022 0.006 0.912 1.091 0.015
PLS_RS 0.970 0.037 0.019 0.896 1.115 0.018
PLS_SR 0.940 0.050 0.018 0.903 1.100 0.030
PLS_SS 0.687 0.073 0.018 0.923 1.059 0.038
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