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Abstract
Naive rats submitted to the elevated plus-maze (EPM) display a characteristic increase in open arm exploration and reduced 
risk assessment behaviors (RABs) after the administration of anxiolytic drugs. Upon re-exposure to the maze, however, the 
traditional measures of the EPM become resistant to these drugs. This intriguing phenomenon was initially observed for the 
benzodiazepine chlordiazepoxide and referred as one-trial tolerance (OTT). In this review, we summarized hormonal, cognitive 
and neuroanatomical data obtained from rats submitted to the test/retest protocol in the EPM. The re-exposure to the EPM is 
characterized by more prominent RABs and a distinct Fos protein distribution in the brain, particularly in limbic structures 
involved with the cognitive aspects of fear, such as the ventral regions of the medial prefrontal cortex (mPFC) and amygdala. 
Interestingly, naive rats treated with midazolam had a significant decrease in the number of Fos-positive neurons in the anterior 
cingulate cortex, area 1 (Cg1), anterior and dorsal premammillary nuclei of hypothalamus. On the other hand, midazolam caused 
a significant decrease in the number of Fos-positive neurons in the mPFC, amygdala, dorsomedial nucleus of hypothalamus and 
raphe nuclei in maze-experienced rats. Cg1 was the only structure targeted by the benzodiazepine in both sessions. Systemically 
administered midazolam before test or retest sessions reduced the RABs and plasma corticosterone levels in rats submitted to 
both sessions. Similar behavioral results were obtained with intra-Cg1 infusions of midazolam. The results reviewed here support 
the view of the crucial role of the RABs in the development of the OTT and point to this mPFC area as an important locus 
for the anxiolytic-like action of benzodiazepines in rodents. Keywords: elevated plus-maze, retest session, benzodiazepines, 
corticosterone, Fos expression, anterior cingulate cortex. 
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Introduction

The elevated plus-maze (EPM) is one of the most 
popular animal models of anxiety currently in use. The 
test, validated for rats (Handley & Mithani, 1984; Pellow, 
Chopin, File, & Briley, 1985) and mice (Lister, 1987), is 
based on the natural aversion of rodents to open spaces, 
which leads to a conflict between the exploration of new 
environments and avoidance to the open arms. It has 
also been suggested that the preference for the closed 
arms is derived from the possibility of thigmotaxis so as 
the avoidance of the open arms occurs primarily because 

they do not allow the rats to engage in thigmotaxic 
behavior (Treit, Menard, & Royan, 1993). It is likely 
that the popularity of the EPM test is due to its obvious 
and numerous advantages, namely: economy, rapidity, 
simplicity of design and bidirectional drug sensitivity, 
coupled with the fact that it does not require lengthy 
training procedures or the use of food/water deprivation 
or electric shocks (Carobrez & Bertoglio, 2005; Pellow 
et al., 1985; Rodgers, Cao, Dalvi, & Holmes, 1997). 

Rodents tested in the EPM display a characteristic 
decrease of anxiety-related behaviors after the 
administration of anxiolytic-like drugs. The increase 
in the activity in the open arms of the maze and the 
reduction of risk assessment behaviors (RABs) have 
been taken as good indices of the anxiolytic-like action 
of the benzodiazepines (Albrechet-Souza, Borelli, 
Carvalho, & Brandão, 2009; Bertoglio, Anzini, Lino-
de-Oliveira, & Carobrez, 2005; Pellow et al., 1985). 
However, when rats or mice are tested twenty four 
hours or even two weeks later for a second time on the 
maze, this anxiolytic effect is much reduced or absent 
(Albrechet-Souza et al., 2005; Bertoglio & Carobrez, 
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2000; Carvalho, Albrechet-Souza, Masson, & Brandão, 
2005; Cruz-Morales, Santos, & Brandão, 2002; File, 
Mabbutt, & Hitchott, 1990; Lister, 1987). The failure of 
these compounds in attenuating the traditional behavioral 
categories in maze-experienced rodents, initially 
observed for the benzodiazepine chlordiazepoxide, is 
referred as one-trial tolerance (OTT) (File, 1990). 

