Acessibilidade / Reportar erro

Conservation gaps identification through patterns of species richness established from species niche models of mammals in a sector of Chaco Seco ecoregion

Abstract

The identification of biodiversity conservation priority sectors that are not formally protected, have an essential part of conservation strategies and goals at global and local scale. Ecological niche modeling is a relevant and important tool for analysis and distribution of species, also is used to determine the biodiversity patterns through the regions. The main objective of this work was to identify the sites with high biodiversity patterns in a sector of Chaco Seco ecoregion that haven’t been protected with environmental legislation. Through biodiversity sampling with foot transects, camera traps and interviews, it was registered the presence of large and medium mammals in Santiago del Estero Province. Biodiversity pattern maps were then developed from potential distribution models (SDMs) of 5 mammalian species selected for being relevant for conservation. To define zones that could be characterized like conservation gaps, pattern maps were contrasted with protected areas layers and legal schemes of land use planning and also, protected forest. For the SDM, 171 records were used, 43 for M. gouazoubira, 40 for P. concolor, 20 for M. trydactila, 43 on P. tajacu and 25 on C. wagneri. Three models were used to make the biodiversity patterns, one of these, Fuzzy union, were used for the subsequent calculation. The total area of high biodiversity increases to 39.486 km², which represents the 29% of provincial area. In consequence the 81% remaining represents the conservation gaps areas for that sector of the ecoregion.

Keywords.
Chaco Seco ecoregion; Biodiversity; Mammals; Species niche models; Conservation gaps

INTRODUCTION

One of the most relevant characteristics of biodiversity, is the fact that it doesn’t occurs in uniform ways, because of that, the spatial patterns of richness have been an object of study for a long time, in a different scales and focus, like community ecology (Krebs, 1978Krebs, C.J. 1978. A review of the Chitty hypothesis of population regulation. Canadian Journal of Zoology, 56(12): 2463-2480. https://doi.org/10.1139/z78-335.
https://doi.org/10.1139/z78-335...
; Begon et al., 1990Begon, M.; Harper, J.L. & Townsend, C.R. 1990. Individuals, populations and communities. Melbourne, Ecology Blackwell Scientific Publications. 876p.), biogeography (Rapoport, 1975Rapoport, E. 1975. Areografía: estrategias geográficas de las especies. Obras de Ciencia y Tecnología.; Pielou, 1979Pielou, E.C. 1979. Biogeography. New York, Wiley.; Simberloff, 1983Simberloff, D. 1983. Biogeography: the unification and maturation of a science. In: Brush, A.H.; Clark Jr., G.A. Perspectives in Ornithology: Essays presented for the centennial of the American Ornitholgists’ Union. Cambrige, Cambridge University Press. p. 411-475. https://doi.org/10.1017/CBO9780511759994.013.
https://doi.org/10.1017/CBO9780511759994...
; Murguía, 2005Murguía, M. 2005. La estadística espacial como herramienta de análisis de la biodiversidad. In: Halffter, G.; Soberó, J.; Koleff, P.; Melic, A. (Eds). Sobre diversidad biológica: el significado de las diversidades alfa, beta y gamma. Saragoza, S.E.A. pp. 63-72. (M3M, v. 4, Monografia).), and most recently from macroecology perspective (Brown, 1995Brown, J.H. 1995. Macroecology. Chicago, University of Chicago Press.; Gaston et al., 2000Gaston, K.J.; Blackburn, T.M.; Greenwood, J.J.; Gregory, R.D.; Quinn, R.M. & Lawton, J.H. 2000. Abundance - occupancy relationships. Journal of Applied Ecology, 37: 39-59. https://doi.org/10.1046/j.1365-2664.2000.00485.x.
https://doi.org/10.1046/j.1365-2664.2000...
), as well as integrating several of them (Magurran, 1988Magurran, A.E. 1988. Diversity indices and species abundance models. In: Ecological diversity and its measurement. Princeton, Princeton Universty Press. p. 7-45. https://doi.org/10.1007/978-94-015-7358-0_2.
https://doi.org/10.1007/978-94-015-7358-...
; Rosenzweig, 1995Rosenzweig, M.L. 1995. Species diversity in space and time. Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9780511623387.
https://doi.org/10.1017/CBO9780511623387...
).

Studies of ecological models, like geographic distribution models, aims to estimate the similar condition in every site with conditions in known occurrences locations (and maybe the not occurrence) of a phenomenon, being an extended application in a lot of recents investigations. One of the common ways to use the methodology is to predict the species ranges with climate data as a predictive variable (Hijmans et al., 2017Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J. & Hijmans, M.R.J. 2017. Package ‘dismo’. Circles, 9(1): 1-68.). The focusing on ecology habitat association has been used in a variety of purposes including conservation and ecological management.

In particular, the focusing is being used to develop predictive models to estimate the population size and geographical ranges, and additionally to identificate the potential habitat changes (Stillman & Brown, 1994Stillman, R.A. & Brown, A.F. 1994. Population sizes and habitat associations of upland breeding birds in the south Pennines, England. Biological Conservation, 69(3): 307-314. https://doi.org/10.1016/0006-3207(94)90431-6.
https://doi.org/10.1016/0006-3207(94)904...
).

There are diverse modeling techniques (GLM, GAM, GARP, ENFA, Maxent, etc.) that can be used depending on the records (data) available for each species, the climate data and required precision. Some comparisons between different techniques were developed, and although there are no general conclusions, Maxent seems to work better than others (Sosa-Escalante et al., 2013Sosa-Escalante, J.E.; Pech-Canché, J.M.; MacSwiney, M.C. & Hernández-Betancourt, S. 2013. Mamíferos terrestres de la península de Yucatán, México: riqueza, endemismo y riesgo. Revista Mexicana de Biodiversidad, 84(3): 949-969. https://doi.org/10.7550/rmb.33285.
https://doi.org/10.7550/rmb.33285...
). Maxent software (Phillips et al., 2006Phillips, S.J.; Anderson, R.P. & Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4): 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.
https://doi.org/10.1016/j.ecolmodel.2005...
) is especially popular in species distribution/environmental niches modeling, with more than 1,000 applications published since 2006. The main characteristic is the possibility of creating the model from presence data and environmental variables.

This article provides a geographical approach to establish conservation gaps in the province of Santiago del Estero, an important portion of the Dry Chaco ecoregion. Ecological niche models of large and medium mammals of ≥ 1 kg of body mass (Chiarello, 2000Chiarello, A.G. 2000. Density and population size of mammals in remnants of Brazilian Atlantic Forest. Conservation Biology, 14(6): 1649-1657. https://doi.org/10.1111/j.1523-1739.2000.99071.x.
https://doi.org/10.1111/j.1523-1739.2000...
) were used, selecting the species with greater relevance from the perspective of biodiversity conservation within the region, as an analytical tool that determines the potential distribution of those species. In this way, it is possible to obtain different maps of biodiversity richness and link this to the formal strategies for conservation and management of natural resources in the province, such as the forest categories of the OTBN (native forests territorial ordering, by its spanish acronym) of Law No. 6.942 or the sites designated as protected areas by provincial regulations (Law No. 6.381).

MATERIAL AND METHODS

Study Area

The study is located in Santiago del Estero province (Fig. 1), between 25°35′ y los 30°41′S and 61°34′ y los 65°34′O, covered totally by Chaco Seco ecorregion (Cabrera, 1994Cabrera, A.L. 1994. Enciclopedia Argentina de agricultura y jardinería, Tomo II, Fascículo 1: regiones fitogeográficas Argentinas. Buenos Aires, ACME.). The fisonomy of this region is typically represented with quebracho colorado (Schinopsis lorentzii) and quebracho blanco (Aspidosperma quebracho-blanco) (Morello & Adamoli, 1974Morello, J. & Adamoli, J. 1974. Las grandes unidades de vegetación y ambiente del Chaco Argentino: Vegetación y ambiente de la provincia del Chaco. Buenos Aires, Instituto Nacional de Tecnología Agropecuaria Secretaría de Estado de Agricultura y Ganadería de la Nación.), with a mixture of palmares, algarrobales, simbolares, espartillares, pastizales, etc. (Naumann, 2006Naumann, M. 2006. Atlas del Gran Chaco Sudamericano. Sociedad Alemana de Cooperación Técnica (GTZ).; TNC et al., 2005The Nature Conservancy (TNC); Fundación Vida Silvestre Argentina (FVSA); Fundación para el Desarrollo del Chaco (DesDel Chaco) & Wildlife Conservation Society Bolivia (WSC). 2005. Evaluación Ecorregional del Gran Chaco Americano/Gran Chaco Americano Ecological Assessment. Buenos Aires, Fundación Vida Silvestre Argentina. 28p.). The weather there is semi-arid continental (Cabrera, 1971Cabrera, A.L. 1971. Sociedad Argentina de Botánica. Boletín de la Sociedad Argentina de Botánica, 14: 1-2.), warm with dry winters seasons and rainfall in the order of 750 mm annually. Higher temperatures are registered in summer, up to 45℃ with the maximum absolute isoterm for Argentina, that is called the Sudamerican Warm Pole (Prohaska, 1959Prohaska, F. 1959. El polo de calor de América del Sur. INTA, IDIA, 141: 27-30.). There are hydric deficits along the year reaching the maximum values in vegetative periods (spring and summer), (Bruchmann, 1981Bruchmann, E.T. 1981. Climatología general y agrícola de la Provincia de Santiago del Estero. Tucumán, Universidad Nacional de Tucumán. 199p.). The plain covers almost the entire province, with limo-loessicos soils (Lorenz, 1995Lorenz, G. 1995. Caracterización ecológica de un suelo Eutric Regosol bajo bosque en el Chaco Semiárido, Argentina. Quebracho, 3: 13-23.; Moscatelli, 1990Moscatelli, G. 1990. Atlas de Suelo de la República Argentina. Buenos Aires, Instituto Nacional de Tecnología Agropecuaria (INTA).).

Figure 1
Study area. Geometric figures of different colors indicating the sites of presence of the selected mammalian species used for the distribution models.

