Acessibilidade / Reportar erro

Identification of stable quantitative trait loci for grain yield in rice

Identificação de locos quantitativos estáveis quanto à produtividade de grãos em arroz

Abstract

The objective of this work was to identify the quantitative trait loci (QTLs) associated with grain yield in a rice segregant population (GYP). A population of 245 inbred recombinant rice lines from the 'Epagri 108' (Oryza sativa subsp. indica) x 'IRAT 122' (O. sativa subsp. japonica) cross was evaluated at different locations and years and genotyped by single nucletide polymorphism (SNP) markers. A map of 1,592.8 cM was obtained from 9,831 SNPs, identifying 25 QTLs. The following nine SNPs showed stability between the different environments: M1.37719614 and M6.9563117 for GYP; M4.29340056, M5.25588710, M7.29115624, and M12.4534450 for 100-grain weight (HGW); and M1.38398157, M4.28368337, and M7.25991230 for plant height (PH). Six SNPs were not present in the linkage blocks: M6.9563117 and M4.1077080 for GYP; M5.25588710 and M6.8886398 for HGW; and M2.34471005 and M8.5955948 for PH. The M6.9563117 and M5.25588710 SNPs were considered environmentally stable and were not present in the linkage blocks, showing their high potential for use in marker-assisted selection for grain yield in Brazilian rice breeding programs.

Index terms:
Oryza sativa ; DArTseq; genotyping by sequencing; heritability; molecular markers

Resumo

O objetivo deste trabalho foi identificar locos de caracteres quantitativos (QTLs) associados à produtividade em uma população segregante de arroz (GYP). Uma população de 245 linhagens puras recombinantes de arroz, do cruzamento 'Epagri 108' (Oryza sativa subsp. indica) x 'IRAT 122' (O. sativa subsp. japonica), foi avaliada em diferentes locais e anos e genotipada por marcadores de polimorfismo de nucleotídeo único (SNPs). Obteve-se um mapa de 1.592,8 cM a partir de 9.831 SNPs, tendo-se identificado 25 QTLs. Os seguintes nove SNPs apresentaram estabilidade entre os diferentes ambientes: M1.37719614 e M6.9563117 para GYP; M4.29340056, M5.25588710, M7.29115624 e M12.4534450 para peso de 100 grãos (HGW); e M1.38398157, M4.28368337 e M7.25991230 para altura de plantas. Seis SNPs não estavam presentes nos blocos de ligação: M6.9563117 e M4.1077080 para GYP; M5.25588710 e M6.8886398 para HGW; e M2.34471005 e M8.5955948 para altura de plantas. Os SNPs M6.9563117 e M5.25588710 foram considerados ambientalmente estáveis e não estiveram presentes em blocos de ligação, o que indica seu alto potencial para uso na seleção assistida por marcadores de produtividade de grãos, em programas brasileiros de melhoramento de arroz.

Termos para indexação:
Oryza sativa ; DArTseq; genotipagem por sequenciamento; herdabilidade; marcadores moleculares

Introduction

In the past, desirable plant architecture was the main selection criterion for obtaining highly productive varieties of rice (Oryza sativa L.) breeding (Gaikwad et al., 2014GAIKWAD, K.B.; SINGH, N.; BHATIA, D.; KAUR, R.; BAINS, N.S.; BHARAJ, T.S.; SINGH, K. Yield-enhancing heterotic QTL transferred from wild species to cultivated rice Oryza sativa L. PLoS ONE, v.9, e96939, 2014. DOI: https://doi.org/10.1371/journal.pone.0096939.
https://doi.org/10.1371/journal.pone.009...
). Although this breeding approach was successful in the late 20th century, it is no longer sufficient for developing high-yielding rice cultivars (Hirano et al., 2017HIRANO, K.; ORDONIO, R.L.; MATSUOKA, M. Engineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands. Proceedings of the Japan Academy, Series B, v.93, p.220-233, 2017. DOI: https://doi.org/10.2183/pjab.93.014.
https://doi.org/10.2183/pjab.93.014...
). Currently, the genetic gains in productivity has remained around 1% per year, which may be insufficient to meet the demand for food, due to the growing world population (Breseghello et al., 2011BRESEGHELLO, F.; MORAIS, O.P. de; PINHEIRO, P.V.; SILVA, A.C.S.; CASTRO, E. da M. de; GUIMARÃES, É.P.; CASTRO, A.P. de; PEREIRA, J.A.; LOPES, A. de M.; UTUMI, M.M.; OLIVEIRA, J.P. de. Results of 25 years of upland rice breeding in Brazil. Crop Science, v.51, p.914-923, 2011. DOI: https://doi.org/10.2135/cropsci2010.06.0325.
https://doi.org/10.2135/cropsci2010.06.0...
).

One of the main alternatives to increase genetic gain is the use of molecular markers associated with traits of economic importance, to identify superior lines which, in turn, give rise to commercial cultivars with greater productive potential (Xu et al., 2017XU, Y.; LI, P.; ZOU, C.; LU, Y.; XIE, C.; ZHANG, X.; PRASANNA, B.M.; OLSEN, M.S. Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany, v.68, p.2641-2666, 2017. DOI: https://doi.org/10.1093/jxb/erx135.
https://doi.org/10.1093/jxb/erx135...
). Genes that regulate rice grain yield tend to be highly pleiotropic (Xing & Zhang, 2010XING, Y.; ZHANG, Q. Genetic and molecular bases of rice yield. Annual Review of Plant Biology, v.61, p.421-442, 2010. DOI: https://doi.org/10.1146/annurev-arplant-042809-112209.
https://doi.org/10.1146/annurev-arplant-...
) and, therefore, allow of an increase of yield that often involves balancing the different phenotypic effects. Genes that control grain yield with pleiotropic effects for other agronomic traits in rice varieties have already been isolated and functionally characterized, such as Ghd7, which has also been related to height and flowering period (Weng et al., 2014WENG, X.; WANG, L.; WANG, J.; HU, Y.; DU, H.; XU, C.; XING, Y.; LI, X.; XIAO, J.; ZHANG, Q. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiology, v.164, p.735-747, 2014. DOI: https://doi.org/10.1104/pp.113.231308.
https://doi.org/10.1104/pp.113.231308...
). Similar pleiotropic effects were also found for the DTH8 gene (Wei et al., 2010WEI, X.; XU, J.; GUO, H.; JIANG, L.; CHEN, S.; YU, C.; ZHOU, Z.; HU, P.; ZHAI, H.; WAN, J. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiology, v.153, p.1747-1758, 2010. DOI: https://doi.org/10.1104/pp.110.156943.
https://doi.org/10.1104/pp.110.156943...
; Yan et al., 2011YAN, W.-H.; WANG, P.; CHEN, H.-X.; ZHOU, H.-J.; LI, Q.-P.; WANG, C.-R.; DING, Z.-H.; ZHANG, Y.-S.; YU, S.-B.; XING, Y.-Z.; ZHANG, Q.-F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Molecular Plant, v.4, p.319-330, 2011. DOI: https://doi.org/10.1093/mp/ssq070.
https://doi.org/10.1093/mp/ssq070...
), GHD7.1 (Yan et al., 2013YAN, W.; LIU, H.; ZHOU, X.; LI, Q.; ZHANG, J.; LU, L.; LIU, T.; LIU, H.; ZHANG, C.; ZHANG, Z.; SHEN, G.; YAO, W.; CHEN, H.; YU, S.; XIE, W.; XING, Y. Natural variation in G h d7.1 plays an important role in grain yield and adaptation in rice. Cell Research, v.23, p.969-971, 2013. DOI: https://doi.org/10.1038/cr.2013.43.
https://doi.org/10.1038/cr.2013.43...
), and HD1 (Zhang et al., 2012ZHANG, Z.-H.; WANG, K.; GUO, L.; ZHU, Y.-J.; FAN, Y.-Y.; CHENG, S.-H.; ZHUANG, J.-Y. Pleiotropism of the photoperiod-insensitive allele of Hd1 on heading date, plant height and yield traits in rice. PLoS ONE, v.7, e52538, 2012. DOI: https://doi.org/10.1371/journal.pone.0052538.
https://doi.org/10.1371/journal.pone.005...
). Dwarfism regulation promoted by the SGDP7 gene has also been observed to decrease grain size, and to increase the number of grains per panicle (Bai et al., 2017BAI, X.; HUANG, Y.; HU, Y.; LIU, H.; ZHANG, B.; SMACZNIAK, C.; HU, G.; HAN, Z.; XING, Y. Duplication of an upstream silencer of FZP increases grain yield in rice. Nature Plants, v.3, p.885-893, 2017. DOI: https://doi.org/10.1038/s41477017-0042-4.
https://doi.org/10.1038/s41477017-0042-4...
; Wing et al., 2018WING, R.A.; PURUGGANAN, M.D.; ZHANG, Q. The rice genome revolution: from an ancient grain to Green Super Rice. Nature Reviews Genetics, v.19, p.505-517, 2018. DOI: https://doi.org/10.1038/s41576-018-0024-z.
https://doi.org/10.1038/s41576-018-0024-...
). These studies indicate that working with pleiotropic genes related to productivity is feasible. The identification of molecular markers related to more than one trait, which directly or indirectly affect grain yield, makes it possible to increase the chance of selecting superior genotypes (Budhlakoti et al., 2022BUDHLAKOTI, N.; KUSHWAHA, A.K.; RAI, A.; CHATURVEDI, K.K.; KUMAR, A.; PRADHAN, A.K.; KUMAR, U.; KUMAR, R.R.; JULIANA, P.; MISHRA, D.C.; KUMAR, S. Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops. Frontiers in Genetics, v.13, art.832153, 2022. DOI: https://doi.org/10.3389/fgene.2022.832153.
https://doi.org/10.3389/fgene.2022.83215...
).