Several hypotheses have been proposed to 
explain the OTT phenomenon, such as locomotor 
habituation (Dawson, Crawford, Stanhope, Iversen, & 
Tricklebank, 1994), an altered state of the binding-site 
on the GABA-benzodiazepine receptors (Gonzalez & 
File, 1997), an experimentally induced sensitization 
of fear/anxiety (Bertoglio & Carobrez, 2000; Treit et 
al., 1993) and a qualitative shift in the emotional state 
between trials, from an unconditioned fear response to 
a learned avoidance (Bertoglio & Carobrez, 2003; Dal-
Cól et al., 2003; Holmes & Rodgers, 1998). We have 
recently shown that during the retest session occurs the 
activation of cognitive-related telencephalic structures 
involved in the control of learned fear (Albrechet-
Souza, Borelli, & Brandão, 2008). After the initial 
overall apparatus exploration it seems that such rodents 
acquire, consolidate and retrieve some kind of memory 
related to the exploration of potentially dangerous open 
areas of the maze (Bertoglio & Carobrez, 2002; Cruz-
Morales et al., 2002; File, 1993; File, Zangrossi, Viana, 
& Graeff, 1993). It was also found that rodents continue 
to respond to the benzodiazepines on the retest session 
when a new motivational conflict is introduced during 
the task (Pereira, Vieira, Konishi, Ribeiro, & Frussa-
Filho, 1999). Similar reinstatement of the anxiolytic-
like actions of the benzodiazepines also occurs when 
the first exposure length in the EPM is limited to 1 or 
extended to 10 minutes (Dal-Cól et al., 2003; File et 
al., 1993), amnesic doses of chlordiazepoxide (File et 
al., 1990), scopolamine (Bertoglio & Carobrez, 2004) 
or propranolol (Stern, Carobrez, & Bertoglio, 2008) 
are administered prior to first exposure and intra-
amygdala infusions of benzodiazepine receptor agonist 
and antagonist are conducted prior to retest (Barbalho, 
Canto-de-Souza, & Nunes-de-Souza, 2009).

More recently, the conventional analysis of the 
exploratory behavior in the EPM was extended to 
incorporate the so-called novel ethological categories 
which have disclosed additional dimensions to EPM 
behavior patterns, for example, vertical activity, 
directed exploration, decision making and RABs 
(Cole & Rodgers, 1993). The biological function of 
the risk assessment acts and postures is to monitor 
behavioral strategies in potentially dangerous situations 
(Blanchard, Blanchard, & Rodgers, 1991; Blanchard, 
Yudko, Rodgers, & Blanchard, 1993). Rodents continue 
to display enhanced RABs even after ceasing to avoid, 
for example, an unprotected area, suggesting that this 
defensive pattern may even be more sensitive to anxiety-

modulating drugs than avoidance-related measures 
(Griebel, Rodgers, Perrault, & Sanger, 1997; Rodgers, 
1997; Rodgers & Cole, 1994; Setem, Pinheiro, Motta, 
Morato, & Cruz, 1999). 

Hypothalamic-pituitary-adrenal (HPA) axis 
and EPM test

The activation of the HPA axis is considered part 
of the stress reaction and is triggered either by innate 
or learned fear stimuli (File, Zangrossi, Sanders, & 
Mabbutt, 1994; Rodgers et al., 1999). In response 
to stressful events, the corticotropin-releasing factor 
(CRF) is released from the median eminence of the 
hypothalamus, which activates the adrenocorticotropin 
hormone (ACTH) secretion. The increase of ACTH 
into the bloodstream consequently acts at the adrenal 
cortex to facilitate the release of glucocorticoids such 
as corticosterone in rodents (Risbrough & Stein, 2006; 
Rivier, Grigoriadis, & Rivier, 2003; Vale, Spiess, Rivier, 
& Rivier, 1981). 

Pellow et al. (1985), in their now classic article 
on the validation of the EPM as a model of anxiety in 
rats, reported that confinement to either an open or an 
enclosed arm of the maze produced a significant increase 
in plasma corticosterone relative to home-cage controls. 
Moreover, the corticosterone response to the open areas 
of the maze was significantly greater than that to the 
enclosed arms. Other subsequent studies have confirmed 
this hormonal activation in rats submitted to the EPM 
test (Mikics, Barsy, Barsvari, & Haller, 2005; Rodgers 
et al., 1999) and shown that rats re-exposed to the 
EPM remain with high levels of plasma corticosterone, 
supporting the idea that this hormonal response does not 
appear to habituate with retest and the animals continue 

Figure 1. Plasma corticosterone levels of rats systemically 
treated with saline or midazolam .5 mg/kg and, after 15 
minutes, submitted to the EPM test or retest sessions (inter-
trial interval was 24 h). Control group of the test session was 
not submitted to the EPM and control group of the retest 
session was tested in the EPM 24 h before the collection of the 
blood sample. The values are mean + SEM. * different from 
the control group in the same session, and # different from the 
saline group in the same session (p < .05, ANOVA followed by 
Duncan’s test). n = 6-8 rats in each group.
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under the influence of a stressful situation (Albrechet-
Souza, Carvalho, Franci, & Brandão, 2007; File et al., 
1994; Rodgers et al., 1999). 