Nowadays, the Gran Chaco Americano is considered one of the higher priority ecoregion in Latin America and Caribe for conservation, due to the high number of endemism and biodiversity richness of mammals living there (Redford et al., 1990Redford, K.H.; Taber, A. & Simonetti, J.A. 1990. There is more to biodiversity than the tropical rain forests. Conservation Biology, 4(3): 328-330. https://doi.org/10.1111/j.1523-1739.1990.tb00296.x.
https://doi.org/10.1111/j.1523-1739.1990...
; Mares, 1992Mares, M.A. 1992. Neotropical mammals and the myth of Amazonian biodiversity. Science, 255(5047): 976-979. https://doi.org/10.1126/science.255.5047.976.
https://doi.org/10.1126/science.255.5047...
; Olson et al., 2001Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I. Strand, H.E.; Morrison, J.C.; Loucks, C.J.; Allnutt, T.F.; Ricketts, T.H.; Kura, Y.; Lamoreux, J.F.; Wettengel, W.W.; Hedao, P. & Kassem, K.R. 2001. Terrestrial ecoregions of the world: a new map of life on earth. A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 51(11): 933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.
https://doi.org/10.1641/0006-3568(2001)0...
; Ojeda et al., 2002Ojeda, R.A.; Borghi, C.E. & Roig, V.G. 2002. Mamíferos de Argentina. In: Ceballos, G.; Simonetti, J.A. Diversidad y conservación de los mamíferos neotropicales. Mexico, Conociemiento y Uso de la Biodiversidad. p. 23-63.; Torres & Jayat, 2010Torres, R. & Jayat, J.P. 2010. Modelos predictivos de distribución para cuatro especies de mamíferos (Cingulata, 540 Artiodactyla y Rodentia) típicas del Chaco en Argentina. Mastozoología Neotropical, 17(2): 335-352.; Sandoval & Bárquez, 2013Sandoval, M.L. & Bárquez, R.M. 2013. The Chacoan bat fauna identity: Patterns of distributional congruence and conservation implications. Revista Chilena de Historia Natural, 86: 75-94. https://doi.org/10.4067/S0716-078X2013000100007.
https://doi.org/10.4067/S0716-078X201300...
). However, the ecosystem has been calificated like “vulnerable” for habitat loss, land cover transformation, habitat fragmentation and low conservation efforts in grasslands, savannahs and forest (Dinerstein et al., 1995Dinerstein, E.; Olson, D.M.; Graham, D.J.; Webster, A.L.; Primm, S.A.; Bookbinder, M.P. & Ledec, G. 1995. Una evaluación del estado de conservación de las eco-regiones terrestres de América Latina y el Caribe. Washington, DC, Banco Mundial.).

Ecological niche modeling

Five species of large mammals were selected a priori, being these Catagonus wagneri (Rusconi, 1930), Mazama gouazoubira (Fischer, 1814), Pecari tajacu (Linnaeus, 1758), Myrmecophaga trydactila (Linnaeus, 1758) y Puma concolor (Linnaeus, 1771), which have a relevant importance from a conservation perspective for having a decline population, some of them are categorized like “vulnerable” or “in danger of extinction” (Chebez et al., 2011Chebez, J.C.; Gasparri, B.; Cier, M.H.; Nigro, N.A. & Rodríguez, L. 2011. Estado de conservación de los tetrápodos de la Argentina. Manejo de Fauna Silvestre en Argentina. Conservación de especies amenazadas. Fundación de Historia Natural “Félix de Azara”, Buenos Aires.) (Annex 3: with population status). Also, presence of these species is considered an indicator of ecosystem stability, optimal habitat conditions and presence of another species (Muzzachiodi & Sabattini, 2002Muzzachiodi, N. & Sabattini, R.A. 2002. La mastofauna como indicador de conservación del bosque nativo en un área protegida de Entre Ríos. Revista Científica Agropecuaria, 6: 5-15.). Finally, and focusing on methodology requirements, they reach the minimum number of sites necessary to run the model (Merow et al., 2013Merow, C.; Smith, M.J. & Silander Jr., J.A. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36(10): 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x.
https://doi.org/10.1111/j.1600-0587.2013...
).

To obtain the distribution maps, it was modeled using the Maxent learning machine algorithm (software Maxent 3.4) (Phillips et al., 2006Phillips, S.J.; Anderson, R.P. & Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4): 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.
https://doi.org/10.1016/j.ecolmodel.2005...
), due to only having presence data. Maxent takes a location list with presence data, almost called only presence data (OP), as well as a group of environmental predictions (for instance, precipitation, temperature) through a user-defined landscape that divides it in grid cells (Merow et al., 2013Merow, C.; Smith, M.J. & Silander Jr., J.A. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36(10): 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x.
https://doi.org/10.1111/j.1600-0587.2013...
). From this way, Maxent takes a sample of locations and then, is contrasted with OP. Presence is known in background places. Maxent generates a probabilistic distribution of grid pixels beginning from uniform distribution raising the data fit repeatedly.

A total of 171 records were employed, 43 for M. gouazoubira, 40 for P. concolor, 20 for M. trydactila, 43 in P. tajacu y 25 of C. wagneri. These were generated from sampling in different places and ecosystems almost coincident with protected areas and biological corridors in Santiago del Estero without a previous sample design, from 2006 until the present. Linear transects from 2 to 8 km of variable longitude (Stephens et al., 2006Stephens, P.A.; Zaumyslova, O.Y.; Miquelle, D.G.; Myslenkov, A.I. & Hayward, G.D. 2006. Estimating population density from indirect sign: track counts and the Formozov-Malyshev-Pereleshin formula. Animal Conservation, 9(3): 339-348. https://doi.org/10.1111/j.1469-1795.2006.00044.x.
https://doi.org/10.1111/j.1469-1795.2006...
), with a distance between them not less than 2 km; and semi structured interviews to rural communities, only selected those of high reliability (Giraudo & Abramsom, 1998Giraudo, A.R. & Abramson, R.R. 1998. Usos de la fauna silvestre por los pobladores rurales de la Selva Paranaense de Misiones. Tipos de uso, influencia de la fragmentación y posibilidades de manejo sustentable. Boletín Técnico de la Fundación Vida Silvestre Argentina, 42: 48.; Bolkovic, 1999Bolkovic, M.S. 1999. Usos de fauna silvestre de pobladores de las cercanías de la reserva provincial Copo, Santiago del Estero, Argentina. In: Fang, T.G.; Montenegro, O.L. & Bodmer, R.E. (Eds.). Manejo y Conservación de fauna silvestre en América Latina. Santa Cruz de la Sierra, Museo de Historia Natural Noel Kempff Mercado. p. 117-124.), were employed to take the data in situ. For the second point, the ability of the interviewed to correctly identify the species was evaluated, by discriminating between species (Rabinowitz, 1997Rabinowitz, A. 1997. Wildlife field research and conservation training manual. New York, Wildlife Conservation Society.) in field guides and photography material (Canevari & Vaccaro, 2007Canevari, M. & Vaccaro, O. 2007. Guía de mamíferos del sur de América del Sur (Vol. 19). Buenos Aires, LOLA.). Also, abundance and population data were taken too. Thirdly, camera traps were used: Automatic cameras (brands: Tasco of 5 mpx and Trail camera from 12 mpx) above tree barks at 50 cm from the floor, near animal tracks. These cameras were located not less than 1,5 km (Trolle & Kéry, 2003Trolle, M. & Kéry, M. 2003. Estimation of ocelot density in the Pantanal using capture-recapture analysis of camera-trapping data. Journal of Mammalogy, 84(2): 607-614. https://doi.org/10.1644/1545-1542(2003)084<0607:EOODIT>2.0.CO;2.
https://doi.org/10.1644/1545-1542(2003)0...
). Six cameras with activation turns and checking every 60 days were employed.

The prediction covariables are the 19 Worldclim bioclimatic variables for actual conditions (~1960-1990) 1.4 version (Hijmans et al., 2006Hijmans, R.J.; Cameron, S.E. & Parra, J.L. 2006. WorldClim Global Climate Layers version 1.4. Available: https://www.worldclim.org.
https://www.worldclim.org...
; (worldclim)) with a spatial resolution of 30 arcseconds that represents 33 and 43 zones of planisphere grid, being a 30 × 30 grades mosaic. From the altitude layer and using QGIS software (versión 2.18.15) the topographic variable was created. A categorical variable that refers to land cover was incorporated, which has 20 different types of land covering (Tateishi et al., 2011Tateishi, R.; Uriyangqai, B.; Al-Bilbisi, H.; Ghar, M.A.; Tsend-Ayush, J. & Kobayashi, E.T. 2011. Production of global land cover data - GLCNMO. International Journal of Digital Earth, 4(1): 22-49. https://doi.org/10.1080/17538941003777521.
https://doi.org/10.1080/1753894100377752...
, 2014Tateishi, R.; Hoan, N.T.; Kobayashi, T.; Alsaaideh, B.; Tana, G. & Phong, D.X. 2014. Production of global land cover data - GLCNMO2008. Journal of Geography and Geology, 6(3): 99. https://doi.org/10.5539/jgg.v6n3p99.
https://doi.org/10.5539/jgg.v6n3p99...
). The modeling was made in two successive stages, firstly to determine the most relevant variables and the last one to select a binary map of high AUC. In both stages, a cross validation was used (Stockwell, 1992Stockwell, D.R.B. 1992. Machine learning and the problem of prediction and explanation in ecological modelling. Ph.D. Thesis, Australian National University.) with a partitioned sample of 5 fold of equal size. The cut-off threshold “maximum training sensitivity plus specificity” was set for the binary output. Highly correlated covariates were dismissed (Spearman test) and finally, those with a high perceptual contribution were chosen. To determine that contribution, at each iteration of the training algorithm, the increase in regularized gain is added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of lambda is negative. The bias file was created using the Kernel density function to reduce the spatial autocorrelation error and therefore the lack of independence of the species’ record sites. In addition, duplicated records or with a less distance of 5 km were left.

Spatial Biodiversity

The works of Pearman & Weber (2007Pearman, P.B. & Weber, D. 2007. Common species determine richness patterns in biodiversity indicator taxa. Biological Conservation, 138(1-2): 109-119. https://doi.org/10.1016/j.biocon.2007.04.005.
https://doi.org/10.1016/j.biocon.2007.04...
) and Koleff et al. (2008Koleff, P.; Soberón, J.; Arita, H.T.; Dávila, P.; Flores-Villela, Ó.; Golubov, J.; Halffter, G.; Lira-Noriega, A.; Moreno, C.E.; Moreno, E.; Munguía, M.; Murguía, M.; Navarro-Sigüenza, A.G.; Téllez, O.; Ochoa-Ochoa, L.; Peterson, A.T. & Rodríguez, P. 2008. Patrones de diversidad espacial en grupos selectos de especies. Capital Natural de México, 1: 323-364.) were considered, who establish that spatial patterns of species richness are determined by common species primary, according to coarse resolution studies, and suggest that spatial patterns in species richness could be described through sampling of widely distributed species. From set up a map (logistic output) of potential distribution of five species previously considered and employing two programs, Qgis geographic information system (2.18 version) and Prion (0.11 version) (Vergílio et al., 2016Vergílio, M.; Fonseca, C.; Calado, H.; Borges, P.A.V.; Elias, R.B.; Gabriel, R.; Martins, A.; Azevedo, E. & Cardoso, P. 2016. Assessing the efficiency of protected areas to represent biodiversity: a small island case study. Environmental Conservation, 43(4): 337-349. https://doi.org/10.1017/S037689291600014X.
https://doi.org/10.1017/S037689291600014...
), three synthesis maps or consensus models were created with species richness patterns for Santiago del Estero province following general guidelines (Ceballos et al., 1998Ceballos, G.; Rodríguez, P. & Medellín, R.A. 1998. Assessing conservation priorities in megadiverse Mexico: mammalian diversity, endemicity, and endangerment. Ecological Applications, 8(1): 8-17. https://doi.org/10.1890/1051-0761(1998)008[0008:ACPIMM]2.0.CO;2.
https://doi.org/10.1890/1051-0761(1998)0...
; Rahbek, 2005Rahbek, C. 2005. The role of spatial scale and the perception of large‐scale species‐richness patterns. Ecology Letters, 8(2): 224-239. https://doi.org/10.1111/j.1461-0248.2004.00701.x.
https://doi.org/10.1111/j.1461-0248.2004...
). For this purpose, three algorithms were used: the “Fuzzy union” geoalgorithm and the “max (a, b)” operator of the SAGA interface, the “Total Beta” and “Richness of species” of Prion, being the input parameters by default 5 probabilistic scenarios, with 100 generations, a crossover rate of 90%, a mutation rate of 50%, 20 targets and a cost value of 10.

