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Abstract 
Objective: To systematically review the hyalinization of experimental tooth movement in humans and 
animals. Material and Methods: The electronic databases of MEDLINE, PubMed, Cochrane Library, 
Embase, Institute for Scientific Information, and Google Scholar were searched for performing a systematic 
review of the related literature published until 2019. Moreover, Endnote X9 software was utilized to 
manage electronic titles. The searches were fulfilled using keywords of “hyalinization,” “orthodontic tooth 
movement” OR “OTM” AND “periodontal ligament” OR “PDL,” “molecular pathways,” AND “mechanical 
cell.” Therefore, this systematic review was conducted based on the key consideration of the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Results: Forces ranged 
between 2.3 and 50 CN had been applied. According to the research design, incisors had been included in 
two experiments, whereas maxillary molars had been displaced by tipping forces in another rat 
examination. However, a majority of investigations had stated that hyalinization had firstly appeared within 
the first 24 hours. Moreover, the amount of prostaglandin-end peroxide synthase 2 (PTGS2) had been 
positively related to force term and size utilizing Western blotching. As PTGS2 had been included in the 
prostaglandin E2 (PGE2) metabolism, the up-regulation of PTGS2 gene expression could be connected 
with that of PGE2 emission. Conclusion: Gene expression in connection with force term and size and also 
the first signalling pathways were recognized utilizing protein-protein interactions (PPIs). 
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Introduction 

Orthodontics has been introduced as a specific discipline devoted to examinations and practices of the 

tooth movement across the bone [1]. The reason for orthodontic therapy is thus moving the teeth as 

effectively as possible with negligible unfavorable impacts on the teeth and the supporting tissues [2]. In this 

line, numerous studies have reported molecular, cellular, and tissue-level reactions associated with orthodontic 

tooth movement (OTM) [3-5]. One study in this respect had also indicated that an ideal force system could be 

critical for a sufficiently biological reaction within the periodontal ligament (PDL) [6]. It had been 

correspondingly demonstrated that variables including force type and amount or treatment duration (i.e., term) 

could be coherent with unfavorable tissue responses like sterile necrosis or root resorption. 

The emergence of the necrotic tissue, known as hyalinization, has been taken into account as a vital 

element within the tooth movement procedure [7-9]. Primarily established on histological investigations, 

pressure, and a tension side have also been recognized during the OTM procedure [7,8,10]. Hyalinization can 

be accordingly sterile necrosis at the pressure region of PDL observed amid the early phases of the OTM, and 

broad hyaline zones can thus result in imperative delay within the tooth movement procedure [7,11,12]. In 

related studies, hyalinization has been seemingly found within the initial phase of OTM, and small hyalinized 

patches have been additionally observed within the afterward phases [13,14]. Hyalinization amid the later 

stages of OTM has incompletely justified clinical contrasts within the tooth movement rate between different 

patients [15]. Some studies have also demonstrated the impacts of orthodontic forces on the teeth and their 

encompassing tissues and recognized the basic phases in the OTM procedure [16,17]. Human osteoblasts 

(hOBs) and human periodontal ligament cells (hPDLCs) have been identified as kinds of cells beginning from 

the mesenchymal ancestry contributing significantly to OTM. 

In contrast to hOBs as a characterized cell type, hPDLCs exhibit a blended populace of generally 

fibroblast-like cells [17,18]. From amongst them, mesenchymal stem cells (MSCs) would be of extraordinary 

significance as the source of forebears mindful for recovering and re-modulating not as that for PDL itself but 

the alveolar bone [19]. To better understand the morphological changes during the OTM procedure, it would 

be vital to explain cellular and molecular signalling pathways between and inside such cell types [17]. 

Therefore, this study's primary objective was to conduct a systematic review of hyalinization 

associated with the experimental tooth movement in humans and animals. The secondary purpose was to 

understand mechano-dependent molecular pathways involved in the OTM procedure. 

 

Material and Methods 

Search Strategy 

The electronic databases of MEDLINE, PubMed, Cochrane Library, Embase, Institute for Scientific 

Information (ISI) were searched to provide a systematic review of the related literature published until 2019. 