The corticosterone response was also found to 
be positively correlated with measures of RABs, but 
not with measures of open arms or general locomotor 
activity (Albrechet-Souza et al., 2007; Mikics et al., 
2005; Rodgers et al., 1999). Then, the key behavioral 
association with the corticosterone response to the maze 
appears to be aborted attempts to enter the open arms 
rather than the actual exploration of these potentially 
threatening areas (Rodgers et al., 1999). In line with 
this statement, the treatment with the benzodiazepine 
midazolam had an anxiolytic effect on the RABs and 
counteracted the increase in plasma corticosterone levels 
in rats submitted to the EPM test and retest sessions 
(Figure 1) (Albrechet-Souza et al., 2007). 

Once the RABs are normally taken during the 
ongoing experimental session and the steroid response 
about twenty minutes after the end of the test, it 
seems that the higher the level of RABs the larger the 
glucocorticoid response. Thus, this hormonal activation 
appears to be based not on the actual exploration of 
the stressful environment (Pellow et al., 1985), but 
rather, in the detection of the danger. In the same way, 
in humans, anticipation of threatening events produces 
as marked an elevation in cortisol as the event itself 
(Mason, 1968). In view of growing evidence from 
animal and human studies for the involvement of 
glucocorticoids in cognitive function (De Quervain, 
Roozendaal, & McGaugh, 1998; Roozendaal, Bohus, 
& McGaugh, 1996), it is tempting to speculate on 
the potential involvement of the corticosterone in the 
emotional learning that is characteristic of the EPM 
paradigm (Holmes & Rodgers, 1998).

The neuropeptide CRF has also been implicated 
in the regulation of endocrine, behavioral and 
autonomic responses to stress, fear and anxiety. 
Experimental evidence has demonstrated that its 
intracerebroventricular administration increases 
RABs in mice submitted to the Mouse Defensive Test 
Battery (Yang, Farrokhi, Vasconcellos, Blanchard, & 
Blanchard, 2006). Besides, CRF has a selective action 
in the dorsomedial column of the periaqueductal gray 
matter (DMPAG), since injections of ovine CRF in 
this area (and not in other PAG columns) promote a 
clear anxiogenic-like effect in rats submitted to the 
EPM (Borelli & Brandão, 2008). This functional 
role of the DMPAG in the organization of avoidance 
behaviors was suggested in a study in which this area 
was the only mesencephalic region with significant 
Fos immunoreactivity in rats submitted to a place 
avoidance paradigm (Zanoveli, Ferreira-Netto, & 
Brandão, 2007). Obviously, the involvement of the 
CRF in other components of the defensive system 
remains open to investigation.

Cognition and the EPM test

Factor analyses have been used in the EPM research 
to identify the relationship between specific test indices 
and factor/dimensions such as anxiety, locomotor 
activity, risk assessment and decision making (Albrechet-
Souza et al., 2008; Anseloni & Brandão, 1997; File et 
al., 1993; Rodgers & Johnson, 1995 ). In this context, 
the emotional state produced upon re-exposure to the 
EPM seems to be qualitatively different to that produced 
on the initial exposure because the traditional measures 
taken in these sessions were found to load in separate 
factors (Albrechet-Souza et al., 2008; File et al., 1993). 
In addition, the re-exposure to the EPM is characterized 
by a more prominent RABs (stretched-attend posture, 
peeping out and flat-back approach), since these 
categories compounded a factor that loaded before 
the factor with the RABs of the first session (Table 1) 
(Albrechet-Souza et al., 2008). These findings support 
the idea that the EPM may be a model where the nature, 
rather than the extent, of the emotional state changes 
with the experience of the maze (File et al., 1993) and the 
RABs may reinstate the information-processing initiated 
during the first experience in the novel environment of 
the EPM. The detection of danger associated with this 
behavioral strategy probably gives way to the strong 
open arm avoidance of the retest session (Albrechet-
Souza et al., 2007). This interpretation reconciles well 
with the fact that RABs are associated with avoidance 
behavior since they are expressed from the closed 
towards the open arms of the maze.