To determine the conservation gaps sites, high ranked sectors in the species patterns scales of “Fuzzy union” geo algorithm were considered, this is those included in graphic scale of reference between values of 0,75 and 1 (orange to red in Fig. 8) or which we define as “high biodiversity sites” (HBS). This algorithm was selected because it presents a more conservative spatial development, being on an intermediate point between “Beta total” and “Richness species”.

Figure 2
Binary maps of potential distribution of (A) chacoan peccary, (B) cougar, (C) brown brocket deer, (D) collared peccary and (E) anteater. The gray pixels indicate the places of presence of the species.

Figure 3
Response graphs of habitat suitability (ordinate axis) according to the explanatory variables that intervened in the adjustment of the model for cougar (A, B, C). Precipitation is expressed in mm and altitude in meters. Source of bioclimatic variables (bio), site https://www.worldclim.org/data/bioclim.html.

Figure 4
Response graphs of habitat suitability (ordinate axis) according to the explanatory variables that intervened in the adjustment of the model for brown brocket deer (A, B, C). The temperature is expressed in degrees Celsius. Source of bioclimatic variables (bio), site https://www.worldclim.org/data/bioclim.html.

Figure 5
Response graphs of habitat suitability (ordinate axis) according to the explanatory variables that intervened in the adjustment of the model for the chacoan peccary (A, B, C). The precipitation is expressed in mm, the slope in percentage. Source of bioclimatic variables (bio), site https://www.worldclim.org/data/bioclim.html.

Figure 6
Response graphs of habitat suitability (ordinate axis) according to the explanatory variables that intervened in the adjustment of the model for the giant anteater (A, B, C). The temperature is expressed in degrees Celsius. Source of bioclimatic variables (bio), site https://www.worldclim.org/data/bioclim.html.

Figure 7
Response graphs of habitat suitability (ordinate axis) according to the explanatory variables that intervened in the adjustment of the model for collared peccary (A, B, C). Temperature is expressed in degrees Celsius and altitude in meters. Source of bioclimatic variables (bio), site https://www.worldclim.org/data/bioclim.html.

Figure 8
Species richness maps obtained using three algorithms, (A) “fuzzy union”, (B) “species richness” and (C) “total beta”.

In order to visualize only the HBS geographically (Fig. 9), and the necessary calculations for Table 2, we effectuated cartographic subtractions between “Fuzzy union” and a vector layer that contains the category I, OTBN corridors and protected areas (administered by Dirección de Bosques y Fauna de Santiago del Estero) adding the polygon of Copo National Park (APN & SIB, 2022Administración de Parques Nacionales (APN) & Sistema de Información de Biodiversidad (SIB). 2022. Sistema de Información de Biodiversidad. Available: Available: https://sib.gob.ar . Access: 03/2022.
https://sib.gob.ar...
). For this, the algorithm clip raster with polygon of SAGA interphase and r.report of Grass interphase on Qgis, were used.

Figure 9
Conservation gaps in Santiago del Estero. The shade of red highlights the theoretical sites of highest priority for conservation.

Table 1
The percentages of the predictor variable with the greatest contribution to the distribution models selected for each species are displayed.

Table 2
Surface overlap and proportion of the OTBN and protected areas in relation to sites of high biodiversity (HBS).

RESULTS

Potential distribution of mammal’s species selected

The area of potential distribution for the 5 species selected previously for Santiago del Estero are 49.721 km² for cougar (Fig. 2B) representing 36% of provincial territory being moreover the largest extension. The second is the anteater with 44.371 km² (Fig. 2E) equivalent to 32% of the territory. The model of brown brocket deer presents an extension of 38.662 km² (Fig. 2C) equal to 28% of the province. Finally, the peccary distribution was 27.088 km² for collared peccary (Fig. 2D) and 23.517 km² for chacoan peccary (Fig. 2A), representing 19% and 17% of the province respectively.

Most important variables on the mammal modeling

Table 1 shows a prevalence of “environment” variable in the models with high AUC selected (section 2.2), where 3 of the 5 species (60%) presents the highest percent of contribution to determine potential distribution or habitat aptitude. If we consider absolute participation covariables frequencies in the selected models, “environment” has an n=5, being the only one always present in all models. It follows by “altitude” with n=2, while the rest of covariables only appears once on the models.

A detailed analysis of the relationship between predicted variables and species habitat suitability is presented at Figs. 3-7.

The three more relevant variables in the model development of cougar were environment, altitude and precipitation of the dampest month (Figs. 3A-3C). The model predicts a maximum aptitude of habitat for forestry ecosystems, from 700 meters above the sea level with precipitation of approximately 90 mm for the dampest month.

In the brown brocket deer model, the main variables were media temperature of most dry trimesters, the diurnal range of media temperature and environment (Figs. 4A-4C). The projected model settled the highest habitat aptitude around 12℃ the driest quarter average, with a range of medium diurnal temperature above 15℃ and in a variety of forestry or bushlands environments and mosaic patches with any grade of anthropic modification.

The variables with the greatest contribution to the chacoan peccary were the different types of environments, the warmest trimester rainfall and territorial slope (Figs. 5A-5C).

The better habitat suitability is given by forest, savannah and wetland ecosystems. Rainfall range should be between 250 to 300 mm and the slopes up to 10%.

The anteater model shows as main variables the maximum temperature of the warmest month, environments and temperature seasonality (Figs. 6A-6C). The model displays the maximum habitat aptitude for temperatures up to 40℃, savannah ecosystems and a maximum value of 60 on standard deviation of temperature seasonality.

The three more relevant variables on the development of collared peccary model were environments, altitude and annual temperature range (Figs. 7A-7C). This model presents the high habitat aptitude to forestry ecosystems and grassland matrix with scattered and brush trees; up to 800 meters with 30℃ annual temperature variation range.

Species richness patterns in Santiago del Estero

Maximum classification sectors in spatial patterns of species richness scales, which is those included in the scale between 0,75 and 1 values (orange and red colors in Fig. 4), shows the highest agreement with forestry ecosystems of Santiago del Estero. The algorithm that gives the largest area to the highest levels of species richness is “total beta” (Fig. 4C) with 106.985 km², followed by “fuzzy union” (Fig. 4A) with 39.486 km² and the one that gives the least area to these levels is “species richness” (Fig. 4B) with 20.553 km². Some discrepancies between those models are the fact that only “fuzzy union” (Fig. 4A) detected a HSB sector among Salinas de Ambargasta and Catamarca province, whereas “beta total” and “species richness” didn’t recognize that.

Conservation gaps in Santiago del Estero

With the purpose of comparing the overlap of HBS with OTBN, biological corridors and protected provincial areas, “fuzzy Union” algorithm was selected (Fig. 4A).

The total HBS surface is 39.486 km² (Table 2) that represents 29% of provincial territory. This area is comparable with the surface of significant biodiversity areas map of TNC et al. (2005The Nature Conservancy (TNC); Fundación Vida Silvestre Argentina (FVSA); Fundación para el Desarrollo del Chaco (DesDel Chaco) & Wildlife Conservation Society Bolivia (WSC). 2005. Evaluación Ecorregional del Gran Chaco Americano/Gran Chaco Americano Ecological Assessment. Buenos Aires, Fundación Vida Silvestre Argentina. 28p.). Total protected areas surface, biological corridors and I OTBN category included the overload sector hides to 27.549 km², 19% of them, that means 9.400 km² belong to HBS places (Table 2). Consequently, the remaining 81%, equivalent to 31.900 km² and representing the largest proportion of the HBS territory, are not under any formal protection system equivalent to protected area management categories I to III of the IUCN system. Even so, this territory takes part of category II or yellow color of OTBN, which confers a certain degree of shelter to forest ecosystems and would be comparable to IUCN Categories V or VI.

On the other hand, when the comparison is intrinsically related to the HBS surface that every class considered in Table 2 has, we found that there are not significant differences between them. From this observation, it could be inferred that HBS surfaces from OTBN category I, corridors and also, protected areas are not high. However, the low proportion of percentage detected between protected areas and category I - corridors, might be related to big surfaces of salines and wetlands environments between Salinas de Ambargasta and Lagunas Saladas, which are not optimum habitats of none of 5 mammals species considered initially, even though those species occasionally use these environments.

When analyzing the percentages shown in Fig. 10, in particular the 18% corresponding to HBS (Range 0,75 and 1) and comparing them individually against each of the management categories considered in Table 2, we find a wide gap in the percentage of protection of these environments, being the biological corridors the closest with 10%.

Figure 10
Percentages with the proportions of species richness range surfaces in the model generated by the “fuzzy union” geoalgorithm.

DISCUSSION

Individual models of potential distribution

The cougar (Puma concolor) is the second largest feline in the Americas after the jaguar (Panthera onca), with a wide distribution ranging from North America to southern South America, in Argentine and Chilean Patagonia (Currier, 1983Currier, M.J.P. 1983. Felis concolor. Mammalian Species, (200): 1-7. https://doi.org/10.2307/3503951.
https://doi.org/10.2307/3503951...
; Shaw et al., 2007Shaw, H.; Beber, P. & Culver, M. 2007. Puma field guide. A guide covering the biological considerations, general history, Identification, assement and management of Puma concolor. The Cougar Network.). Its large distribution is largely due to being a “plastic” species that can adapt to more disturbed environments such as productive and higher human density (Haines, 2006Haines, A.M. 2006. Is there competition between sympatric jaguar Panthera onca and puma Puma concolor? Dong wu xue bao. Acta Zoologica Sinica], 52(6): 1142-1147.; De Angelo et al., 2011De Angelo, C.; Paviolo, A. & Di Bitetti, M. 2011. Differential impact of landscape transformation on pumas (Puma concolor) and jaguars (Panthera onca) in the Upper Paraná Atlantic Forest. Diversity and Distributions, 17(3): 422-436. https://doi.org/10.1111/j.1472-4642.2011.00746.x.
https://doi.org/10.1111/j.1472-4642.2011...
). The map of potential distribution of the species presented in Fig. 8B agrees with the record sites for the Dry Chaco ecoregion (Quiroga, 2013Quiroga, V.A. 2013. Ecología y conservación del yaguareté (Panthera onca) y el puma (Puma concolor) en el Chaco semiárido argentino: su relación con la disponibilidad de presas y la presencia humana en la región. Mastozoología Neotropical, 20(2): 435-445.; Quiroga et al., 2016Quiroga, V.A.; Noss, A.J.; Paviolo, A.; Boaglio, G.I. & Di Bitetti, M.S. 2016. Puma density, habitat use and conflict with humans in the Argentine Chaco. Journal for Nature Conservation, 31: 9-15. https://doi.org/10.1016/j.jnc.2016.02.004.
https://doi.org/10.1016/j.jnc.2016.02.00...
) and with the map prepared by IUCN (2015International Union for Conservation of Nature and Natural Resources (IUCN). 2015. Puma concolor. The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org. Access: 15/01/2022.
https://www.iucnredlist.org...
). Even so, it presents marked underestimates for the humid Chaco and overestimation in the region of the Salinas Grandes.