Moreover, Endnote X9 software was utilized to manage electronic titles. Searches were performed with mesh 

terms: ((((( "Tooth Movement Techniques/adverse effects"[Mesh] OR "Tooth Movement 

Techniques/methods"[Mesh] )) OR "Tooth Movement Techniques"[Mesh]) AND "Periodontal 

Ligament"[Mesh]) AND "Adverse Outcome Pathways"[Mesh]) AND "Index of Orthodontic Treatment 

Need"[Mesh]. Therefore, this systematic review was conducted based on the key consideration of the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. 

The inclusion criteria applied in this study were as follows: 1) Primary data sources; 2) Humans and 

animals used as species; 3) Data concerning hyalinization; 4) Mechanical push on the tooth and its 
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encompassing tissues; 5) Utilization of two-dimensional (2D) or three-dimensional (3D) weight approach based 

on an in-vitro loading model; and 6) Key considerations, i.e., articles in English. 

 

Data Extraction and Method of Analysis 

The data have been extracted from the research included about the study, year, study design, force, 

sample size, time of sacrifice, cutting plane, first hyalinization, last hyalinization, gene symbol or metabolite, 

examined force applied, increase/decrease/ no change, change in relation to force magnitude, 

increase/decrease/ no change, substance secretion change to force duration, change about force magnitude. 

The quality of the studies included was assessed using the Meta-Analysis and Review of Animal Data [20]. 

For Data extraction, two reviewers blind and independently extracted data from the abstract and full text of 

studies included. Moreover, ES, with a 95% confidence interval (CI), were calculated. Random effects were used 

to deal with potential heterogeneity, and I2 showed heterogeneity. The Meta-analysis and forest plots have 

been evaluated using a software program (i.e., Comprehensive Meta-Analysis Stata V14). 

 

Results 

Study Selection Process 

As the primary set-up data, 231 potentially important topics and abstracts were discovered through 

manual and electronic searches on the given databases. During the primary phase of the research selection, a 

total of 184 articles were also neglected with regard to their titles and abstracts. Also, a total number of 47 

full-text studies were completely assessed for the moment phase. Then, 42 articles were excluded since they 

were not in agreement with the inclusion criteria. Ultimately, five studies meeting the inclusion criteria were 

reviewed systematically. In the secondary set-up, a total number of 314 potentially relevant topics and 

abstracts were observed during manual and electronic searches. Then, within the first phase of the selection, 

246 articles were removed about their titles and abstracts. In the second phase, 68 full-text studies were 

comprehensively assessed. Afterwards, 61 articles were excluded at this phase, as they had no compliance with 

the inclusion criteria of this study. Ultimately, 11 articles met the inclusion criteria in the present study 

(Figure 1).  

 
Figure 1. Study attrition diagram. 
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Hyalinization during OTM Procedure 

The overall results presented in Table 1 are summarized as follows [7,21-24]: In 4 out of the five 

selected articles, the experiments had been carried out in rats [7,21,22,24]. As well, the animals included in the 

experiments were a total number of 177, and the experimental interval had been between 1 and 56 days. 

Moreover, the applied forces had been ranged between 2.3 and 50 cN. In terms of research design, incisors had 

been included in two experiments, whereas maxillary molars had been displaced by tipping forces in another 

rat examination. However, most investigations had stated that hyalinization had first appeared within the first 

24 hours. Additionally, an investigation dealing with dogs (n =1) had revealed that diverse force levels had 

been applied at a range of 50 CN and the teeth had been fundamentally displaced. One study had further 

observed the necrotic tissue in the rest phase and after the acceleration one after 28 days [23]. 

 

Table1. Selected studies to enter a systematic review. 
Authors Year Species N Force Time of 

Sacrifice 
Cutting 
Plane 

Hyalinization 

       First Last 
Cuoghi et al. [7] 2019 Rat 42 50 1, 3, 5 Horizontal 1 day 12 days 
Kraiwattanapong 
et al. [21] 

2018 Rat 40 40, 50 7, 14, 21, 28 Horizontal 7 and 
14 days 

28 days 

Tomizuka et al. 
[22] 

2007 Rat 43 2.3 è 13.5 
5 è 13.5 

1, 3, 7, 10, 14 Horizontal 1 day 10 days 

Iino et al. [23] 2007 Dog 12 50 7, 14, 28, 56 Saggital 
(Mesial-Distal) 

7 days 28 days 

Kohno et al. [24] 2002 Rat 40 1.2, 3.6, 
6.5, 10 

7, 14 Horizontal 7 days 14 days 

 