Distinct neural circuits of the naive and maze-
experienced rats submitted to the EPM test

Mapping of neural circuits using the Fos protein-
immunoreactivity technique showed that the divergent 
behavioral patterns displayed in the test and retest 
conditions are associated with the activation of distinct 
brain areas (Albrechet-Souza et al., 2008). Naive rats 
submitted to the EPM showed activation of essentially 
limbic structures such as the cingulate cortex 1 (Cg1), 
paraventricular (PVN) and dorsomedial nuclei (DMH) 
of hypothalamus and mesencephalic areas (Albrechet-
Souza et al., 2008; Silveira, Sandner, & Graeff, 1993) 
whereas re-exposure to the EPM recruits mainly areas 
involved in cognitive aspects of fear, such as the ventral 
regions of the medial prefrontal cortex (mPFC) and 
its projection areas such as the amygdala (Figure 2). 
These structures are much more activated in the retest 
session than in the test session (Table 2 - saline groups) 
(Albrechet-Souza et al., 2008). 

The mPFC - which includes the anterior cingulate, 
prelimbic and infralimbic cortex (Singewald, 2007) 
- is considered an interface between emotional and 
cognitive functions and its ventral aspects project to 
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F1 F2 F3 F4 F5 F6

Test Session

Closed entries .61

%Closed entries -.86

Time closed arms -.95

%Time closed arms -.95

Open entries .95

%Open entries .86

Time open arms .96

%Time open arms .96

Total arms entries .82

%Time center .72

EAE .92

Scanning .80

Head dipping .79

Rearing .87

Peeping out .57

SAP .70

Flat-back approach .63

Grooming -.88

Retest session

Closed entries .57

%Closed entries -.90

Time closed arms -.94

%Time closed arms -.94

Open entries .94

%Open entries .90

Time open arms .98

%Time open arms .98

Total arms entries .58

%Time center .75

EAE .89

Scanning .76

Head dipping .60

Rearing .83

Peeping out

SAP .84

Flat-back approach

Grooming -.70

Table 1. Orthogonal factor loadings for behavioral categories of rats submitted to EPM test and retest sessions. Behavioral 
categories (SAP, peeping out and flat-back) grouped as RABs loaded on factor 3 (retest session) and factor 4 (test session). Factor 
loadings < .5 are not included. Criteria: Eigenvalue ≥ 1. EAE, end arm exploration; SAP, stretched-attend posture. For a complete 
description of the behavioral categories, see Albrechet-Souza et al., 2008. 
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the amygdala and hypothalamic areas (Heidbreder 
& Groenewegen, 2003). It has also been proposed 
to be involved in fear conditioning (Holschneider et 
al., 2006; Milad, & Quirk, 2002; Morgan & LeDoux, 
1995; Pezze, Bast, & Feldon, 2003; Vouimba, Garcia, 
Baudry, & Thompson, 2000; ). In fact, lesions of 
ventral mPFC have an effect on the extinction but not 
on the acquisition phase of a fear conditioning task 
(Morgan, Romanski, & LeDoux, 1993) and lesions 
of its dorsal aspects lead to increased fear responses 
during fear conditioning acquisition and extinction 
(Morgan & LeDoux, 1995). Thus, these data support 
the view of the mPFC as a functionally heterogeneous 
area involved in various aspects of fear conditioning.

Behavioral studies have also demonstrated that the 
mPFC exerts a marked influence on the expression of 
defensive responses (Siegel & Chabora, 1971; Siegel, 
Edinger, & Lowenthal, 1974) and a functional magnetic 
resonance imaging study in humans showed that this 
area has a key role in the controllability of fear states 
engendered by activation of more caudal structures 
(Mobbs et al., 2007).