The brown brocket deer (Mazama gouazoubira) is a small, solitary cervid widely distributed in South America (Black-Décima, 2000Black-Décima, P. 2000. Home range, social structure, and scent marking behavior in brown brocket deer (Mazama gouazoubira) in a large enclosure. Mastozoología Neotropical, 7(1): 5-14.). It is found east of the dry pre-Andean regions in Argentina and Bolivia, extending to the Atlantic coast in the west; its northern boundary is the southern part of the Amazon region, and its southern boundary includes Uruguay and the province of Entre Ríos in Argentina. Although some authors report its distribution throughout Brazil (Eisenberg & Redford, 1999Eisenberg, J.F. & Redford, K.H. 1999. Mammals of the Neotropics: Ecuador, Perú, Bolivia, Brasil. Vol. 3. Chicago, University of Chicago. 609p.; Grubb, 2005Grubb, P. 2005. Order artiodactyla. In: Wilson, D.E. & Reeder, D.M. (Eds.). Mammal species of the world. A taxonomic and geographic reference. 3.ed. Baltimore, Johns Hopkins University Press. vol. 1, p. 637-722.), the most recent evidence indicates its replacement by M. nemorivaga in the Amazon region (Duarte, 1996Duarte, J.M.B. 1996. Guia de identificação de cervídeos brasileiros. Jaboticabal, SP, FUNEP/IUCN.; Duarte & Jorge, 1998Duarte, J.M.B. & Jorge, W. 1998. Análise citotaxonômica dos Mazama cinzas do Brasil (Mazama gouazoubira e Mazama rondoni). Not paginated. In: Duarte, J.M.B. Análise citogenética e taxonômica do gênero Mazama (Cervidae; Artiodactyla) no Brasil. 1998. Ph. D. Dissertation, Instituto de Biociências, Universidade Estadual Paulista, Botucatu.; Rossi, 2000Rossi, R.V. 2000. Taxonomia de Mazama Rafinesque, 1817 do Brasil (Artiodactyla, Cervidae). M.Sc. thesis, Universidade de São Paulo, São Paulo, Brazil.). Despite being linked to a wide range of forest ecosystems, they prefer drier and more open environments (Eisenberg & Redford, 1999Eisenberg, J.F. & Redford, K.H. 1999. Mammals of the Neotropics: Ecuador, Perú, Bolivia, Brasil. Vol. 3. Chicago, University of Chicago. 609p.). In relation to the range of distribution of M. gouazoubira presented by Black-Décima et al. (2010Black-Décima, P.; Rossi, R.V.; Vogliotti, A.; Cartes, J.L.; Maffei, L.; Duarte, J.M.B.; Gonzáles, S. & Juliá, J.P. 2010. Brown brocket deer Mazama gouazoubira (Fischer 1814). In: Barbanti Duarte, J.M.; Gonzales, S. Neotropical cervidology. Biology and medicine of Latin American Deer. Jaboticabal, SP, FUNEP/IUCN. p. 190-201.) and IUCN (2008International Union for Conservation of Nature and Natural Resources (IUCN). 2008. Mazama gouazoubira. The IUCN Red List of Threatened Species. Version 2022-2. Access: 16/01/2022.), we can mention that the biggest difference found in our model is the confinement of the distribution of the species to the Ecoregion of the Dry Chaco (Fig. 8C), not presenting presence in adjacent ecoregions, which should be interpreted as a marked underestimation.

The collared peccary (Pecari tajacu) is widely distributed. It occurs in Arizona, New Mexico and Texas in the United States, a large part of Mexico and Central America, the entire Amazon basin, the Pacific coastal forest of Colombia, Ecuador and Peru, the plains and lowland forests of Venezuela, the Guianas and Suriname, all of Brazil, where it is increasingly fragmented in the south and east, and the Gran Chaco of Paraguay, Bolivia and northern Argentina, where it is also found in the upper basins of the Paraná and Paraguay rivers. In Argentina, the species has become extinct in the eastern and southern portions of its original distribution. The Argentine population of collared peccaries in Misiones is isolated from the rest of the country (Gongora et al., 2011Gongora, J.; Cuddahee, R.E.; Nascimento, F.F.; Palgrave, C.J.; Lowden, S.; Ho, S.Y.W.; Simond, D.; Damayanti, C.S.; White, D.J.; Tay, W.T.; Randi, E.; Klingel, H.; Rodrigues-Zarate, C.J.; Allen, K.; Moran, C. & Larson, G. 2011. Rethinking the evolution of extant sub‐Saharan African suids (Suidae, Artiodactyla). Zoologica Scripta, 40(4): 327-335. https://doi.org/10.1111/j.1463-6409.2011.00480.x.
https://doi.org/10.1111/j.1463-6409.2011...
). The model shown in Fig. 8D shows a fragmented geographical distribution of the collared peccary, differing significantly with the works of Camino (2016Camino, M. 2016. Ocupación y selección de hábitat de tres especies de pecaríes en el Chaco Semiárido Argentino. Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área ciencias biológicas. Universidad de Buenos Aires. 283p.), Altrichter & Boaglio (2004Altrichter, M. & Boaglio, G. 2004. Distribution and relative abundance of peccaries in the Argentine Chaco: associations with human factors. Biological Conservation, 116: 217-225. https://doi.org/10.1016/S0006-3207(03)00192-7.
https://doi.org/10.1016/S0006-3207(03)00...
) and Altrichter (2005Altrichter, M. 2005. The sustainability of subsistence hunting of peccaries in the Argentine Chaco. Biological Conservation, 126: 351-362. https://doi.org/10.1016/j.biocon.2005.06.024.
https://doi.org/10.1016/j.biocon.2005.06...
), for the sector of the provinces of Chaco and Formosa, in which our model does not indicate optimal habitat quality for the species, which in light of the evidence of presence recorded by other researchers demonstrates a bias in the estimate. Even so, the model is accurate in relation to the forest environments of the province of Santiago del Estero. It is interesting that some sectors of local low-altitude mountain ranges such as Sierras de Guasayán show environmental aptitude for the species while Sierras de Ambargasta and Sumampa do not.

The large anteater (Myrmecophaga tridactyla), is the largest species of anteater in the world and is widely distributed in Central and South America, but despite this it is extinct in many areas of its original distribution (Collevatti et al., 2007Collevatti, R.G.; Leite, K.C.; de Miranda, G.H. & Rodrigues, F.H. 2007. Evidence of high inbreeding in a population of the endangered giant anteater, Myrmecophaga tridactyla (Myrmecophagidae), from Emas National Park, Brazil. Genetics and Molecular Biology, 30: 112-120. https://doi.org/10.1590/S1415-47572007000100020.
https://doi.org/10.1590/S1415-4757200700...
). This terrestrial anteater is found in humid tropical forests, dry forests, savannah habitats and open grasslands; It has also been recorded in the Gran Chaco (Meritt Jr., 2008Meritt Jr., D.A. 2008. Xenarthrans of the Paraguayan Chaco. In: Vizcaino, S.F.; Loughry, W.J. The Biology of the Xenarthra. Gainesville, University Press of Florida. p. 294-299.; Noss et al., 2008Noss, A.J.; Cuéllar, R.L. & Cuéllar, E. 2008. Exploitation of xenarthrans by the Guaraní-Isoseño indigenous people of the Bolivian Chaco: comparisons with hunting by other indigenous groups in Latin America, and implications for conservation. In: Vizcaino, S.F.; Loughry, W.J. (Eds.). The Biology of the Xenarthra. Gainesville, University of Florida Press. p. 244-254.) and timber plantations (Kreutz et al., 2012Kreutz, K.; Fischer, F. & Linsenmair, K.E. 2012. Timber plantations as favourite habitat for giant anteaters. Mammalia, 76(2): 137-142. https://doi.org/10.1515/mammalia-2011-0049.
https://doi.org/10.1515/mammalia-2011-00...
). According to Superina & Loughry (2012Superina, M. & Loughry, W.J. 2012. Life on the half-shell: consequences of a carapace in the evolution of armadillos (Xenarthra: Cingulata). Journal of Mammalian Evolution, 19(3): 217-224. https://doi.org/10.1007/s10914-011-9166-x.
https://doi.org/10.1007/s10914-011-9166-...
) the extent of presence in Argentina has decreased by 45% in the last 40 years, mainly due to poaching, fragmentation and habitat destruction, fires and traffic accidents (Cáceres et al., 2010Cáceres, N.C.; Hannibal, W.; Freitas, D.R.; Silva, E.L.; Roman, C. & Casella, J. 2010. Mammal occurrence and roadkill in two adjacent ecoregions (Atlantic Forest and Cerrado) in south-western Brazil. Zoologia, Curitiba, 27(5): 709-717. https://doi.org/10.1590/S1984-46702010000500007.
https://doi.org/10.1590/S1984-4670201000...
; Lacerda et al., 2009Lacerda, A.C.; Tomas, W.M. & Marinho‐Filho, J. 2009. Domestic dogs as an edge effect in the Brasília National Park, Brazil: interactions with native mammals. Animal Conservation, 12(5): 477-487. https://doi.org/10.1111/j.1469-1795.2009.00277.x.
https://doi.org/10.1111/j.1469-1795.2009...
). We find recent records of the presence of anteater in sectors of the center and south of Santiago del Estero, which differs from the southern limit of distribution proposed in other works (Da Fonseca & Aguiar, 2004Da Fonseca, G.A.B. & Aguiar, J.M. 2004. The 2004 Edentate Species Assessment Workshop. Edentata, 6: 1-26. https://doi.org/10.1896/1413-4411.6.1.1.
https://doi.org/10.1896/1413-4411.6.1.1...
; Pérez-Jimeno & Llarín Amaya, 2009Pérez-Jimeno, G. & Llarín Amaya, L. 2009. Contribución al conocimiento de la distribución del oso hormiguero gigante (Myrmecophaga tridactyla) en Argentina. Edentata, 8-10: 8-12. https://doi.org/10.1896/020.010.0106.
https://doi.org/10.1896/020.010.0106...
) which stipulated it around 27°S. On the contrary, the model presented (Fig. 8E) agrees with the comments made by Parera (2002Parera, A. 2002. Los mamíferos de la Argentina y la región austral de Sudamérica. Buenos Aires, Editorial El Ateneo. 453p.) mentioning a historical distribution with a southern limit close to 31°S. Therefore, we infer that there are still remnant populations in those latitudes, although highly fragmented and decreased in population density, placing them on the verge of local extinctions.