Advances in statistical models and DNA marker technology, as well as the rapid development of genomic resources, have generated increasingly refined genetic maps and QTL analyses for various traits of interest (Singh et al., 2021SINGH, R.K.; KOTA, S.; FLOWERS, T.J. Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. Theoretical and Applied Genetics, v.134, p.3495-3533, 2021. DOI: https://doi.org/10.1007/s00122-021-03890-3.
https://doi.org/10.1007/s00122-021-03890...
). Generally, the size increase of mapping population, combined with a high density of molecular markers, is essential for a good resolution of the genetic map, which means an improvement of the accuracy of QTL mapping (Jangarelli, 2014JANGARELLI, M. Acasalamento estratégico na seleção assistida por marcadores utilizando análise multivariada. Revista Ceres, v.61, p.443-450, 2014.; Wang et al., 2011WANG, L.; WANG, A.; HUANG, X.; ZHAO, Q.; DONG, G.; QIAN, Q.; SANG, T.; HAN, B. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theoretical and Applied Genetics, v.122, p.327-340, 2011. DOI: https://doi.org/10.1007/s00122-010-1449-8.
https://doi.org/10.1007/s00122-010-1449-...
).

The objective of this work was to identify stable QTLs associated with grain yield, in a rice segregant population.

Materials and Methods

This work used a segregating population derived from a cross between parents of rice – Oryza sativa subsp. indica and O. sativa subsp. japonica –, which were genotyped by thousands of SNP markers and evaluated in three locations. The mapping population consisted of 245 recombinant inbred lines (RILs) from the crossing of 'Epagri 108' (O. sativa ssp. indica) x 'IRAT 122' (O. sativa ssp. japonica), advanced to the F7 generation by the single seed descent (SSD) method (Janwan et al., 2013JANWAN, M.; SREEWONGCHAI, T.; SRIPICHITT, P. Rice breeding for high yield by advanced single seed descent method selection. Journal of Plant Sciences, v.8, p.24-30, 2013. DOI: https://doi.org/10.3923/jps.2013.24.30.
https://doi.org/10.3923/jps.2013.24.30...
). The RILs and their parents were evaluated at three locations of Brazil in different years, as follows: in Goiânia, in the state of Goiás (GO) (2014, 2016, and 2017); in Boa Vista, in the state of Roraima (2014); and in Pelotas, in the state of Rio Grande do Sul (2014) (Table 1).

Table 1
Location of field experiments and average of phenotypic data.

The experiments were carried out in an irrigated cultivation system in the lattice design, with two replicates. The plots were composed of four lines with 4 m length, totaling a useful area of 1.2 m2. The management of the experiments, which were carried out between October and February, followed the instructions described in Soares (2012)SOARES, A.A. Cultura do arroz. Lavras: UFLA, 2012. 119p.. The RILs were evaluated for grain yield per plant (GYP, kg ha−1), 100-grain weight (HGW, g), and plant height (PH, mean of 5 plants, cm). The analysis of variance was performed for each environment individually, using a random model for all variables, and joint analysis for locations and years, also estimating the RILs x locations (ME) and RILs x years (MY) interactions. The estimates of the variance components were obtained from the residual maximum likelihood (REML) method, with the application of the best linear unbiased prediction (BLUP) procedure to estimate the associated random effects genetic values (eBLUP) for each trait, each RIL, and their parents, as described by Bueno et al. (2012)BUENO, L.G.; VIANELLO, R.P.; RANGEL, P.H.N.; UTUMI, M.M.; CORDEIRO, A.C.C.; PEREIRA, J.A.; FRANCO, D.F.; MOURA NETO, F.; MENDONÇA, J.A.; COELHO, A.S.G.; OLIVEIRA, J.P. de; BRONDANI, C. Adaptabilidade e estabilidade de acessos de uma coleção nuclear de arroz. Pesquisa Agropecuária Brasileira, v.47, p.216-226, 2012. DOI: https://doi.org/10.1590/S0100-204X2012000200010.
https://doi.org/10.1590/S0100-204X201200...
. Statistical analysis of phenotypic data was performed using the lme4 of the R platform version 3.5.1 package.