Altogether, these data suggest that the re-exposure 
to the EPM is related to a learned avoidance, with the 
predominance of a cognitive aspect of the fear. It is 
characterized by a more prominent RABs associated 
with a brain differential activity. In view of these results 
we recently suggested the re-exposure to the EPM 

Test Session Retest Session

Brain areas Control Saline Midazolam Saline Midazolam

Telencephalon

Cg1   30.6 ± 3.6    60.8 ± 7.7*  43.0 ± 5.8#  70.3 ± 6.0* 57.3 ± 4.8#

Cg2 8.6 ± 1.8 17.2 ± 4.1  15.7 ± 1.5 37.5 ± 8.8*§ 18.7 ± 2.3#

PrL 8.1 ± 0.9 21.4 ± 5.2  19.1 ± 4.7 44.8 ± 6.9*§ 20.8 ± 3.1#

IL 6.6 ± 0.9 13.6 ± 3.3  10.8 ± 2.9 28.4 ± 6.0*§ 15.4 ± 2.7#

CA1 6.5 ± 1.4   6.5 ± 2.9    5.4 ± 0.6    5.9 ± 2.2 8.5 ± 2.0

CA2 7.7 ± 2.7   5.2 ± 1.7    7.8 ± 1.5    6.1 ± 1.6 8.9 ± 2.1

CA3 4.4 ± 1.9   2.3 ± 1.0 4.7 ± 0.4    4.8 ± 1.8 7.1 ± 0.6

BLA 7.2 ± 1.1   9.8 ± 2.4 9.3 ± 0.9  23.3 ± 4.0*§  11.8 ± 1.9#

CeA 9.9 ± 1.1 14.9 ± 4.0   14.5 ± 1.4  29.8 ± 4.4*§  11.2 ± 1.7#

MeA 9.0 ± 1.3 15.1 ± 3.8   17.0 ± 2.4   18.5 ± 1.8   18.8 ± 3.0

Hypothalamus

PVN 21.4 ± 3.1   36.1 ± 4.0*   42.5 ± 4.0 37.7 ± 3.6*   31.0 ± 2.4

AHC 23.3 ± 4.7 31.0 ± 1.6  20.7 ± 3.3#   23.1 ± 3.5   21.2 ± 2.4

DMH 22.5 ± 3.1   32.9 ± 3.1*   31.2 ± 3.3 31.6 ± 1.7*  16.9 ± 1.0#

PMD 14.5 ± 2.8 32.9 ± 6.8  17.9 ± 4.5#   20.2 ± 3.9   13.4 ± 2.7

Brainstem

DMPAG 25.3 ± 5.9 23.1 ± 1.9   23.9 ± 2.5   18.0 ± 1.7   21.3 ± 1.0

DLPAG 13.2 ± 3.3 13.4 ± 2.1   17.8 ± 1.7   12.4 ± 1.4   14.5 ± 1.7

LPAG 16.0 ± 2.2 21.6 ± 1.3   22.6 ± 1.9   19.3 ± 2.2   21.6 ± 0.8

VLPAG 21.3 ± 3.0 21.2 ± 1.1   17.4 ± 2.1   25.1 ± 3.4   17.5 ± 2.2

IC  8.9 ± 1.1   17.6 ± 2.8*   14.5 ± 2.0 22.3 ± 3.0*   16.0 ± 1.8

DRN 18.9 ± 3.9    19.8 ± 60   15.1 ± 2.2   28.8 ± 6.0  16.5 ± 3.0#

MnR 13.0 ± 2.5 13.6 ± 2.3   10.6 ± 1.8   12.5 ± 1.3    7.3 ± 1.1#

LC  9.0 ± 2.3 12.5 ± 0.5   13.5 ± 3.4   14.8 ± 1.5 13.1 ± 1.3

Table 2. Number of Fos-immunoreactive cells/0.1 mm2 (mean ± SEM) in rats systemically treated with saline or midazolam 
.5 mg/kg and submitted to the EPM test or retest sessions. Control group was not exposed to the EPM. * compared to 
control group; § compared to saline group in the test session; # compared to saline group in the same session (p < .05, 
ANOVA followed by Duncan’s test). n = 5-8 rats in each group.
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as an animal test for evaluating cognition in rodents 
(Albrechet-Souza et al., 2008). In consonant with this 
proposal are the results showing that scopolamine, a 
drug that produces learning acquisition deficit, given 
prior to the first exposure to the EPM, disrupts the 
usual behavioral strategy adopted throughout the retest 
performance (Carobrez & Bertoglio, 2005).