For this part, a detailed analysis of the distribution model of the chacoan peccary (Catagonus Wagneri) (Fig. 8A) is presented in Rivas et al. (2021Rivas, F.F.; Brassiolo, M.M. & Silva, I.C. 2021. Areas for the connectivity of Chacoan peccary (Catagonus wagneri) populations at the southern limit of their distribution in the Argentine Chaco. Brazilian Journal of Animal and Environmental Research, 4(2): 2297-2319. https://doi.org/10.34188/bjaerv4n2-061.
https://doi.org/10.34188/bjaerv4n2-061...
). Even so, if we compare it to the four remaining distribution models, it showed a distribution where it not only occupies forest ecosystems with a higher tree stratum such as the “Bosques y Arbustales del Centro” complex, but also environments with less tree cover such as the “Llanos y Valles Interserranos” complex. In addition, there could be an overestimation with respect to the large area occupied in the Salinas Grandes complex, an ecosystem that in large sectors would lack minimum conditions for the subsistence of the species. In relation to this last type of environment, although in principle it is not consistent with the typical habitat condition described for it (Sowls, 1984Sowls, L.K. 1984. The peccaries. Arizona, The University Arizona Press.), we must emphasize that in large portions of the Dry Chaco there are vast systems of wetlands or wetlands such as those of the Río Dulce in Santiago del Estero and river mouth of the Mar Chiquita lagoon, in which there are also records that can support the presence of the species.

For both species of peccaries this significant link between types of environments or ecosystems and the presence and/or abundance of them was already indicated in previous works (Sowls, 1984Sowls, L.K. 1984. The peccaries. Arizona, The University Arizona Press.; McCoy-Colton et al., 1990McCoy-Colton, M.B.; Vaughan-Dickhaut, C.; Rodríguez-Sáenz, M.A.; & Kitchen, D. 1990. Seasonal movement, home range, activity and diet of collared peccaries (Tayassu tajacu) in a Costa Rican dry forest. Vida Silvestre Neotropical, 2(2): 6-20.; Taber et al., 1994Taber, A.B.; Doncaster, C.P.; Neris, N.N. & Colman, F. 1994. Ranging behaviour and activity patterns of two sympatric peccaries, Catagonus wagneri and Tayassu tajacu, in the Paraguayan Chaco. Mammalia, 58(1): 61-72. https://doi.org/10.1515/mamm.1994.58.1.61.
https://doi.org/10.1515/mamm.1994.58.1.6...
; Altrichter & Boaglio, 2004Altrichter, M. & Boaglio, G. 2004. Distribution and relative abundance of peccaries in the Argentine Chaco: associations with human factors. Biological Conservation, 116: 217-225. https://doi.org/10.1016/S0006-3207(03)00192-7.
https://doi.org/10.1016/S0006-3207(03)00...
; Camino, 2016Camino, M. 2016. Ocupación y selección de hábitat de tres especies de pecaríes en el Chaco Semiárido Argentino. Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área ciencias biológicas. Universidad de Buenos Aires. 283p.).

Because the study aimed to estimate distributions at the local level, we considered that the underestimates mentioned in the geographical range of the models could respond to the parameterization established in maxent, in particular the Regularization multiplier (betamultiplier), which was established in 0.1. This value restricts predictions around points of presence as mentioned in other papers (Hastie et al., 2009Hastie, T.; Tibshirani, R.; Friedman, J.H. & Friedman, J.H. 2009. The elements of statistical learning: data mining, inference, and prediction). New York, Springer. v. 2, 758p. https://doi.org/10.1007/978-0-387-84858-7.
https://doi.org/10.1007/978-0-387-84858-...
; Merow et al., 2013Merow, C.; Smith, M.J. & Silander Jr., J.A. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36(10): 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x.
https://doi.org/10.1111/j.1600-0587.2013...
).

Species richness patterns and conservation gaps

If we compare the three models of species richness in Fig. 4, we notice in general a geographical concordance in the selection of the sites with the greatest species richness, coinciding largely with the sectors of remaining forest ecosystems in the province, in particular the quebracho forests and mixed forests described by various authors (Morello & Adamoli, 1974Morello, J. & Adamoli, J. 1974. Las grandes unidades de vegetación y ambiente del Chaco Argentino: Vegetación y ambiente de la provincia del Chaco. Buenos Aires, Instituto Nacional de Tecnología Agropecuaria Secretaría de Estado de Agricultura y Ganadería de la Nación.; Brassiolo, 1997Brassiolo, M.M. 1997. Zur Bewirtschaftung degradierter Wälder im semiariden Chaco Nordargentiniens unter Berücksichtigung der traditionellen Waldweide. Tesis doctoral University Albert-Ludwigs Freiburg, Alemania. 147 pp.). In the same sense, the sectors with lower levels of species richness agree with those regions of the province most disturbed by the change in land use as a result of the advance of the agricultural frontier, such as the areas bordering the provinces of Chaco, Santa Fé and Tucumán. This aspect that links the reduction of biodiversity because of anthropic impacts in the Chaco ecoregion was pointed out in the works of Torrella & Adámoli (2005Torrella, S.A. & Adámoli, J. 2005. Situación ambiental de la ecorregión del Chaco Seco. In: La Situación Ambiental Argentina. p. 75-82.) as well as in Vallejos et al. (2017Vallejos, M.; Mastrangelo, M.E. & Paruelo, J.M. 2017. Chaco y deforestación: ¿se puede producir y conservar? Revista Aves Argentinas, 50: 12-25.), among others.

We also compared the models in Fig. 4, the HBS sectors, with other works such as the ecoregional evaluation of the Gran Chaco Americano (TNC et al., 2005The Nature Conservancy (TNC); Fundación Vida Silvestre Argentina (FVSA); Fundación para el Desarrollo del Chaco (DesDel Chaco) & Wildlife Conservation Society Bolivia (WSC). 2005. Evaluación Ecorregional del Gran Chaco Americano/Gran Chaco Americano Ecological Assessment. Buenos Aires, Fundación Vida Silvestre Argentina. 28p.), which determined priority areas for conservation based on the distribution of the main vertebrate groups. Based on this, if we focus only on the mammalian taxon, we see that the TNC map presents undemarcated localities or biases in relation to our own models (Fig. 4).

Punctually we notice large sectors not considered by TNC such as the Sierras de Guasayán, most of the departments Copo and Alberdi and the Lagunas Saladas of the J.F. Ibarra Department. Both approaches coincide in the underestimation of the Sierras de Sumampa y Ambargasta. On the contrary, if we consider the map of significant areas for biodiversity of TNC et al. (2005The Nature Conservancy (TNC); Fundación Vida Silvestre Argentina (FVSA); Fundación para el Desarrollo del Chaco (DesDel Chaco) & Wildlife Conservation Society Bolivia (WSC). 2005. Evaluación Ecorregional del Gran Chaco Americano/Gran Chaco Americano Ecological Assessment. Buenos Aires, Fundación Vida Silvestre Argentina. 28p.), which is a synthesis or consensus map of all the others elaborated in this work, we see a high degree of agreement with respect to our own models (Fig. 4). If we compare these results with the publication of Nori et al. (2016Nori, J.; Torres, R.; Lescano, J.N.; Cordier, J.M.; Periago, M.E. & Baldo, D. 2016. Protected areas and spatial conservation priorities for endemic vertebrates of the Gran Chaco, one of the most threatened ecoregions of the world. Diversity and Distributions, 22(12): 1212-1219. https://doi.org/10.1111/ddi.12497.
https://doi.org/10.1111/ddi.12497...
), which had as one of its objectives to determine priority conservation areas for endemic vertebrates; we see that this work does not identify conservation areas throughout the provincial territory of Santiago del Estero, except for two very small sectors to the north and south, coinciding with the conservation area of Copo and with a small sector of the Río Dulce wetlands. This shows a clear discrepancy with the results presented in this work (Fig. 4), from which large sectors are observed on the central strip of the provincial territory as potential priority environments for conservation.

On the other hand, we must emphasize that the models developed by the three algorithms (Fig. 4A, B, C) present underestimates in specific areas such as Sierras de Sumampa, Salinas de Ambargasta and sectors of the Pellegrini department such as Río Horcones and Cerro Remate. These biases in prediction may be attributable to an incomplete sample design at the provincial scale, which is then translated into species distribution models. Another factor to consider is the selection of a small group of species and belonging to a single taxonomic group of vertebrates, as for example in the work of Arzamendia & Giraudo (2004Arzamendia, V. & Giraudo, A.R. 2004. Usando patrones de biodiversidad para la evaluación y diseño de áreas protegidas: las serpientes de la provincia de Santa Fe (Argentina) como ejemplo. Revista Chilena de Historia Natural, 77(2): 335-348. https://doi.org/10.4067/S0716-078X2004000200011.
https://doi.org/10.4067/S0716-078X200400...
), which means that certain habitats are not so represented in the final process of assembling the map of biodiversity patterns. In this aspect, it is pointed out that only mammal species from terrestrial environments were considered, so it was to be expected that those representative sites of rivers and wetlands would be underestimated.

However, given the limitations of the present work, this result does not imply that protected areas with extreme environments such as those mentioned above, such as large salt flats or areas of low mountain ranges; do not contribute to the conservation of biodiversity, especially when we refer to the protection of endemic, rare or relict species typical of these places and very well adapted to adverse conditions for most of the representative individuals of this ecoregion (Coirini et al., 2010Coirini, R.O.; Karlin, M.S. & Reati, G.J. (Eds.). 2010. Manejo sustentable del ecosistema Salinas Grandes, Chaco árido. Cordoba, Universida nacional de Cordoba.; Curto, 2009Curto, E. 2009. Selección de relictos de bosque como lugares de valor especial para conservación en la Reserva Mar Chiquita, Córdoba, Argentina (Doctoral dissertation, Tesis de Maestría del Programa de Postgrado en Manejo de vida silvestre, Centro de Zoología aplicada, FCEFyN, Universidad Nacional de Córdoba. Argentina).), in addition to being one of the areas with the least physiognomic transformations due to the characteristics of developing in soils with extreme conditions of salinity and aridity (Giménez et al., 2008Giménez, A.M.; Figueroa, M.E.; Hernández, P. & Cejas, M. 2008. Jume negro (Allenrolfea vaginata Kuntze, Chenopodiaceae): potencialidades de usos en la rigurosidad del ambiente salino. Quebracho - Revista de Ciencias Forestales, (15): 32-36. Available: Available: https://www.redalyc.org/articulo.oa?id=48113033006 . Access: 02/02/2022.
https://www.redalyc.org/articulo.oa?id=4...
).

If we consider the persistence over time of the 31,900 km² mentioned in the section 3.4 without strict protection, presenting healthy ecosystems even prior to the promulgation of the National Law of Native Forests, we agree with Abt (2015Abt, M. 2015. El bosque como espacio multifuncional para las familias campesinas de Santiago del Estero, Argentina. PhD Tesis. Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero, Argentina. 231p.), Guzmán (2017Guzmán, A. 2017. Sistema productivo campesino y su aporte a la conservación del paisaje forestal en el Salado Centro, Santiago del Estero, Argentina. PhD Tesis. Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero, Argentina. ISBN 978-987-1676-72-9.), and Domínguez (2012Domínguez, D. 2012. Recampesinización en la Argentina del siglo XXI. Psicoperspectivas, 11(1): 134-157. https://doi.org/10.5027/psicoperspectivas-Vol11-Issue1-fulltext-167.
https://doi.org/10.5027/psicoperspectiva...
) that such conservation responds to the permanence in the territory of traditional life and production systems of low environmental impact in territories in charge of peasant settlers, which gives value and reinforces the identity of peasant communities in their right to land, sustainable use and protection of native forests (Jara, 2014Jara, C.E. 2014. La dimensión ecológica de las luchas campesinas. Disputas en torno al Ordenamiento Territorial de los Bosques Nativos en Santiago del Estero. Trabajo y Sociedad, (23): 389-405. Available: Available: https://www.redalyc.org/articulo.oa?id=387334695022 . Access: 08/02/2022.
https://www.redalyc.org/articulo.oa?id=3...
).