Molecular Pathways in OTM Procedure 

It should be noted that compression forces extending from 0.25 and 5 g/cm2 have been connected 

with cells in two-dimensional culture. Unquestionably, the foremost widely utilized compressive force has been 

2 g/cm2. Force length and size have also been dependent on the scaffold employed. In most cases, platforms 

fabricated from the collagen gel and poly-lactic-co-glycolic acid (PLGA) have also been connected. In one 

study [25], a hydrophilically-altered poly (L-lactide) (PLLA) matrix had been correspondingly utilized. Then, 

the collagen gel scaffolds had been used with force magnitudes changing from 0.5 g/cm2 to 9.5 g/cm2 and the 

foremost widely applied force had been 6 g/cm2. The force had also been connected for 0.5 to 72 hours. The 

force levels between 5 and 35 g/cm2 were utilized to the cells placed in the PLGA scaffolds. Thus, the foremost 

widely connected force had been 25 g/cm2. Notably, the force application term had been reported between 3 

and 72 h. Therefore, the study utilizing a hydrophilically-balanced PLLA matrix [25] had used force sizes 

between 5 and 35 g/cm2. Afterwards, the force application term had switched between 1 and 14 days. A total 

overview of the genes and metabolites inspected in 2D and 3D WAB examinations and specifications of their 

expression are provided in supplements 2 and 3 (2D) and supplement 4 (3D). 

Extraordinary consideration has been also paid to the hPDLCs as the foremost studied cell type 

among the examinations as well as their significant contribution to OTM procedures. However, the first 

inspected qualities and metabolites in connection with hPDLCs have been TNF super-family portion 11 

(TNFSF11), prostaglandin-end peroxide synthase 2 (PTGS2), TNF receptor super-family portion 11B 

(TNFRSF11B), and prostaglandin E2 (PGE2). It should be noted that points of interest regarding their 

expression or secretion counted the information at which the time centers or force sizes had raised slightly 

were summarized. Most inspected genes had also utilized hPDLCs. Thus, this study summarized the obtained 
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information to the foremost commonly genes inspected and materials in this kind of cell to clarify the 

commitment of the hPDLCs in OTM procedure on molecular levels (Table 2, Figures 2, 3, 4, and 5). The 

genes, including PTGS2, TNFSF11, and PGE2, have also been called osteoclast genesis inducers, and 

TNFRSF11B has been referred to as the osteoclast genesis suppressor. As the PTGS2 had been included in the 

prostaglandin E2 system, the up-regulation of PTGS2 gene expression was connected with that of PGE2 

discharge in all studies. TNFRSF11B, also alluded to the osteoprotegerin (OPG), was TNFSF11’s antagonist, 

which could hinder osteoclast genesis.  

Many studies using 2D WAB in-vitro loading had further shown no alteration in the quality 

expression with a special case of 2 ponders with detailed or transitory down-regulation. Considering protein 

discharge, results had been conflicting. In any case, most studies had detailed a reduction in protein emission or 

had reported no change. Moreover, outputs obtained by examinations in studies utilizing 3D WAB in-vitro 

stacking had been opposite about the scaffold employed. Another study using the collagen gel scaffolds had 

further demonstrated an increment in TNFRSF11B quality expression. However, in each study using the 

PLGA scaffolds, the TNFRSF11B discharge's decline had been emphatically related to constraining the size 

and adversely associated with constraining length. As an exception, comparing the TNFSF11 and 

TNFRSF11B quality expressions within the previously mentioned studies, it had been reported that regulating 

TNFRSF11B had been parallel with a quick up-regulation of TNFSF11 in 3D WAB in-vitro stacking. These 

two genes had also exhibited opponents in the bone turnover control, which had been clarified as a great 

exhibition of the cyclic alterations within the bone metabolism on the compression side amid the OTM 

procedure.  

Moreover, researchers had proposed that down-regulating TNFSF11 in afterward phases could be 

related to other inducers for delayed osteoclast genesis advancement. TNFSF11 can also play a pivotal part in 

bone resorption on the compression side during the OTM procedure, actuating the osteoclast arrangement. 

TNFSF11 has also been introduced as expanded gene expression in each study, utilizing 2D WAB in-vitro 

loading. Many research studies using TNFSF11 quality expression and protein secretion have been further 

emphatically related to duration and greatness, coming to the most extreme expression levels after 12-24 

hours of applying the force. In this respect, a study utilizing the 3D WAB in-vitro stacking had shown a 

detailed increment within the TNFSF11 emission, a majority of them after 6 hours of applying the force. 