Cg1 as a target site for the anxiolytic action 
of the benzodiazepines

After evaluating the neural substrates recruited 
during the test and retest sessions in the EPM, we 
investigated the loci of action of the benzodiazepine 
midazolam systemically injected before these conditions 
(Table 2) (Albrechet-Souza et al., 2009). Naive rats 
treated with midazolam had a significant decrease in 
the number of Fos-positive neurons in the Cg1, anterior 
hypothalamus nucleus (AHC) and dorsal premammillary 
nucleus of hypothalamus (PMD), indicating that these 
structures are involved in the anxiolytic effects of the 
benzodiazepines in the EPM (Figure 3). Cg1, as part of 
the mPFC, has been suggested to play an important role 
in initiation and maintenance of goal-directed behaviors 
(Devinsky, Morrell, & Vogt, 1995). Moreover, a number 
of studies have shown that the mPFC provides important 
projections to the AHC and PMD (Comoli, Ribeiro-
Barbosa, & Canteras, 2000). These hypothalamic nuclei 
act in concert with the ventromedial hypothalamic 
nucleus to form the medial hypothalamic zone, which 
integrates innate defensive responses to environmental 
threats (Canteras, 2002). Besides, chemical lesions 

in caudal regions of this zone significantly impair the 
defensive behavior expression of animals confronted with 
a predator, suggesting that the medial hypothalamic zone 
is essential for the expression of behavioral responses to 
environmental threats (Canteras, Chiavegatto, Ribeiro 
do Valle, & Swanson, 1997).

Maze-experienced rats treated with midazolam had a 
significant decrease in the number of Fos-positive neurons 
in the mPFC, amygdala, DMH and raphe nuclei (Figure 4). 
Amygdala has been reported to be important in paradigms 
of memory, specially related to aversive conditioning 
(Maren, 2008; Paré, Quirk, & Ledoux, 2004) and there is 
strong evidence to suggest that the input from the ventral 
mPFC to the central amygdaloid nucleus is an important 
axis for controlling the extinction of conditioned fear 
(Sierra-Mercado, Corcoran, Lebron-Milad, & Quirk, 2006). 
The DMH receives input from the amygdala (Bernardis 
& Bellinger, 1987; LeDoux, Iwata, Cicchetti, & Reis, 
1988) and plays an important role in physiological defense 
responses (Keim & Shekhar, 1996). Lesion in this nucleus 
did not change the avoidance component of the exploratory 
behavior in the EPM (File, Gonzalez, & Gallant, 1999). The 
dorsal raphe nucleus is the major serotonergic innervation 
of the amygdala (Parent, Descarries, & Beaudet, 1981) and 
these neurons seem to exert opposing actions on innate and 

Figure 2. Schematic representation of the rat brain illustrating 
the structures activated during the EPM retest session. The 
insets are coronal photomicrographs of the indicated areas 
showing Fos-immunoreactive neurons (dark dots). Bar 
represents 200 µm in all photomicrographs. BLA, basolateral 
amygdaloid nucleus; CeA, central amygdaloid nucleus; Cg2, 
cingulate cortex, area 2; DMH, dorsomedial hypothalamus; IC, 
inferior colliculus; PrL, prelimbic cortex; PVN, paraventricular 
hypothalamic nucleus.

Figure 3. Representative photomicrographs showing the 
effects of systemically injected midazolam (.5 mg/kg) in Cg1, 
AHC and PMD Fos-immunoreactive cells (dark dots) of rats 
submitted to the EPM test session. Bar represents 200 µm in all 
photomicrographs. AHC, anterior hypothalamus central; Cg1, 
cingulate cortex, area 1; f, fornix; PMD, dorsal premammillary 
nucleus; 3V, third ventricle.
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learned fear (Maier, Kalman, & Grahn, 1994) whereas the 
serotonergic neurons of the median raphe nucleus appear 
to be crucial for the expression of freezing to contextual 
cues (Avanzi & Brandão, 2001; Avanzi, Castilho, Andrade, 
& Brandão, 1998). 

Interestingly, midazolam did not change the 
number of Fos-positive neurons in the PVN. As we 
have discussed above, systemically injected midazolam 
decreased the plasma corticosterone levels in naive and 
maze-experienced rats. A possible explanation to this 
apparent discrepancy is that the benzodiazepine may 
inhibit the HPA axis in a level other than the PVN. In 
fact, peripheral-type of benzodiazepine receptors have 
been found in the mammalian pituitary gland, in both 
anterior and intermediate lobes, as revealed by receptor 
binding and autoradiographic techniques (Anderson 
& Mitchell, 1994; Brown & Martin, 1984; De Souza, 
Anholt, Murphy, Snyder, & Kuhar, 1985). Moreover, the 
lack of changes in Fos expression does not necessarily 
preclude involvement of any cell group in a functional 
circuit (Chan, Brown, Ericsson, Kovacs, & Sawchenko, 
1993; Imaki et al., 1995). 