As we discussed in the presentation of this article, the modeling and estimation of the potential distribution of representative mammals of the region, allow optimizing conservation tasks, the determination of those new sites destined for protected areas or some category of protection. Particularly, this study reveals valuable information to take into account in the light of future updates of territorial planning (Gautreau et al., 2014Gautreau, P.; Langbehn, L. & Ruoso, L.E. 2014. Movilización de información en el Ordenamiento Territorial de Bosques Nativos de Argentina. In: Terceras Jornadas Nacionales de Investigación y Docencia en Geografía Argentina, 07-09 mayo 2014, Tandil, Campus Universitario, Universidad Nacional del Centro de la Provincia de Buenos Aires. 30p.) since historically it was done in function of productive activities favoring forest and agricultural production and management, without taking into account the ecological potential, connectivity, complexity and all the actors associated with the different existing areas within the province (Collazo et al., 2013Collazo, G.; Panizza, A. & Paruelo, J.M. 2013. Ordenamiento Territorial de Bosques Nativos: Resultados de la Zonificación realizada por provincias del Norte argentino. Ecología Austral, 23(2): 97-107. https://doi.org/10.25260/EA.13.23.2.0.1165.
https://doi.org/10.25260/EA.13.23.2.0.11...
; Gautreau et al., 2014Gautreau, P.; Langbehn, L. & Ruoso, L.E. 2014. Movilización de información en el Ordenamiento Territorial de Bosques Nativos de Argentina. In: Terceras Jornadas Nacionales de Investigación y Docencia en Geografía Argentina, 07-09 mayo 2014, Tandil, Campus Universitario, Universidad Nacional del Centro de la Provincia de Buenos Aires. 30p.).

CONCLUSIONS

From the previous analyses it is shown that large sectors of natural ecosystems and fauna habitats of importance for conservation in the Chaco Seco ecoregion were not considered in the spatial designs of the current management and protection systems of nature, raising the need for periodic reviews or updates that attend to the dynamics of distribution and change of these areas, according to what was proposed by Castaño-Villa (2005Castaño-Villa, G.J. 2005. Áreas protegidas, criterios para su selección y problemáticas en su conservación. Boletín Científico, Centro de Museos, Museo de Historia Natural, 10: 79-102.) and the necessary flexibility in the face of new scenarios imposed by climate change.

The proportion of HBS excluded from a type of strict protection (protected area or category I of the OTBN) is shown. That sector could host biodiversity and to which special attention should be paid when managing the territory and allocating the productive uses to which they can be subjected, so as not to lose the ability to host species such as those presented in this work and the general functionality of the ecosystems in terms of the provision of goods and services.

The magnitude of the territorial extension of the HBS means that the establishment of more protected areas as a conservation strategy could be unfeasible from economic, political, and social aspects, so it would be necessary to develop new models of management of landscapes and ecosystems, which contemplate and incorporate as priorities the traditional systems of life and production of peasant and indigenous inhabitants.

ACKNOWLEDGMENTS:

We would like to thank the peasant families of Marta Gómez of Yanacón Bajada, Sixto Bravo of Lote 28 and Ignacio Avellanal of Pozo Herrera for their enormous collaboration in the data collection process. A special thanks to Dr. Alejandro Giraudo and Dr. Miguel Brassiolo for their advice regarding wildlife sampling and research methodologies.