However, in the cells developed in PLGA scaffolds, there was a positive relationship between constraint size 

and gene. The PTGS2 gene expression level had been expanded by constraining applications in both 2D and 

3D ponders. Many 2D WAB examinations had thus reported that PTGS2 was positively correlated with the 

length of the examination and gene expression. 

Nevertheless, studies using the 3D WAB in-vitro loading had demonstrated that PTGS2 could be 

adversely associated with force term and emphatically connected with force size. Put it differently; PTGS2 

amount had appeared to have a positive relationship with force term and size according to Western blotching. 

As PTGS2 had been included in the PGE2, the up-regulation of PTGS2 gene expression had been also 

connected to that of PGE2 emission (Table 2 and Figures 2, 3, 4, and 5). 
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Table 2. Selected studies to enter systematic review and meta-analysis. 
Study Gene Symbol or 

Metabolite 
Examined Force Applied Increase / 

Decrease / No 
Change 

Gene Expression 
Change About 

Force Duration (h) 

Change About 
Force 

Magnitude 
(g/cm2) 

Increase / 
Decrease / 
No Change 

Substance 
Secretion Change 

About Force 
Duration (h) 

Change 
About Force 
Magnitude 

(g/cm2) 
Duration 

(h) 
Magnitude 

(g/cm2) 
Benjakul et al. [26] PGE2 48 1.5 NR NR NR Increase 

(qPCR: GAPDH) 
48 1.5 

 TNFRSF11B   No Change 
(qPCR: GAPDH) 

NR NR No change   

 TNFSF11   Increase 
(qPCR: GAPDH) 

48 1.5 Increase 
(qPCR: GAPDH) 

48 1.5 

Liao et al. [25] TNFRSF11B 1 d; 3 d; 7 
d; 14 d 

5.0; 15.0; 
25.0; 35.0 

No Change 

(qPCR: GAPDH) 

12 1.0 NR NR NR 

 TNFSF11   Increase 

(qPCR: GAPDH) 

14 35.0 NR NR NR 

Yi et al. [27] PGE2 24 25.0 NR NR NR Increase 
(ELISA) 

  

 TNFSF11   Increase  
qPCR 

24 25.0 Increase (WB) 24 25.0 

 PTGS2   Increase  
(qPCR: GAPDH) 

  Increase (WB)   

 TNFRSF11B   Decrease 
(qPCR: GAPDH) 

  No Change 
(WB) 

NR NR 

Li et al. [28] TNFRSF11B 6; 24; 72 25.0 Increase 
(qPCR: GAPDH) 

6, 72 25.0  NR NR 

 PGE2   NR   Increase 
(ELISA) 

24 25.0 

 PTGS2   Increase 
(qPCR: GAPDH) 

6 25 NR NR NR 

Jin et al. [29] PGE2 0; 0.5; 3; 
6; 12 

2.0 NR   Increase 
(ELISA) 

12 2.0 

 PTGS2   Increase 
(qPCR: GAPDH) 

12 2 NR NR NR 

 TNFRSF11B   No Change 
(qPCR: GAPDH) 

  NR NR NR 

 Nochange 
(qPCR: GAPDH) 

  Increase 
(qPCR: GAPDH) 

NR NR NR NR NR 
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Kirschneck et al. [30] PTGS2 24 2.0 Increase 
(qPCR: POL2RA) 

24 2.0    

 PGE2   NR NR NR Not Explicit 
Lystated 
(ELISA) 

NR NR 

 TNFRSF11B   No Change 
(qPCR: POL2RA) 

NR NR NR NR NR 

 TNFSF11   Increase 
(qPCR: POL2RA) 

24 2.0 NR NR NR 

Jianru et al. [31] TNFRSF11B 3; 6; 12 
(WB: 12) 

25.0 Decrease followed 
by Increase 

(qPCR: GAPDH) 

3, 12 25.0 Increase (WB) 12 25.0 

 TNFSF11   Increase 
(qPCR: GAPDH) 

6 25.0 Increase (WB) 12 25.0 

Proff et al. [32] PTGS2 24 2 Increase 
(qPCR: POL2RA) 

24 2 Increase (WB) 24 2 

 PGE2   Increase (ELISA) 24 2    

Kim et al. [33] TNFRSF11B 0.5; 2; 6; 
24; 48 

2.0 Down Regulated 
(qPCR: GAPDH) 

6 2.0 Transitory Down 
Regulation 

(ELISA) 