Shah and Treit (2004) showed that the mPFC may 
be an important region for mediating the anxiolytic 
effects of benzodiazepines in naive rats submitted to 
the EPM. In view of the evidence that Cg1 was the 
only structure targeted by midazolam actions on the 
test and retest sessions and to go one step further, 
the benzodiazepine was bilaterally injected into 
this area upon both conditions (Albrechet-Souza et 
al., 2009). Midazolam produced the characteristic 
decrease of anxiety-related behaviors in naive rats, 
increasing the open arms entries and the time spent 

Figure 4. Representative photomicrographs showing the effects 
of systemically injected midazolam (.5 mg/kg) in Cg1, Cg2, 
PrL, BLA and CeA Fos-immunoreactive cells (dark dots) of 
rats submitted to the EPM retest session. Bar represents 200 µm 
in all photomicrographs. BLA, basolateral amygdaloid nucleus; 
CeA, central amygdaloid nucleus; Cg1, cingulate cortex, area 1; 
Cg2, cingulate cortex, area 2; PrL, prelimbic cortex.

Figure 5. Exploratory behavior of rats treated with saline or midazolam (5 μg/.5 μl) intra-Cg1 and submitted to the EPM test or 
retest sessions (inter-trial interval was 24 hours). (A) Photomicrograph of representative sites and location of injection sites in 
the Cg1 based on the rat brain atlas of Paxinos and Watson (2005). (B) Traditional measures and risk assessment behaviors (SAP, 
peeping out and flat-back) of rats submitted to EPM test or retest sessions. The values are mean + SEM. * compared to saline 
group in the same session (p < .05, ANOVA followed by Duncan’s test). n = 6-9 rats in each group. cc, corpus callosum.



in these arms without changing the motor activity in 
the closed arms. Interestingly enough, in the same 
way as systemic injections, midazolam kept its 
effectiveness in promoting reduction of the RABs in 
test and retest sessions (Figure 5). To our knowledge 
no other limbic structure showed such reactivity to 
local injections of benzodiazepines. For instance, 
midazolam administrated into the dorsal columns of 
the PAG (Table 2, Figure 4) produces anxiolytic-like 
effects in naive, but does not change any behavioral 
measure in maze-experienced mice (Reis & Canto-de-
Souza, 2008). In view of these data, Cg1 is pointed 
as an important locus of the anxiolytic-like action of 
benzodiazepines in rodents. 

Final comments

Although described as a simple method for assessing 
anxiety responses of rodents (Pellow et al., 1985), the 
EPM has proven to be very complex in terms of behavioral 
analysis (Carobrez & Bertoglio, 2005). This difficulty 
increases substantially when the EPM is used repeatedly to 
assess the anxiogenic/anxiolytic effects of pharmacological 
agents as well as the brain loci for the action of minor 
tranquilizers. In our studies, the EPM methodology 
has been refined as an animal model of anxiety looking 
at the behavioral, hormonal and cognitive variables in 
an integrated way. Thus, three main points may derive 
from our findings: 1) midazolam reduces the RABs and 
counteracts the increase in plasma corticosterone levels in 
rats submitted to the EPM test and retest sessions; 2) the re-
exposure to the maze is characterized by more prominent 
RABs and recruits areas involved in cognitive aspects 
of the fear, such as the ventral regions of the mPFC and 
amygdala; 3) the Fos immunoreactivity technique showed 
that Cg1 is the only structure targeted by midazolam on 
the EPM test and retest sessions and intra-Cg1 infusions of 
this compound replicated the behavioral effects of the drug 
systemically injected. 

The results reviewed here support the view of 
a crucial role of the RABs in the development of the 
OTT and point to the Cg1 as an important locus for the 
anxiolytic-like action of benzodiazepines in rodents. 
Ultimately, with the present approach, it will be possible 
not only to refine the understanding of the EPM test, 
but also bring new evidence for the development and 
progress of current and new clinically useful animal 
models, which may account for the comprehension of 
the neurobiology of fear and anxiety.
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