To obtain the SNP markers, two sequencing genotyping methodologies were used: the genotyping-by-sequencing (GBS) (He et al., 2014HE, J.; ZHAO, X.; LAROCHE, A.; LU, Z.-X.; LIU, H.; LI, Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Frontiers in Plant Science, v.5, art.484, 2014. DOI: https://doi.org/10.3389/fpls.2014.00484.
https://doi.org/10.3389/fpls.2014.00484...
), conducted at the Beijing Genomics Institute (BGI, China), and the diversity arrays technology (DArT Pty Ltd., Marrickville, Australia) (Appleby et al., 2009APPLEBY, N.; EDWARDS, D.; BATLEY, J. New technologies for ultra-high throughput genotyping in plants. In: SOMERS, D.J.; LANGRIDGE, P.; GUSTAFSON, J.P. (Ed.). Plant genomics: methods and protocols. [New York]: Humana Press, 2009. p.19-39. (Methods in Molecular Biology, 513). DOI: https://doi.org/10.1007/978-1-59745-427-8_2.
https://doi.org/10.1007/978-1-59745-427-...
). From the set of identified SNPs, markers that were heterozygous or monomorphic between parents, or that did not present the expected Mendelian segregation (1: 1), were discarded. The genetic map was obtained from the cMConverter software version 1.2.1 (cM Converter, 2022CMCONVERTER. Available at: <http://mapdisto.free.fr/cMconverter>. Accessed on: May 10 2022.
http://mapdisto.free.fr/cMconverter...
); and the map design and QTL positioning were obtained by the MapChart software version 2.32 (Voorrips, 2002VOORRIPS, R.E. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, v.93, p.77-78, 2002. DOI: https://doi.org/10.1093/jhered/93.1.77.
https://doi.org/10.1093/jhered/93.1.77...
). To calculate the extent of linkage disequilibrium (LD) between SNP markers on chromosomes where QTL was detected, the standard confidence interval method of Gabriel et al. (2002)GABRIEL, S.B.; SCHAFFNER, S.F.; NGUYEN, H.; MOORE, J.M.; ROY, J.; BLUMENSTIEL, B.; HIGGINS, J.; DEFELICE, M.; LOCHNER, A.; FAGGART, M.; LIU-CORDERO, S.N.; ROTIMI, C.; ADEYEMO, A.; COOPER, R.; WARD, R.; LANDER, E.S.; DALY, M.J.; ALTSHULER, D. The structure of haplotype blocks in the human genome. Science, v.296, p.2225-2229, 2002. DOI: https://doi.org/10.1126/science.1069424.
https://doi.org/10.1126/science.1069424...
in the Haploview version 4.2 program was used to obtain a matrix of r2 values (Gabriel et al., 2002GABRIEL, S.B.; SCHAFFNER, S.F.; NGUYEN, H.; MOORE, J.M.; ROY, J.; BLUMENSTIEL, B.; HIGGINS, J.; DEFELICE, M.; LOCHNER, A.; FAGGART, M.; LIU-CORDERO, S.N.; ROTIMI, C.; ADEYEMO, A.; COOPER, R.; WARD, R.; LANDER, E.S.; DALY, M.J.; ALTSHULER, D. The structure of haplotype blocks in the human genome. Science, v.296, p.2225-2229, 2002. DOI: https://doi.org/10.1126/science.1069424.
https://doi.org/10.1126/science.1069424...
; Barrett et al., 2005BARRETT, J.C.; FRY, B.; MALLER, J.; DALY, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, v.21, p.263-265, 2005. DOI: https://doi.org/10.1093/bioinformatics/bth457.
https://doi.org/10.1093/bioinformatics/b...
). QTL mapping was performed on the R version 3.5.1 computational platform, R/qtl package (Broman & Sen, 2009BROMAN, K.W.; SEN, Ś. A guide to QTL mapping with R/ qtl. Dordrecht: Springer, 2009. DOI: https://doi.org/10.1007/9780-387-92125-9.
https://doi.org/10.1007/9780-387-92125-9...
), using simple (SIM) and composite (CIM) interval mapping, multiple imputation mapping methods and the Haley-Knott’s regression, respectively (Haley & Knott, 1992HALEY, C.S.; KNOTT, S.A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, v.69, p.315-324, 1992. DOI: https://doi.org/10.1038/hdy.1992.131.
https://doi.org/10.1038/hdy.1992.131...
; Sen & Churchill, 2001SEN, Ś.; CHURCHILL, G.A. A statistical framework for quantitative trait mapping. Genetics, v.159, p.371-387, 2001. DOI: https://doi.org/10.1093/genetics/159.1.371.
https://doi.org/10.1093/genetics/159.1.3...
). The significance level was determined by the logarithm of odds score analysis (LOD score) = 3. For all steps of construction of the QTL mapping model, the genotypic probability condition was calculated using the function calc.genoprob (Sato et al., 2021SATO, Y.; TAKEDA, K.; NAGANO, A.J. Neighbor QTL: an interval mapping method for quantitative trait loci underlying plant neighborhood effects. G3, v.11, jkab017, 2021. DOI: https://doi.org/10.1093/g3journal/jkab017.
https://doi.org/10.1093/g3journal/jkab01...
). The mapping function was Kosambi, the maximum distance used was 1 cM, and the supported genotyping error rate was 0.01. To obtain the significance limit (LODmax) to reject the hypothesis H0: a = 0 (there is no evidence of QTL effect in this position), the permutation test was performed with a value of α=0.05 and 1,000 permutations. Then, the “scantwo” function was used to locate the QTL with smaller effects, besides estimating the interaction between the identified QTL (Lander & Botstein, 1989LANDER, E.S.; BOTSTEIN, D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, v.121, p.185-199, 1989. DOI: https://doi.org/10.1093/genetics/121.1.185.
https://doi.org/10.1093/genetics/121.1.1...
). The final model was estimated by the multiple QTL method (MQM) based on the results of the CIM and Two-QTL (Broman & Sen, 2009BROMAN, K.W.; SEN, Ś. A guide to QTL mapping with R/ qtl. Dordrecht: Springer, 2009. DOI: https://doi.org/10.1007/9780-387-92125-9.
https://doi.org/10.1007/9780-387-92125-9...
). For the analysis of the QTL x Environment interactions, the values estimated by the eBLUPs in the joint analysis of the RILs were used.

The significant QTL was named according to the method proposed by McCouch et al. (1997)MCCOUCH, S.R.; CHEN, X.; PANAUD, O.; TEMNYKH, S.; XU, Y.; CHO, Y.G.; HUANG, N.; ISHII, T.; BLAIR, M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Molecular Biology, v.35, p.89-99, 1997. DOI: https://doi.org/10.1023/A:1005711431474.
https://doi.org/10.1023/A:1005711431474...
, as follows: GYP for grain yield, HGW for 100-grain weight, and PH for plant height. The QTL confidence interval was considered according to the method of Gabriel et al. (2002)GABRIEL, S.B.; SCHAFFNER, S.F.; NGUYEN, H.; MOORE, J.M.; ROY, J.; BLUMENSTIEL, B.; HIGGINS, J.; DEFELICE, M.; LOCHNER, A.; FAGGART, M.; LIU-CORDERO, S.N.; ROTIMI, C.; ADEYEMO, A.; COOPER, R.; WARD, R.; LANDER, E.S.; DALY, M.J.; ALTSHULER, D. The structure of haplotype blocks in the human genome. Science, v.296, p.2225-2229, 2002. DOI: https://doi.org/10.1126/science.1069424.
https://doi.org/10.1126/science.1069424...
, by which the marker located closest to the QTL peak is present in the haplotypic block. The largest haplotypic block was delimited in relation to the linkage disequilibrium decay, obtained by the platforms TASSEL version 5 (Bradbury et al., 2007BRADBURY, P.J.; ZHANG, Z.; KROON, D.E.; CASSTEVENS, T.M.; RAMDOSS, Y.; BUCKLER, E.S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, v.23, p.2633-2635, 2007. DOI: https://doi.org/10.1093/bioinformatics/btm308.
https://doi.org/10.1093/bioinformatics/b...
) and R version 3.6.2. The prediction of candidate genes underlying the QTL of interest was performed through the Rice Genome Browser search (Kawahara et al., 2013KAWAHARA, Y.; LA BASTIDE, M. de; HAMILTON, J.P.; KANAMORI, H.; MCCOMBIE, W.R.; OUYANG, S.; SCHWARTZ, D.C.; TANAKA, T.; WU, J.; ZHOU, S.; CHILDS, K.L.; DAVIDSON, R.M.; LIN, H.; QUESADA-OCAMPO, L.; VAILLANCOURT, B.; SAKAI, H.; LEE, S.S.; KIM, J.; NUMA, H.; ITOH, T.; BUELL, C.R.; MATSUMOTO, T. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, v.6, art.4, 2013. DOI: https://doi.org/10.1186/1939-8433-6-4.
https://doi.org/10.1186/1939-8433-6-4...
), and the verification of the effects of SNPs (SNPeff) was performed through the RiceVarMapv2.0 search (RiceVarMapv2.0, 2022RICEVARMAP V2.0. Available at: <http://ricevarmap.ncpgr.cn/vars_in_region>. Accessed on: May 10 2022.
http://ricevarmap.ncpgr.cn/vars_in_regio...
). The confirmation of the QTL previously identified for the same region, in the present study, was performed using the Q-TARO database (Yonemaru et al., 2010YONEMARU, J.-I.; YAMAMOTO, T.; FUKUOKA, S.; UGA, Y.; HORI, K.; YANO, M. Q-TARO: QTL annotation rice online database. Rice, v.3, p.194-203, 2010. DOI: https://doi.org/10.1007/s12284-010-9041-z.
https://doi.org/10.1007/s12284-010-9041-...
).