REFERENCES

  • Abt, M. 2015. El bosque como espacio multifuncional para las familias campesinas de Santiago del Estero, Argentina. PhD Tesis. Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero, Argentina. 231p.
  • Administración de Parques Nacionales (APN) & Sistema de Información de Biodiversidad (SIB). 2022. Sistema de Información de Biodiversidad. Available: Available: https://sib.gob.ar Access: 03/2022.
    » https://sib.gob.ar
  • Altrichter, M. 2005. The sustainability of subsistence hunting of peccaries in the Argentine Chaco. Biological Conservation, 126: 351-362. https://doi.org/10.1016/j.biocon.2005.06.024
    » https://doi.org/10.1016/j.biocon.2005.06.024
  • Altrichter, M. & Boaglio, G. 2004. Distribution and relative abundance of peccaries in the Argentine Chaco: associations with human factors. Biological Conservation, 116: 217-225. https://doi.org/10.1016/S0006-3207(03)00192-7
    » https://doi.org/10.1016/S0006-3207(03)00192-7
  • Arzamendia, V. & Giraudo, A.R. 2004. Usando patrones de biodiversidad para la evaluación y diseño de áreas protegidas: las serpientes de la provincia de Santa Fe (Argentina) como ejemplo. Revista Chilena de Historia Natural, 77(2): 335-348. https://doi.org/10.4067/S0716-078X2004000200011
    » https://doi.org/10.4067/S0716-078X2004000200011
  • Begon, M.; Harper, J.L. & Townsend, C.R. 1990. Individuals, populations and communities. Melbourne, Ecology Blackwell Scientific Publications. 876p.
  • Black-Décima, P. 2000. Home range, social structure, and scent marking behavior in brown brocket deer (Mazama gouazoubira) in a large enclosure. Mastozoología Neotropical, 7(1): 5-14.
  • Black-Décima, P.; Rossi, R.V.; Vogliotti, A.; Cartes, J.L.; Maffei, L.; Duarte, J.M.B.; Gonzáles, S. & Juliá, J.P. 2010. Brown brocket deer Mazama gouazoubira (Fischer 1814). In: Barbanti Duarte, J.M.; Gonzales, S. Neotropical cervidology. Biology and medicine of Latin American Deer. Jaboticabal, SP, FUNEP/IUCN. p. 190-201.
  • Bolkovic, M.S. 1999. Usos de fauna silvestre de pobladores de las cercanías de la reserva provincial Copo, Santiago del Estero, Argentina. In: Fang, T.G.; Montenegro, O.L. & Bodmer, R.E. (Eds.). Manejo y Conservación de fauna silvestre en América Latina. Santa Cruz de la Sierra, Museo de Historia Natural Noel Kempff Mercado. p. 117-124.
  • Brassiolo, M.M. 1997. Zur Bewirtschaftung degradierter Wälder im semiariden Chaco Nordargentiniens unter Berücksichtigung der traditionellen Waldweide. Tesis doctoral University Albert-Ludwigs Freiburg, Alemania. 147 pp.
  • Brown, J.H. 1995. Macroecology. Chicago, University of Chicago Press.
  • Bruchmann, E.T. 1981. Climatología general y agrícola de la Provincia de Santiago del Estero. Tucumán, Universidad Nacional de Tucumán. 199p.
  • Cabrera, A.L. 1971. Sociedad Argentina de Botánica. Boletín de la Sociedad Argentina de Botánica, 14: 1-2.
  • Cabrera, A.L. 1994. Enciclopedia Argentina de agricultura y jardinería, Tomo II, Fascículo 1: regiones fitogeográficas Argentinas. Buenos Aires, ACME.
  • Cáceres, N.C.; Hannibal, W.; Freitas, D.R.; Silva, E.L.; Roman, C. & Casella, J. 2010. Mammal occurrence and roadkill in two adjacent ecoregions (Atlantic Forest and Cerrado) in south-western Brazil. Zoologia, Curitiba, 27(5): 709-717. https://doi.org/10.1590/S1984-46702010000500007
    » https://doi.org/10.1590/S1984-46702010000500007
  • Camino, M. 2016. Ocupación y selección de hábitat de tres especies de pecaríes en el Chaco Semiárido Argentino. Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área ciencias biológicas. Universidad de Buenos Aires. 283p.
  • Canevari, M. & Vaccaro, O. 2007. Guía de mamíferos del sur de América del Sur (Vol. 19). Buenos Aires, LOLA.
  • Castaño-Villa, G.J. 2005. Áreas protegidas, criterios para su selección y problemáticas en su conservación. Boletín Científico, Centro de Museos, Museo de Historia Natural, 10: 79-102.
  • Ceballos, G.; Rodríguez, P. & Medellín, R.A. 1998. Assessing conservation priorities in megadiverse Mexico: mammalian diversity, endemicity, and endangerment. Ecological Applications, 8(1): 8-17. https://doi.org/10.1890/1051-0761(1998)008[0008:ACPIMM]2.0.CO;2
    » https://doi.org/10.1890/1051-0761(1998)008[0008:ACPIMM]2.0.CO;2
  • Chebez, J.C.; Gasparri, B.; Cier, M.H.; Nigro, N.A. & Rodríguez, L. 2011. Estado de conservación de los tetrápodos de la Argentina. Manejo de Fauna Silvestre en Argentina. Conservación de especies amenazadas. Fundación de Historia Natural “Félix de Azara”, Buenos Aires.
  • Chiarello, A.G. 2000. Density and population size of mammals in remnants of Brazilian Atlantic Forest. Conservation Biology, 14(6): 1649-1657. https://doi.org/10.1111/j.1523-1739.2000.99071.x
    » https://doi.org/10.1111/j.1523-1739.2000.99071.x
  • Coirini, R.O.; Karlin, M.S. & Reati, G.J. (Eds.). 2010. Manejo sustentable del ecosistema Salinas Grandes, Chaco árido. Cordoba, Universida nacional de Cordoba.
  • Collazo, G.; Panizza, A. & Paruelo, J.M. 2013. Ordenamiento Territorial de Bosques Nativos: Resultados de la Zonificación realizada por provincias del Norte argentino. Ecología Austral, 23(2): 97-107. https://doi.org/10.25260/EA.13.23.2.0.1165
    » https://doi.org/10.25260/EA.13.23.2.0.1165
  • Collevatti, R.G.; Leite, K.C.; de Miranda, G.H. & Rodrigues, F.H. 2007. Evidence of high inbreeding in a population of the endangered giant anteater, Myrmecophaga tridactyla (Myrmecophagidae), from Emas National Park, Brazil. Genetics and Molecular Biology, 30: 112-120. https://doi.org/10.1590/S1415-47572007000100020
    » https://doi.org/10.1590/S1415-47572007000100020
  • Currier, M.J.P. 1983. Felis concolor. Mammalian Species, (200): 1-7. https://doi.org/10.2307/3503951
    » https://doi.org/10.2307/3503951
  • Curto, E. 2009. Selección de relictos de bosque como lugares de valor especial para conservación en la Reserva Mar Chiquita, Córdoba, Argentina (Doctoral dissertation, Tesis de Maestría del Programa de Postgrado en Manejo de vida silvestre, Centro de Zoología aplicada, FCEFyN, Universidad Nacional de Córdoba. Argentina).
  • Da Fonseca, G.A.B. & Aguiar, J.M. 2004. The 2004 Edentate Species Assessment Workshop. Edentata, 6: 1-26. https://doi.org/10.1896/1413-4411.6.1.1
    » https://doi.org/10.1896/1413-4411.6.1.1
  • De Angelo, C.; Paviolo, A. & Di Bitetti, M. 2011. Differential impact of landscape transformation on pumas (Puma concolor) and jaguars (Panthera onca) in the Upper Paraná Atlantic Forest. Diversity and Distributions, 17(3): 422-436. https://doi.org/10.1111/j.1472-4642.2011.00746.x
    » https://doi.org/10.1111/j.1472-4642.2011.00746.x
  • Dinerstein, E.; Olson, D.M.; Graham, D.J.; Webster, A.L.; Primm, S.A.; Bookbinder, M.P. & Ledec, G. 1995. Una evaluación del estado de conservación de las eco-regiones terrestres de América Latina y el Caribe. Washington, DC, Banco Mundial.
  • Domínguez, D. 2012. Recampesinización en la Argentina del siglo XXI. Psicoperspectivas, 11(1): 134-157. https://doi.org/10.5027/psicoperspectivas-Vol11-Issue1-fulltext-167
    » https://doi.org/10.5027/psicoperspectivas-Vol11-Issue1-fulltext-167
  • Duarte, J.M.B. 1996. Guia de identificação de cervídeos brasileiros. Jaboticabal, SP, FUNEP/IUCN.
  • Duarte, J.M.B. & Jorge, W. 1998. Análise citotaxonômica dos Mazama cinzas do Brasil (Mazama gouazoubira e Mazama rondoni). Not paginated. In: Duarte, J.M.B. Análise citogenética e taxonômica do gênero Mazama (Cervidae; Artiodactyla) no Brasil. 1998. Ph. D. Dissertation, Instituto de Biociências, Universidade Estadual Paulista, Botucatu.
  • Eisenberg, J.F. & Redford, K.H. 1999. Mammals of the Neotropics: Ecuador, Perú, Bolivia, Brasil. Vol. 3. Chicago, University of Chicago. 609p.
  • Gaston, K.J.; Blackburn, T.M.; Greenwood, J.J.; Gregory, R.D.; Quinn, R.M. & Lawton, J.H. 2000. Abundance - occupancy relationships. Journal of Applied Ecology, 37: 39-59. https://doi.org/10.1046/j.1365-2664.2000.00485.x
    » https://doi.org/10.1046/j.1365-2664.2000.00485.x
  • Gautreau, P.; Langbehn, L. & Ruoso, L.E. 2014. Movilización de información en el Ordenamiento Territorial de Bosques Nativos de Argentina. In: Terceras Jornadas Nacionales de Investigación y Docencia en Geografía Argentina, 07-09 mayo 2014, Tandil, Campus Universitario, Universidad Nacional del Centro de la Provincia de Buenos Aires. 30p.
  • Giménez, A.M.; Figueroa, M.E.; Hernández, P. & Cejas, M. 2008. Jume negro (Allenrolfea vaginata Kuntze, Chenopodiaceae): potencialidades de usos en la rigurosidad del ambiente salino. Quebracho - Revista de Ciencias Forestales, (15): 32-36. Available: Available: https://www.redalyc.org/articulo.oa?id=48113033006 Access: 02/02/2022.
    » https://www.redalyc.org/articulo.oa?id=48113033006
  • Giraudo, A.R. & Abramson, R.R. 1998. Usos de la fauna silvestre por los pobladores rurales de la Selva Paranaense de Misiones. Tipos de uso, influencia de la fragmentación y posibilidades de manejo sustentable. Boletín Técnico de la Fundación Vida Silvestre Argentina, 42: 48.
  • Gongora, J.; Cuddahee, R.E.; Nascimento, F.F.; Palgrave, C.J.; Lowden, S.; Ho, S.Y.W.; Simond, D.; Damayanti, C.S.; White, D.J.; Tay, W.T.; Randi, E.; Klingel, H.; Rodrigues-Zarate, C.J.; Allen, K.; Moran, C. & Larson, G. 2011. Rethinking the evolution of extant sub‐Saharan African suids (Suidae, Artiodactyla). Zoologica Scripta, 40(4): 327-335. https://doi.org/10.1111/j.1463-6409.2011.00480.x
    » https://doi.org/10.1111/j.1463-6409.2011.00480.x
  • Grubb, P. 2005. Order artiodactyla. In: Wilson, D.E. & Reeder, D.M. (Eds.). Mammal species of the world. A taxonomic and geographic reference. 3.ed. Baltimore, Johns Hopkins University Press. vol. 1, p. 637-722.
  • Guzmán, A. 2017. Sistema productivo campesino y su aporte a la conservación del paisaje forestal en el Salado Centro, Santiago del Estero, Argentina. PhD Tesis. Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero, Argentina. ISBN 978-987-1676-72-9.
  • Haines, A.M. 2006. Is there competition between sympatric jaguar Panthera onca and puma Puma concolor? Dong wu xue bao. Acta Zoologica Sinica], 52(6): 1142-1147.
  • Hastie, T.; Tibshirani, R.; Friedman, J.H. & Friedman, J.H. 2009. The elements of statistical learning: data mining, inference, and prediction). New York, Springer. v. 2, 758p. https://doi.org/10.1007/978-0-387-84858-7
    » https://doi.org/10.1007/978-0-387-84858-7
  • Hijmans, R.J.; Cameron, S.E. & Parra, J.L. 2006. WorldClim Global Climate Layers version 1.4. Available: https://www.worldclim.org
    » https://www.worldclim.org
  • Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J. & Hijmans, M.R.J. 2017. Package ‘dismo’. Circles, 9(1): 1-68.
  • International Union for Conservation of Nature and Natural Resources (IUCN). 2008. Mazama gouazoubira. The IUCN Red List of Threatened Species. Version 2022-2. Access: 16/01/2022.
  • International Union for Conservation of Nature and Natural Resources (IUCN). 2015. Puma concolor. The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org Access: 15/01/2022.
    » https://www.iucnredlist.org
  • Jara, C.E. 2014. La dimensión ecológica de las luchas campesinas. Disputas en torno al Ordenamiento Territorial de los Bosques Nativos en Santiago del Estero. Trabajo y Sociedad, (23): 389-405. Available: Available: https://www.redalyc.org/articulo.oa?id=387334695022 Access: 08/02/2022.
    » https://www.redalyc.org/articulo.oa?id=387334695022
  • Koleff, P.; Soberón, J.; Arita, H.T.; Dávila, P.; Flores-Villela, Ó.; Golubov, J.; Halffter, G.; Lira-Noriega, A.; Moreno, C.E.; Moreno, E.; Munguía, M.; Murguía, M.; Navarro-Sigüenza, A.G.; Téllez, O.; Ochoa-Ochoa, L.; Peterson, A.T. & Rodríguez, P. 2008. Patrones de diversidad espacial en grupos selectos de especies. Capital Natural de México, 1: 323-364.
  • Krebs, C.J. 1978. A review of the Chitty hypothesis of population regulation. Canadian Journal of Zoology, 56(12): 2463-2480. https://doi.org/10.1139/z78-335
    » https://doi.org/10.1139/z78-335
  • Kreutz, K.; Fischer, F. & Linsenmair, K.E. 2012. Timber plantations as favourite habitat for giant anteaters. Mammalia, 76(2): 137-142. https://doi.org/10.1515/mammalia-2011-0049
    » https://doi.org/10.1515/mammalia-2011-0049
  • Lacerda, A.C.; Tomas, W.M. & Marinho‐Filho, J. 2009. Domestic dogs as an edge effect in the Brasília National Park, Brazil: interactions with native mammals. Animal Conservation, 12(5): 477-487. https://doi.org/10.1111/j.1469-1795.2009.00277.x
    » https://doi.org/10.1111/j.1469-1795.2009.00277.x
  • Lorenz, G. 1995. Caracterización ecológica de un suelo Eutric Regosol bajo bosque en el Chaco Semiárido, Argentina. Quebracho, 3: 13-23.