6 2.0 

 TNFSF11   Increase 
(qPCR: GAPDH) 

24 2.0 Increase 
(ELISA 

48 2.0 

Mitsuhashi et al. [34] TNFSF11 1; 3; 6; 9; 
12; 24 

4.0 Temporary Increase 
(qPCR: ACTNB) 

6, 9 40 NR NR NR 

 TNFRSF11B   No Change 
(qPCR: ACTNB) 

NR NR NR NR NR 

Römer et al. [35] TNFSF11 24 2 Increase (qPCR: 
RNA-polymerase-2- 

polypeptide A) 

24 2 NR NR NR 

PGE2   NR NR NR Increase 
(ELISA 

24 2 

TNFRSF11B   RNA-polymerase-
2polypeptideA) 

NR NR NR NR NR 

NR: Not Reported; qPCR: Polymerase Chain Reaction. 
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Figure 2. Forest plots of PGE2. 

 

 
Figure 3. Forest plots of TNFRSF11B. 

 

 
Figure 4. Forest plots of TNFSF11. 
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Figure 5. Forest plots of PTGS2. 

 

Discussion 

To meet the primary objective of this study, it was not conceivable to do a consequent meta-analysis 

because the information may not be fused for measurable investigations. So, a systematic review of existing 

information concerning hyalinization and tooth movement was conducted. In this respect, some studies had 

carried out tipping tooth movements that had led to uneven stretch and strain distributions within PDL. Such 

a test set-up had also provided the ground to initiate hyalinization with a generalizable manner. In addition, 

many investigations had adopted short experimentation intervals, raising the question if the linear stage of 

tooth movement had been ever come to a particular point or not. Normally, auxiliary modifications within the 

hard and the PDL during the tooth movement's distinctive phases can modify the local biomechanical context 

that results in modulating biological reactions [7,8]. Finally, the information revealed significant inter-

individual changes in biological reactions to a force that led to a challenging comparison between diverse 

studies. However, according to the previous systematic review on force magnitude connected with the OTM 

procedure [36-38], similar problems had been experienced [38]. 

In this review, it appeared that hyalinization in rats had occurred before the test phase compared with 

other species. In one other study, details showed that the alveolar bone in rats had a better thickness than that 

of humans [36]. It seemed that the osteoid layer alongside the bone surface was less inexhaustible in rats 

compared with humans, justifying quicker hyalinization. Moreover, smaller width of rats’ PDL had induced 

higher power and generally higher neighborhood strain on the alveolar bone, resulting in decreased blood flow 

and creation of a necrotic region. The other clarification might be the greater rate of bone turnover amid the 

remodelling process occurrence in OTM procedure in rats compared with that in humans [8,39,40]. 

To meet the secondary objective of this study, it was observed that the force application term within 

the examinations had seldom surpassed 72 hours. However, in many conditions, the force had been connected 

up to 24 and 48 hours. Although the first ten days had been crucially significant for the OTM procedure, the 

force application term in many studies had been inadequate to completely reach the atomic foundation of OTM 

procedure [17,40]. Furthermore, it should be noted cell practicality was also explored. Accordingly, most 

studies affirmed a reduction of the cell practicality caused by the force level and time [41,42]. It is accepted 

that a limitation, particularly within the 2D WAB in-vitro models, has threatened supplements and oxygen 
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supplies within the weight zone. To particularly overcome the time impediment of the past models, the 

hydrophilically adjusted PLLA network as an unused platform for 3D groups had been presented [17,25]. So, 

the high scaffold might be utilized for up to 14 days with no influence on cells. KEGG paths recognized for all 

sets of qualities could also be significant for OTM procedure, and they could also be valuable sources for 

finding unused qualities that might influence OTM. 

 

Conclusion 

The in-vitro weight-loaded approach represents a basic and an exceptionally effective way to examine 

molecular events amid OTM procedure. Accordingly, 3D in-vitro weight approaches based on stacking models 

can be promising for further studies since they can provide more genuine in-vitro set-ups. Moreover, 

hyalinization can be taken into account as an unfavorable side effect of the OTM procedure. Furthermore, 

hyalinization and its conceivable relationships with strain levels in PDL and alveolar bone or the tooth 

movement rate after the introductory phase have been delineated in a small number of key considerations. 
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