Results and Discussion

The analysis of variance detected highly significant differences, by the f-value test, between the set formed by RILs and their parents for GYP, HGW, and PH, in all environments assessed individually (Table 2). For the annual evaluations, only the experiment carried out in Goiânia, GO, in the second year (Y2) of the experiments, in 2016, showed coefficient of variation (CV) above the average found in the literature (59.27%), which was caused by excess rainfall at harvest (Morais Júnior et al., 2017MORAIS JÚNIOR, O.P. de; MELO, P.G.S.; MORAIS, O.P. de; COLOMBARI FILHO, J.M. Genetic variability during four cycles of recurrent selection in rice. Pesquisa Agropecuária Brasileira, v.52, p.1033-1041, 2017. DOI: https://doi.org/10.1590/S0100-204X2017001100009.
https://doi.org/10.1590/S0100-204X201700...
). The accuracy also showed a good experimental precision for the experiments evaluated individually (values above 0.7), except for the traits GYP and PH for GO/ Y2, which showed relatively low accuracy (0.49 and 0.75, respectively). High heritability values were also observed for all traits (values above 0.7), except for the GO/Y2 experiment for traits GYP and PH (0.24 and 0.57, respectively). The correlation analysis was positive and significant between GYP and HGW, with values of 0.2 and 0.3 for the environments Goiânia, year 1 (GO/Y1) (2014), and RS, respectively. GYP correlated with PH moderately, with values of 0.2 and 0.3 for the environments GO/Y1 and RR, respectively. There was a positive correlation for GYP and PH in 2014 (year 1) and 2017 (year 3) in the GO environment, with 0.3 and 0.2 estimated correlation, respectively.

Table 2
Analysis of variance, estimates of variance components, coefficient of variation, accuracy, and heritability of rice plant grain yield (GYP), 100-grain weight (HGW), and plant height (PH).

The molecular characterization of the 245 RILs and the two parents by GBS and DArTseq methodologies resulted in the identification of 12,283 SNPs distributed in the 12 rice chromosomes and, after discarding heterozygous, monomorphic, or distorted segregation markers (markers did not show the expected Mendelian segregation of 1:1), 9,831 polymorphic SNPs remained (Table 3). From these markers, a genetic map of 1,592.08 cM size was generated, with an average distance between markers of 0.19 cM, and an average physical density of one SNP every 44.8 kbp. This size is in accordance with the size of the map used in recent works on rice, that is, the current literature indicates that this is the physical size of the map suitable for performing QTL analysis (Yadav et al., 2019YADAV, S.; SANDHU, N.; SINGH, V.K.; CATOLOS, M.; KUMAR, A. Genotyping-by-sequencing based QTL mapping for rice grain yield under reproductive stage drought stress tolerance. Scientific Reports, v.9, art.14326, 2019. DOI: https://doi.org/10.1038/s41598-019-50880-z.
https://doi.org/10.1038/s41598-019-50880...
; Zhang et al., 2020ZHANG, A.; GAO, Y.; LI, Y.; RUAN, B.; YANG, S.; LIU, C.; ZHANG, B.; JIANG, H.; FANG, G.; DING, S.; JAHAN, N.; XIE, L.; DONG, G.; XU, Z.; GAO, Z.; GUO, L.; QIAN, Q. Genetic analysis for cooking and eating quality of super rice and fine mapping of a novel locus qGC10 for gel consistency. Frontiers in Plant Science, v.11, art.342, 2020. DOI: https://doi.org/10.3389/fpls.2020.00342.
https://doi.org/10.3389/fpls.2020.00342...
). Multiple interval mapping identified 21 QTLs considering the three traits and three locations, and seven QTLs showed environmental interaction (Table 4), distributed in all rice chromosomes, except for chromosome 2. Considering the different years, 14 QTLs were identified for GYP and PH, and four QTLs showed annual interaction (Table 5).

Table 3
Number of single nucleotide polymorphism (SNP) markers obtained from genotyping-by-sequencing (GBS) methodology and the diversity arrays technology DArTseq of rice recombinant inbred lines.
Table 4
Quantitative trait loci (QTLs) identified, considering the three experimental locations.
Table 5
Quantitative trait loci (QTLs) identified considering the three years of experiments.

The identified QTLs showed only additive effects, which is interesting, since the alleles with positive effects tend to be maintained throughout the breeding generations (Beissinger et al., 2018BEISSINGER, T.; KRUPPA, J.; CAVERO, D.; HA, N.-T.; ERBE, M.; SIMIANER, H. A simple test identifies selection on complex traits. Genetics, v.209, p.321-333, 2018. DOI: https://doi.org/10.1534/genetics.118.300857.
https://doi.org/10.1534/genetics.118.300...
). Epistatic interactions were not significant, which is important from the point of view of using these identified SNPs in a marker-assisted selection strategy, as the effects of one QTL are independent of the effects of other loci (Bocianowski, 2013BOCIANOWSKI, J. Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect. Genetics and Molecular Biology, v.36, p.93-100, 2013. DOI: https://doi.org/10.1590/S1415-47572013000100013.
https://doi.org/10.1590/S1415-4757201300...
).

The QTLs identified for GYP were unique for each location (Table 4). Considering all QTLs detected, just qGYP6 was common between years (in this case, Y1 and Y3, for the GO environment) (Table 5). Specific significant QTLs were identified for the GO/Y1 environment (qGYP1.1, q GYP1.2, qGYP3.1, qGYP3.2, qGYP4, and qGYP11 ), GO/A2 (qGYP2), and GO/Y3 (qGYP9.2). The specific QTL for RR location was qGYP10, and for RS was qGYP9.1. These results mean that a marker-assisted selection (MAS) strategy should be targeted to specific sites, decreasing the chance of successful use of markers for multiple sites, as noted by Hasan et al. (2021)HASAN, N.; CHOUDHARY, S.; NAAZ, N.; SHARMA, N.; LASKAR, R.A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology, v.19, art.128, 2021. DOI: https://doi.org/10.1186/s43141-021-00231-1.
https://doi.org/10.1186/s43141-021-00231...
.