  • Magurran, A.E. 1988. Diversity indices and species abundance models. In: Ecological diversity and its measurement. Princeton, Princeton Universty Press. p. 7-45. https://doi.org/10.1007/978-94-015-7358-0_2
    » https://doi.org/10.1007/978-94-015-7358-0_2
  • Mares, M.A. 1992. Neotropical mammals and the myth of Amazonian biodiversity. Science, 255(5047): 976-979. https://doi.org/10.1126/science.255.5047.976
    » https://doi.org/10.1126/science.255.5047.976
  • McCoy-Colton, M.B.; Vaughan-Dickhaut, C.; Rodríguez-Sáenz, M.A.; & Kitchen, D. 1990. Seasonal movement, home range, activity and diet of collared peccaries (Tayassu tajacu) in a Costa Rican dry forest. Vida Silvestre Neotropical, 2(2): 6-20.
  • Meritt Jr., D.A. 2008. Xenarthrans of the Paraguayan Chaco. In: Vizcaino, S.F.; Loughry, W.J. The Biology of the Xenarthra. Gainesville, University Press of Florida. p. 294-299.
  • Merow, C.; Smith, M.J. & Silander Jr., J.A. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36(10): 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
    » https://doi.org/10.1111/j.1600-0587.2013.07872.x
  • Morello, J. & Adamoli, J. 1974. Las grandes unidades de vegetación y ambiente del Chaco Argentino: Vegetación y ambiente de la provincia del Chaco. Buenos Aires, Instituto Nacional de Tecnología Agropecuaria Secretaría de Estado de Agricultura y Ganadería de la Nación.
  • Moscatelli, G. 1990. Atlas de Suelo de la República Argentina. Buenos Aires, Instituto Nacional de Tecnología Agropecuaria (INTA).
  • Murguía, M. 2005. La estadística espacial como herramienta de análisis de la biodiversidad. In: Halffter, G.; Soberó, J.; Koleff, P.; Melic, A. (Eds). Sobre diversidad biológica: el significado de las diversidades alfa, beta y gamma. Saragoza, S.E.A. pp. 63-72. (M3M, v. 4, Monografia).
  • Muzzachiodi, N. & Sabattini, R.A. 2002. La mastofauna como indicador de conservación del bosque nativo en un área protegida de Entre Ríos. Revista Científica Agropecuaria, 6: 5-15.
  • Naumann, M. 2006. Atlas del Gran Chaco Sudamericano. Sociedad Alemana de Cooperación Técnica (GTZ).
  • Nori, J.; Torres, R.; Lescano, J.N.; Cordier, J.M.; Periago, M.E. & Baldo, D. 2016. Protected areas and spatial conservation priorities for endemic vertebrates of the Gran Chaco, one of the most threatened ecoregions of the world. Diversity and Distributions, 22(12): 1212-1219. https://doi.org/10.1111/ddi.12497
    » https://doi.org/10.1111/ddi.12497
  • Noss, A.J.; Cuéllar, R.L. & Cuéllar, E. 2008. Exploitation of xenarthrans by the Guaraní-Isoseño indigenous people of the Bolivian Chaco: comparisons with hunting by other indigenous groups in Latin America, and implications for conservation. In: Vizcaino, S.F.; Loughry, W.J. (Eds.). The Biology of the Xenarthra. Gainesville, University of Florida Press. p. 244-254.
  • Ojeda, R.A.; Borghi, C.E. & Roig, V.G. 2002. Mamíferos de Argentina. In: Ceballos, G.; Simonetti, J.A. Diversidad y conservación de los mamíferos neotropicales. Mexico, Conociemiento y Uso de la Biodiversidad. p. 23-63.
  • Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I. Strand, H.E.; Morrison, J.C.; Loucks, C.J.; Allnutt, T.F.; Ricketts, T.H.; Kura, Y.; Lamoreux, J.F.; Wettengel, W.W.; Hedao, P. & Kassem, K.R. 2001. Terrestrial ecoregions of the world: a new map of life on earth. A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 51(11): 933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
    » https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
  • Parera, A. 2002. Los mamíferos de la Argentina y la región austral de Sudamérica. Buenos Aires, Editorial El Ateneo. 453p.
  • Pearman, P.B. & Weber, D. 2007. Common species determine richness patterns in biodiversity indicator taxa. Biological Conservation, 138(1-2): 109-119. https://doi.org/10.1016/j.biocon.2007.04.005
    » https://doi.org/10.1016/j.biocon.2007.04.005
  • Pérez-Jimeno, G. & Llarín Amaya, L. 2009. Contribución al conocimiento de la distribución del oso hormiguero gigante (Myrmecophaga tridactyla) en Argentina. Edentata, 8-10: 8-12. https://doi.org/10.1896/020.010.0106
    » https://doi.org/10.1896/020.010.0106
  • Phillips, S.J.; Anderson, R.P. & Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4): 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
    » https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Pielou, E.C. 1979. Biogeography. New York, Wiley.
  • Prohaska, F. 1959. El polo de calor de América del Sur. INTA, IDIA, 141: 27-30.
  • Quiroga, V.A. 2013. Ecología y conservación del yaguareté (Panthera onca) y el puma (Puma concolor) en el Chaco semiárido argentino: su relación con la disponibilidad de presas y la presencia humana en la región. Mastozoología Neotropical, 20(2): 435-445.
  • Quiroga, V.A.; Noss, A.J.; Paviolo, A.; Boaglio, G.I. & Di Bitetti, M.S. 2016. Puma density, habitat use and conflict with humans in the Argentine Chaco. Journal for Nature Conservation, 31: 9-15. https://doi.org/10.1016/j.jnc.2016.02.004
    » https://doi.org/10.1016/j.jnc.2016.02.004
  • Rabinowitz, A. 1997. Wildlife field research and conservation training manual. New York, Wildlife Conservation Society.
  • Rahbek, C. 2005. The role of spatial scale and the perception of large‐scale species‐richness patterns. Ecology Letters, 8(2): 224-239. https://doi.org/10.1111/j.1461-0248.2004.00701.x
    » https://doi.org/10.1111/j.1461-0248.2004.00701.x
  • Rapoport, E. 1975. Areografía: estrategias geográficas de las especies. Obras de Ciencia y Tecnología.
  • Redford, K.H.; Taber, A. & Simonetti, J.A. 1990. There is more to biodiversity than the tropical rain forests. Conservation Biology, 4(3): 328-330. https://doi.org/10.1111/j.1523-1739.1990.tb00296.x
    » https://doi.org/10.1111/j.1523-1739.1990.tb00296.x
  • Rivas, F.F.; Brassiolo, M.M. & Silva, I.C. 2021. Areas for the connectivity of Chacoan peccary (Catagonus wagneri) populations at the southern limit of their distribution in the Argentine Chaco. Brazilian Journal of Animal and Environmental Research, 4(2): 2297-2319. https://doi.org/10.34188/bjaerv4n2-061
    » https://doi.org/10.34188/bjaerv4n2-061
  • Rosenzweig, M.L. 1995. Species diversity in space and time. Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9780511623387
    » https://doi.org/10.1017/CBO9780511623387
  • Rossi, R.V. 2000. Taxonomia de Mazama Rafinesque, 1817 do Brasil (Artiodactyla, Cervidae). M.Sc. thesis, Universidade de São Paulo, São Paulo, Brazil.
  • Sandoval, M.L. & Bárquez, R.M. 2013. The Chacoan bat fauna identity: Patterns of distributional congruence and conservation implications. Revista Chilena de Historia Natural, 86: 75-94. https://doi.org/10.4067/S0716-078X2013000100007
    » https://doi.org/10.4067/S0716-078X2013000100007
  • Shaw, H.; Beber, P. & Culver, M. 2007. Puma field guide. A guide covering the biological considerations, general history, Identification, assement and management of Puma concolor. The Cougar Network.
  • Simberloff, D. 1983. Biogeography: the unification and maturation of a science. In: Brush, A.H.; Clark Jr., G.A. Perspectives in Ornithology: Essays presented for the centennial of the American Ornitholgists’ Union. Cambrige, Cambridge University Press. p. 411-475. https://doi.org/10.1017/CBO9780511759994.013
    » https://doi.org/10.1017/CBO9780511759994.013
  • Sosa-Escalante, J.E.; Pech-Canché, J.M.; MacSwiney, M.C. & Hernández-Betancourt, S. 2013. Mamíferos terrestres de la península de Yucatán, México: riqueza, endemismo y riesgo. Revista Mexicana de Biodiversidad, 84(3): 949-969. https://doi.org/10.7550/rmb.33285
    » https://doi.org/10.7550/rmb.33285
  • Sowls, L.K. 1984. The peccaries. Arizona, The University Arizona Press.
  • Stephens, P.A.; Zaumyslova, O.Y.; Miquelle, D.G.; Myslenkov, A.I. & Hayward, G.D. 2006. Estimating population density from indirect sign: track counts and the Formozov-Malyshev-Pereleshin formula. Animal Conservation, 9(3): 339-348. https://doi.org/10.1111/j.1469-1795.2006.00044.x
    » https://doi.org/10.1111/j.1469-1795.2006.00044.x
  • Stillman, R.A. & Brown, A.F. 1994. Population sizes and habitat associations of upland breeding birds in the south Pennines, England. Biological Conservation, 69(3): 307-314. https://doi.org/10.1016/0006-3207(94)90431-6
    » https://doi.org/10.1016/0006-3207(94)90431-6
  • Stockwell, D.R.B. 1992. Machine learning and the problem of prediction and explanation in ecological modelling. Ph.D. Thesis, Australian National University.
  • Superina, M. & Loughry, W.J. 2012. Life on the half-shell: consequences of a carapace in the evolution of armadillos (Xenarthra: Cingulata). Journal of Mammalian Evolution, 19(3): 217-224. https://doi.org/10.1007/s10914-011-9166-x
    » https://doi.org/10.1007/s10914-011-9166-x
  • Taber, A.B.; Doncaster, C.P.; Neris, N.N. & Colman, F. 1994. Ranging behaviour and activity patterns of two sympatric peccaries, Catagonus wagneri and Tayassu tajacu, in the Paraguayan Chaco. Mammalia, 58(1): 61-72. https://doi.org/10.1515/mamm.1994.58.1.61
    » https://doi.org/10.1515/mamm.1994.58.1.61
  • Tateishi, R.; Hoan, N.T.; Kobayashi, T.; Alsaaideh, B.; Tana, G. & Phong, D.X. 2014. Production of global land cover data - GLCNMO2008. Journal of Geography and Geology, 6(3): 99. https://doi.org/10.5539/jgg.v6n3p99
    » https://doi.org/10.5539/jgg.v6n3p99
  • Tateishi, R.; Uriyangqai, B.; Al-Bilbisi, H.; Ghar, M.A.; Tsend-Ayush, J. & Kobayashi, E.T. 2011. Production of global land cover data - GLCNMO. International Journal of Digital Earth, 4(1): 22-49. https://doi.org/10.1080/17538941003777521
    » https://doi.org/10.1080/17538941003777521
  • The Nature Conservancy (TNC); Fundación Vida Silvestre Argentina (FVSA); Fundación para el Desarrollo del Chaco (DesDel Chaco) & Wildlife Conservation Society Bolivia (WSC). 2005. Evaluación Ecorregional del Gran Chaco Americano/Gran Chaco Americano Ecological Assessment. Buenos Aires, Fundación Vida Silvestre Argentina. 28p.
  • Torrella, S.A. & Adámoli, J. 2005. Situación ambiental de la ecorregión del Chaco Seco. In: La Situación Ambiental Argentina. p. 75-82.
  • Torres, R. & Jayat, J.P. 2010. Modelos predictivos de distribución para cuatro especies de mamíferos (Cingulata, 540 Artiodactyla y Rodentia) típicas del Chaco en Argentina. Mastozoología Neotropical, 17(2): 335-352.
  • Trolle, M. & Kéry, M. 2003. Estimation of ocelot density in the Pantanal using capture-recapture analysis of camera-trapping data. Journal of Mammalogy, 84(2): 607-614. https://doi.org/10.1644/1545-1542(2003)084<0607:EOODIT>2.0.CO;2
    » https://doi.org/10.1644/1545-1542(2003)084<0607:EOODIT>2.0.CO;2
  • Vallejos, M.; Mastrangelo, M.E. & Paruelo, J.M. 2017. Chaco y deforestación: ¿se puede producir y conservar? Revista Aves Argentinas, 50: 12-25.
  • Vergílio, M.; Fonseca, C.; Calado, H.; Borges, P.A.V.; Elias, R.B.; Gabriel, R.; Martins, A.; Azevedo, E. & Cardoso, P. 2016. Assessing the efficiency of protected areas to represent biodiversity: a small island case study. Environmental Conservation, 43(4): 337-349. https://doi.org/10.1017/S037689291600014X
    » https://doi.org/10.1017/S037689291600014X
  • FUNDING INFORMATION: The present study was mainly financed by the Agencia Nacional de Promoción Científica y Tecnológica (project PICTO 0087/2017). The Universidad Nacional de Santiago del Estero, Facultad de Ciencias Forestales and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) also collaborated on a percentage of funding. To the Dirección de Bosques y Fauna of the Government of Santiago del Estero for the logistical support provided to carry out this study.
  • 4
    Published with the financial support of the “Programa de Apoio às Publicações Científicas da Universidade de São Paulo”

APPENDICES

Annex 1


Camera trap pictures: collared peccary (A), cougar (B), brown brocket deer (C) y anteater (D).

Annex 2


Maps. (A) OTBN of the National Law of Native Forests and (B) Protected Areas of Santiago del Estero; Supplied by the Dirección de Bosques y Fauna of the government of Santiago del Estero which states that of the areas on the map only the Park and Reserve Copo have formal limits.

Annex 3


With the status or conservation categories of the mammal species analyzed in the work. Species categories: EN: Endangered; NT: Near Threatened; VU: Vulnerable; LC: least concern; DD: Data Deficient.

Edited by

Edited by: Luís Fábio Silveira.

Publication Dates

  • Publication in this collection
    23 Oct 2023
  • Date of issue
    2023

History

  • Received
    27 June 2022
  • Accepted
    22 Aug 2023
  • Published
    02 Oct 2023
Museu de Zoologia da Universidade de São Paulo Av. Nazaré, 481, Ipiranga, 04263-000 São Paulo SP Brasil, Tel.: (55 11) 2065-8133 - São Paulo - SP - Brazil
E-mail: einicker@usp.br