The proportions of phenotypic variance explained by the individual QTLs ranged between 2.7 and 25.2%. The QTL model explained 56% of the phenotypic variance for yield in GO/Y1, 7% in GO/Y2, 30% in GO/Y3, 19% in RR, and 7% in RS. Despite the high phenotypic variance observed for the grain yield trait, these values should be viewed with caution, as they are specific to the population and environment studied (Wang et al., 2020WANG, Y.; WANG, J.; ZHAI, L.; LIANG, C.; CHEN, K.; XU, J. Identify QTLs and candidate genes underlying source-, sink, and grain yield-related traits in rice by integrated analysis of bi-parental and natural populations. PLoS ONE, v.15, e0237774, 2020. DOI: https://doi.org/10.1371/journal.pone.0237774.
https://doi.org/10.1371/journal.pone.023...
). For HGW trait, six significant QTLs were identified for GO/Y1 (qHGW1, qHGW5, qHGW6, qHGW10, qHGW12.1, and qHGW12.2) (Table 4). Among them, qHGW12.1 was also identified in the RS environment, which may be interesting for the MAS, after additional studies that should be carried out to confirm the importance of this QTL for these two environments. As HGW is one of the components of rice grain yield (Dou et al., 2016DOU, F.; SORIANO, J.; TABIEN, R.E.; CHEN, K. Soil texture and cultivar effects on rice (Oryza sativa, L.) grain yield, yield components and water productivity in three water regimes. PLoS ONE, v.11, e0150549, 2016. DOI: https://doi.org/10.1371/journal.pone.0150549.
https://doi.org/10.1371/journal.pone.015...
), and it has greater heritability than the GYP trait, it may be an alternative for MAS. For PH, four significant QTLs were identified, with the QTL qPH1 occurring in all environments (Table 4). The QTL qPH1 stood out for its high LOD (66) and R2 (69%), and it is the only one identified in the three experimental years, in the three locations, and in the environmental joint analysis. The linkage block to which qPH1 belongs is 689 kbp, with 111 genes, and it is close to QTL qGYP1.2 (block with 562 kbp and 93 genes). Lei et al. (2018)LEI, L.; ZHENG, H.L.; WANG, J.G.; LIU, H.L.; SUN, J.; ZHAO, H.W.; YANG, L.M.; ZOU, D.T. Genetic dissection of rice (Oryza sativa L.) tiller, plant height, and grain yield based on QTL mapping and metaanalysis. Euphytica, v.214, art.109, 2018. DOI: https://doi.org/10.1007/s10681-018-2187-2.
https://doi.org/10.1007/s10681-018-2187-...
also identified a QTL cluster for grain yield, height, and tillering, in the same region of chromosome 1, which makes it a priority target for developing molecular markers for assisted selection in rice. The study by Tanger et al. (2017)TANGER, P.; KLASSEN, S.; MOJICA, J.P.; LOVELL, J.T.; MOYERS, B.T.; BARAOIDAN, M.; NAREDO, M.E.B.; MCNALLY, K.L.; POLAND, J.; BUSH, D.R.; LEUNG, H.; LEACH, J.E.; MCKAY, J.K. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice. Scientific Reports, v.7, art.42839, 2017. DOI: https://doi.org/10.1038/srep42839.
https://doi.org/10.1038/srep42839...
involving the crossing between the two cultivars of the Indica group ('IR64' x 'Aswina') also identified the QTLs qGYP1.2 and qPH1. Hua et al. (2002)HUA, J.P.; XING, Y.Z.; XU, C.G.; SUN, X.L.; YU, S.B.; ZHANG, Q. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, v.162, p.1885-1895, 2002. DOI: https://doi.org/10.1093/genetics/162.4.1885.
https://doi.org/10.1093/genetics/162.4.1...
and Xing et al. (2002)XING, Y.; TAN, Y.; HUA, J.; SUN, X.; XU, C.; ZHANG, Q. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theoretical and Applied Genetics, v.105, p.248-257, 2002. DOI: https://doi.org/10.1007/s00122-002-0952-y.
https://doi.org/10.1007/s00122-002-0952-...
previously associated the QTL qGYP1.2 to increased grain yield in rice. Two QTLs related to plant height – qPH4 (GO/Y1 environment and joint analysis) and qPH7 (year 1 and joint analysis) – showed stability. The QTL qPH4 (R2=2%) is found in a 745 kbp linkage block containing 54 genes. This region was previously related to plant height in rice with the genes dwarf1 and dwarf17 (Kudo et al., 2012KUDO, T.; MAKITA, N.; KOJIMA, M.; TOKUNAGA, H.; SAKAKIBARA, H. Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-O-glucosyltransferase in rice. Plant Physiology, v.160, p.319-331, 2012. DOI: https://doi.org/10.1104/pp.112.196733.
https://doi.org/10.1104/pp.112.196733...
; Umehara et al., 2008UMEHARA, M.; HANADA, A.; YOSHIDA, S.; AKIYAMA, K.; ARITE, T.; TAKEDA-KAMIYA, N.; MAGOME, H.; KAMIYA, Y.; SHIRASU, K.; YONEYAMA, K.; KYOZUKA, J.; YAMAGUCHI, S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, v.455, p.195-200, 2008. DOI: https://doi.org/10.1038/nature07272.
https://doi.org/10.1038/nature07272...
). The QTL qPH7 (R2=3%) is found in a 607 kbp linkage block with 63 genes, and it was not previously related to plant height, but to traits such as panicle number, grain size, dormancy, spikelet fertility and tolerance to abiotic stress (Abe et al., 2010ABE, Y.; MIEDA, K.; ANDO, T.; KONO, I.; YANO, M.; KITANO, H.; IWASAKI, Y. The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice. Genes and Genetic Systems, v.85, p.327-339, 2010. DOI: https://doi.org/10.1266/ggs.85.327.
https://doi.org/10.1266/ggs.85.327...
; Ni et al., 2014NI, D.-H.; LI, J.; DUAN, Y.-B.; YANG, Y.-C.; WEI, P.-C; XU, R.-F.; LI, C.-R.; LIANG, D.-D.; LI, H.; SONG, F.-S.; NI, J.-L.; LI, L.; YANG, J.-B. Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.). Journal of Experimental Botany, v.65, p.2107-2117, 2014. DOI: https://doi.org/10.1093/jxb/eru074.
https://doi.org/10.1093/jxb/eru074...
).

The SNP markers associated with the linkage blocks M1.37719614 (qGYP1.2), M12.4534450 (qHGW12.1), M1.38398157 (qPH1), M4.28368337 (qPH4), and M7.25991230 (qPH7) would be indicated for the development and validation of markers for assisted selection, since they were considered stable in the present study. However, this marker:trait relation can be lost because of crossing-over, as they are located in linkage blocks and co-segregate with dozens of potentially causal genes. The alternative is to select SNP markers with high R2 values and that are not present in linkage blocks, such as M4.1077080 (qGYP4), M6.9563117 (qGYP6), M5.25588710 (qHGW5), M6.8886398 (qHGW6), M 2 .3 4 4710 05 (qPH2), and M8.5955948 (qPH8). The marker M4.1077080 (qGYP4) is located between the genes LOC_Os04g02780 (amidase family protein) and LOC_Os04g02790 (unannotated expressed protein). According to the RiceVarMap database (RiceVarMapv2.0, 2022RICEVARMAP V2.0. Available at: <http://ricevarmap.ncpgr.cn/vars_in_region>. Accessed on: May 10 2022.
http://ricevarmap.ncpgr.cn/vars_in_regio...
), the gene LOC_Os04g02780 modifies the expression of 28 genes (the SNP can act as a modifier, changing their respective expression levels), and it is involved in 6 metabolic pathways (KEGG and MetaCyc Pathways), which indicates its important role in the general metabolism of rice. The marker M6.8886398 (qHGW6) is located between the genes LOC_Os06g15680 (cytochrome P450) and LOC_Os06g15700 (unannotated expressed protein). Cytochrome P450 is a superfamily of enzymes that function as monooxygenases and with the biosynthesis of various endogenous molecules, such as antibiotics, essential secondary metabolites, fatty acids, conjugates, signaling molecules, lipid degradation, hormones, among others (Naveed et al., 2018NAVEED, A.; LI, H.; LIU, X. Cytochrome P450s: blueprints for potential applications in plants. Journal of Plant Biochemistry & Physiology, v.6, art.100204, 2018. DOI: https://doi.org/10.4172/2329-9029.1000204.
https://doi.org/10.4172/2329-9029.100020...
). The SNP marker M2.34471005 (qPH2) is located between the genes LOC_Os02g56310 (phosphoenolpyruvate carboxylase kinase 2) and LOC_Os02g56320 (st arch synthase 4). The second gene was also predicted to target microRNAs encoding APETALA2 type transcription factors, which are often associated with genes responsible for the genetic control of the stress response, plant growth, and development (Ma et al., 2020MA, Z.; WU, T.; HUANG, K.; JIN, Y.-M.; LI, Z.; CHEN, M.; YUN, S.; ZHANG, H.; YANG, X.; CHEN, H.; BAI, H.; DU, L.; JU, S.; GUO, L.; BIAN, M.; HU, L.; DU, X.; JIANG, W. A novel AP2/ERF transcription factor, OsRPH1, negatively regulates plant height in rice. Frontiers in Plant Science, v.11, art.709, 2020. DOI: https://doi.org/10.3389/fpls.2020.00709.
https://doi.org/10.3389/fpls.2020.00709...
). SNP M8.5955948 (qPH8) is located in an intron of the LOC_Os08g10250 gene (SHR5 receptorlike kinase, RLK). The plant’s RLK gene family is involved in several processes related to development, responses to plant biotic and abiotic stresses, and symbiosis (Liu et al., 2017LIU, P.-L.; DU, L.; HUANG, Y.; GAO, S.-M.; YU, M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evolutionary Biology, v.17, art.47, 2017. DOI: https://doi.org/10.1186/s12862-017-0891-5.
https://doi.org/10.1186/s12862-017-0891-...
). The SHR5 gene has been previously linked to signal transduction involved in the establishment of beneficial endophytic plant-bacteria interaction in sugarcane (Vinagre et al., 2006VINAGRE, F.; VARGAS, C.; SCHWARCZ, K.; CAVALCANTE, J.; NOGUEIRA, E.M.; BALDANI, J.I.; FERREIRA, P.C.G.; HEMERLY, A.S. SHR5: a novel plant receptor kinase involved in plant-N2-fixing endophytic bacteria association. Journal of Experimental Botany, v.57, p.559-569, 2006. DOI: https://doi.org/10.1093/jxb/erj041.
https://doi.org/10.1093/jxb/erj041...
). The potential alteration in the expression of the above genes by the modifier SNPs may have been the reason for their association with the genetic control of the evaluated traits, which makes them candidates for use in assisted selection.

The SNP M6.9563117 of the QTL qGYP6 stands out for its identification in GO/Y1, GO/Y3, M Y, and ME, as well as for not being located in a linkage block and for showing a high LOD score (24) and additivity (722 kg ha-1). The SNP M5.25588710 of the QTL qHGW5 is not present in a linkage block, and it is located between the genes LOC_Os06g16630 (unannotated gene) and LOC_Os06g16640 (carboxy-terminal peptidase). This genomic region was previously related to the increase of grain yield in rice (Hua et al., 2002HUA, J.P.; XING, Y.Z.; XU, C.G.; SUN, X.L.; YU, S.B.; ZHANG, Q. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, v.162, p.1885-1895, 2002. DOI: https://doi.org/10.1093/genetics/162.4.1885.
https://doi.org/10.1093/genetics/162.4.1...
; Cui et al., 2003CUI, K.; PENG, S.; XING, Y.; YU, S.; XU, C.; ZHANG, Q. Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theoretical and Applied Genetics, v.106, p.649-658, 2003. DOI: https://doi.org/10.1007/s00122-002-1113-z.
https://doi.org/10.1007/s00122-002-1113-...
), in addition to other traits, such as plant height and tillering, grain weight, flowering, and resistance, or tolerance to abiotic stresses. Therefore, the SNPs M6.9563117 and M5.25588710 are strong candidates to be used in marker-assisted selection of Brazilian rice breeding programs. The use of few SNP markers for a quantitative trait, such as grain yield, means a significant reduction of the genotyping cost, which allows of the screening of many genotypes. The selected accessions can then be used to conduct smaller and more precise experiments. The validation of the SNPs associated with traits identified in this work is an essential activity to enable the effective use of these markers in breeding programs (Kikuchi et al., 2017KIKUCHI, S.; BHEEMANAHALLI, R.; JAGADISH, K.S.V.; KUMAGAI, E.; MASUYA, Y.; KURODA, E.; RAGHAVAN, C.; DINGKUHN, M.; ABE, A.; SHIMONO, H. Genomewide association mapping for phenotypic plasticity in rice. Plant, Cell and Environment, v.40, p.1565-1575, 2017. DOI: https://doi.org/10.1111/pce.12955.
https://doi.org/10.1111/pce.12955...
), and it will be the next step of the selected SNP markers before being incorporated into the marker-assisted selection routine.

Conclusion

The SNPs M6.9563117 and M5.25588710 are candidates to be used in marker-assisted selection for grain yield in Brazilian rice (Oryza sativa) breeding programs.

Acknowledgments

To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for financial support and grants to the fifth (process number 310935/2019-9) and sixth (process number 313688/2021-4) authors; to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes, Finance Code 001), for grant to the first author; and to Empresa Brasileira de Pesquisa Agropecuária (Embrapa), for financial support (process number 23.14.01.008.00.00).

References

  • ABE, Y.; MIEDA, K.; ANDO, T.; KONO, I.; YANO, M.; KITANO, H.; IWASAKI, Y. The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice. Genes and Genetic Systems, v.85, p.327-339, 2010. DOI: https://doi.org/10.1266/ggs.85.327
    » https://doi.org/10.1266/ggs.85.327
  • APPLEBY, N.; EDWARDS, D.; BATLEY, J. New technologies for ultra-high throughput genotyping in plants. In: SOMERS, D.J.; LANGRIDGE, P.; GUSTAFSON, J.P. (Ed.). Plant genomics: methods and protocols. [New York]: Humana Press, 2009. p.19-39. (Methods in Molecular Biology, 513). DOI: https://doi.org/10.1007/978-1-59745-427-8_2
    » https://doi.org/10.1007/978-1-59745-427-8_2
  • BAI, X.; HUANG, Y.; HU, Y.; LIU, H.; ZHANG, B.; SMACZNIAK, C.; HU, G.; HAN, Z.; XING, Y. Duplication of an upstream silencer of FZP increases grain yield in rice. Nature Plants, v.3, p.885-893, 2017. DOI: https://doi.org/10.1038/s41477017-0042-4
    » https://doi.org/10.1038/s41477017-0042-4
  • BARRETT, J.C.; FRY, B.; MALLER, J.; DALY, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, v.21, p.263-265, 2005. DOI: https://doi.org/10.1093/bioinformatics/bth457
    » https://doi.org/10.1093/bioinformatics/bth457
  • BEISSINGER, T.; KRUPPA, J.; CAVERO, D.; HA, N.-T.; ERBE, M.; SIMIANER, H. A simple test identifies selection on complex traits. Genetics, v.209, p.321-333, 2018. DOI: https://doi.org/10.1534/genetics.118.300857
    » https://doi.org/10.1534/genetics.118.300857
  • BOCIANOWSKI, J. Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect. Genetics and Molecular Biology, v.36, p.93-100, 2013. DOI: https://doi.org/10.1590/S1415-47572013000100013
    » https://doi.org/10.1590/S1415-47572013000100013
  • BRADBURY, P.J.; ZHANG, Z.; KROON, D.E.; CASSTEVENS, T.M.; RAMDOSS, Y.; BUCKLER, E.S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, v.23, p.2633-2635, 2007. DOI: https://doi.org/10.1093/bioinformatics/btm308
    » https://doi.org/10.1093/bioinformatics/btm308
  • BRESEGHELLO, F.; MORAIS, O.P. de; PINHEIRO, P.V.; SILVA, A.C.S.; CASTRO, E. da M. de; GUIMARÃES, É.P.; CASTRO, A.P. de; PEREIRA, J.A.; LOPES, A. de M.; UTUMI, M.M.; OLIVEIRA, J.P. de. Results of 25 years of upland rice breeding in Brazil. Crop Science, v.51, p.914-923, 2011. DOI: https://doi.org/10.2135/cropsci2010.06.0325
    » https://doi.org/10.2135/cropsci2010.06.0325
  • BROMAN, K.W.; SEN, Ś. A guide to QTL mapping with R/ qtl Dordrecht: Springer, 2009. DOI: https://doi.org/10.1007/9780-387-92125-9
    » https://doi.org/10.1007/9780-387-92125-9
  • BUDHLAKOTI, N.; KUSHWAHA, A.K.; RAI, A.; CHATURVEDI, K.K.; KUMAR, A.; PRADHAN, A.K.; KUMAR, U.; KUMAR, R.R.; JULIANA, P.; MISHRA, D.C.; KUMAR, S. Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops. Frontiers in Genetics, v.13, art.832153, 2022. DOI: https://doi.org/10.3389/fgene.2022.832153
    » https://doi.org/10.3389/fgene.2022.832153
  • BUENO, L.G.; VIANELLO, R.P.; RANGEL, P.H.N.; UTUMI, M.M.; CORDEIRO, A.C.C.; PEREIRA, J.A.; FRANCO, D.F.; MOURA NETO, F.; MENDONÇA, J.A.; COELHO, A.S.G.; OLIVEIRA, J.P. de; BRONDANI, C. Adaptabilidade e estabilidade de acessos de uma coleção nuclear de arroz. Pesquisa Agropecuária Brasileira, v.47, p.216-226, 2012. DOI: https://doi.org/10.1590/S0100-204X2012000200010
    » https://doi.org/10.1590/S0100-204X2012000200010
  • CMCONVERTER. Available at: <http://mapdisto.free.fr/cMconverter>. Accessed on: May 10 2022.
    » http://mapdisto.free.fr/cMconverter
  • CUI, K.; PENG, S.; XING, Y.; YU, S.; XU, C.; ZHANG, Q. Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theoretical and Applied Genetics, v.106, p.649-658, 2003. DOI: https://doi.org/10.1007/s00122-002-1113-z
    » https://doi.org/10.1007/s00122-002-1113-z
  • DOU, F.; SORIANO, J.; TABIEN, R.E.; CHEN, K. Soil texture and cultivar effects on rice (Oryza sativa, L.) grain yield, yield components and water productivity in three water regimes. PLoS ONE, v.11, e0150549, 2016. DOI: https://doi.org/10.1371/journal.pone.0150549
    » https://doi.org/10.1371/journal.pone.0150549
  • GABRIEL, S.B.; SCHAFFNER, S.F.; NGUYEN, H.; MOORE, J.M.; ROY, J.; BLUMENSTIEL, B.; HIGGINS, J.; DEFELICE, M.; LOCHNER, A.; FAGGART, M.; LIU-CORDERO, S.N.; ROTIMI, C.; ADEYEMO, A.; COOPER, R.; WARD, R.; LANDER, E.S.; DALY, M.J.; ALTSHULER, D. The structure of haplotype blocks in the human genome. Science, v.296, p.2225-2229, 2002. DOI: https://doi.org/10.1126/science.1069424
    » https://doi.org/10.1126/science.1069424
  • GAIKWAD, K.B.; SINGH, N.; BHATIA, D.; KAUR, R.; BAINS, N.S.; BHARAJ, T.S.; SINGH, K. Yield-enhancing heterotic QTL transferred from wild species to cultivated rice Oryza sativa L. PLoS ONE, v.9, e96939, 2014. DOI: https://doi.org/10.1371/journal.pone.0096939
    » https://doi.org/10.1371/journal.pone.0096939
  • HALEY, C.S.; KNOTT, S.A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, v.69, p.315-324, 1992. DOI: https://doi.org/10.1038/hdy.1992.131
    » https://doi.org/10.1038/hdy.1992.131
  • HASAN, N.; CHOUDHARY, S.; NAAZ, N.; SHARMA, N.; LASKAR, R.A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology, v.19, art.128, 2021. DOI: https://doi.org/10.1186/s43141-021-00231-1
    » https://doi.org/10.1186/s43141-021-00231-1
  • HE, J.; ZHAO, X.; LAROCHE, A.; LU, Z.-X.; LIU, H.; LI, Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Frontiers in Plant Science, v.5, art.484, 2014. DOI: https://doi.org/10.3389/fpls.2014.00484
    » https://doi.org/10.3389/fpls.2014.00484
  • HIRANO, K.; ORDONIO, R.L.; MATSUOKA, M. Engineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands. Proceedings of the Japan Academy, Series B, v.93, p.220-233, 2017. DOI: https://doi.org/10.2183/pjab.93.014
    » https://doi.org/10.2183/pjab.93.014
  • HUA, J.P.; XING, Y.Z.; XU, C.G.; SUN, X.L.; YU, S.B.; ZHANG, Q. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, v.162, p.1885-1895, 2002. DOI: https://doi.org/10.1093/genetics/162.4.1885
    » https://doi.org/10.1093/genetics/162.4.1885
  • JANGARELLI, M. Acasalamento estratégico na seleção assistida por marcadores utilizando análise multivariada. Revista Ceres, v.61, p.443-450, 2014.
  • JANWAN, M.; SREEWONGCHAI, T.; SRIPICHITT, P. Rice breeding for high yield by advanced single seed descent method selection. Journal of Plant Sciences, v.8, p.24-30, 2013. DOI: https://doi.org/10.3923/jps.2013.24.30
    » https://doi.org/10.3923/jps.2013.24.30
  • KAWAHARA, Y.; LA BASTIDE, M. de; HAMILTON, J.P.; KANAMORI, H.; MCCOMBIE, W.R.; OUYANG, S.; SCHWARTZ, D.C.; TANAKA, T.; WU, J.; ZHOU, S.; CHILDS, K.L.; DAVIDSON, R.M.; LIN, H.; QUESADA-OCAMPO, L.; VAILLANCOURT, B.; SAKAI, H.; LEE, S.S.; KIM, J.; NUMA, H.; ITOH, T.; BUELL, C.R.; MATSUMOTO, T. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, v.6, art.4, 2013. DOI: https://doi.org/10.1186/1939-8433-6-4
    » https://doi.org/10.1186/1939-8433-6-4
  • KIKUCHI, S.; BHEEMANAHALLI, R.; JAGADISH, K.S.V.; KUMAGAI, E.; MASUYA, Y.; KURODA, E.; RAGHAVAN, C.; DINGKUHN, M.; ABE, A.; SHIMONO, H. Genomewide association mapping for phenotypic plasticity in rice. Plant, Cell and Environment, v.40, p.1565-1575, 2017. DOI: https://doi.org/10.1111/pce.12955
    » https://doi.org/10.1111/pce.12955
  • KUDO, T.; MAKITA, N.; KOJIMA, M.; TOKUNAGA, H.; SAKAKIBARA, H. Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-O-glucosyltransferase in rice. Plant Physiology, v.160, p.319-331, 2012. DOI: https://doi.org/10.1104/pp.112.196733
    » https://doi.org/10.1104/pp.112.196733
  • LANDER, E.S.; BOTSTEIN, D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, v.121, p.185-199, 1989. DOI: https://doi.org/10.1093/genetics/121.1.185
    » https://doi.org/10.1093/genetics/121.1.185
  • LEI, L.; ZHENG, H.L.; WANG, J.G.; LIU, H.L.; SUN, J.; ZHAO, H.W.; YANG, L.M.; ZOU, D.T. Genetic dissection of rice (Oryza sativa L.) tiller, plant height, and grain yield based on QTL mapping and metaanalysis. Euphytica, v.214, art.109, 2018. DOI: https://doi.org/10.1007/s10681-018-2187-2
    » https://doi.org/10.1007/s10681-018-2187-2
  • LIU, P.-L.; DU, L.; HUANG, Y.; GAO, S.-M.; YU, M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evolutionary Biology, v.17, art.47, 2017. DOI: https://doi.org/10.1186/s12862-017-0891-5
    » https://doi.org/10.1186/s12862-017-0891-5
  • MA, Z.; WU, T.; HUANG, K.; JIN, Y.-M.; LI, Z.; CHEN, M.; YUN, S.; ZHANG, H.; YANG, X.; CHEN, H.; BAI, H.; DU, L.; JU, S.; GUO, L.; BIAN, M.; HU, L.; DU, X.; JIANG, W. A novel AP2/ERF transcription factor, OsRPH1, negatively regulates plant height in rice. Frontiers in Plant Science, v.11, art.709, 2020. DOI: https://doi.org/10.3389/fpls.2020.00709
    » https://doi.org/10.3389/fpls.2020.00709
  • MCCOUCH, S.R.; CHEN, X.; PANAUD, O.; TEMNYKH, S.; XU, Y.; CHO, Y.G.; HUANG, N.; ISHII, T.; BLAIR, M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Molecular Biology, v.35, p.89-99, 1997. DOI: https://doi.org/10.1023/A:1005711431474
    » https://doi.org/10.1023/A:1005711431474
  • MORAIS JÚNIOR, O.P. de; MELO, P.G.S.; MORAIS, O.P. de; COLOMBARI FILHO, J.M. Genetic variability during four cycles of recurrent selection in rice. Pesquisa Agropecuária Brasileira, v.52, p.1033-1041, 2017. DOI: https://doi.org/10.1590/S0100-204X2017001100009
    » https://doi.org/10.1590/S0100-204X2017001100009
  • NAVEED, A.; LI, H.; LIU, X. Cytochrome P450s: blueprints for potential applications in plants. Journal of Plant Biochemistry & Physiology, v.6, art.100204, 2018. DOI: https://doi.org/10.4172/2329-9029.1000204
    » https://doi.org/10.4172/2329-9029.1000204
  • NI, D.-H.; LI, J.; DUAN, Y.-B.; YANG, Y.-C.; WEI, P.-C; XU, R.-F.; LI, C.-R.; LIANG, D.-D.; LI, H.; SONG, F.-S.; NI, J.-L.; LI, L.; YANG, J.-B. Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.). Journal of Experimental Botany, v.65, p.2107-2117, 2014. DOI: https://doi.org/10.1093/jxb/eru074
    » https://doi.org/10.1093/jxb/eru074
  • RICEVARMAP V2.0. Available at: <http://ricevarmap.ncpgr.cn/vars_in_region>. Accessed on: May 10 2022.
    » http://ricevarmap.ncpgr.cn/vars_in_region
  • SATO, Y.; TAKEDA, K.; NAGANO, A.J. Neighbor QTL: an interval mapping method for quantitative trait loci underlying plant neighborhood effects. G3, v.11, jkab017, 2021. DOI: https://doi.org/10.1093/g3journal/jkab017
    » https://doi.org/10.1093/g3journal/jkab017
  • SEN, Ś.; CHURCHILL, G.A. A statistical framework for quantitative trait mapping. Genetics, v.159, p.371-387, 2001. DOI: https://doi.org/10.1093/genetics/159.1.371
    » https://doi.org/10.1093/genetics/159.1.371
  • SINGH, R.K.; KOTA, S.; FLOWERS, T.J. Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. Theoretical and Applied Genetics, v.134, p.3495-3533, 2021. DOI: https://doi.org/10.1007/s00122-021-03890-3
    » https://doi.org/10.1007/s00122-021-03890-3
  • SOARES, A.A. Cultura do arroz Lavras: UFLA, 2012. 119p.
  • TANGER, P.; KLASSEN, S.; MOJICA, J.P.; LOVELL, J.T.; MOYERS, B.T.; BARAOIDAN, M.; NAREDO, M.E.B.; MCNALLY, K.L.; POLAND, J.; BUSH, D.R.; LEUNG, H.; LEACH, J.E.; MCKAY, J.K. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice. Scientific Reports, v.7, art.42839, 2017. DOI: https://doi.org/10.1038/srep42839
    » https://doi.org/10.1038/srep42839
  • UMEHARA, M.; HANADA, A.; YOSHIDA, S.; AKIYAMA, K.; ARITE, T.; TAKEDA-KAMIYA, N.; MAGOME, H.; KAMIYA, Y.; SHIRASU, K.; YONEYAMA, K.; KYOZUKA, J.; YAMAGUCHI, S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, v.455, p.195-200, 2008. DOI: https://doi.org/10.1038/nature07272
    » https://doi.org/10.1038/nature07272
  • VINAGRE, F.; VARGAS, C.; SCHWARCZ, K.; CAVALCANTE, J.; NOGUEIRA, E.M.; BALDANI, J.I.; FERREIRA, P.C.G.; HEMERLY, A.S. SHR5: a novel plant receptor kinase involved in plant-N2-fixing endophytic bacteria association. Journal of Experimental Botany, v.57, p.559-569, 2006. DOI: https://doi.org/10.1093/jxb/erj041
    » https://doi.org/10.1093/jxb/erj041
  • VOORRIPS, R.E. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, v.93, p.77-78, 2002. DOI: https://doi.org/10.1093/jhered/93.1.77
    » https://doi.org/10.1093/jhered/93.1.77
  • WANG, L.; WANG, A.; HUANG, X.; ZHAO, Q.; DONG, G.; QIAN, Q.; SANG, T.; HAN, B. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theoretical and Applied Genetics, v.122, p.327-340, 2011. DOI: https://doi.org/10.1007/s00122-010-1449-8
    » https://doi.org/10.1007/s00122-010-1449-8
  • WANG, Y.; WANG, J.; ZHAI, L.; LIANG, C.; CHEN, K.; XU, J. Identify QTLs and candidate genes underlying source-, sink, and grain yield-related traits in rice by integrated analysis of bi-parental and natural populations. PLoS ONE, v.15, e0237774, 2020. DOI: https://doi.org/10.1371/journal.pone.0237774
    » https://doi.org/10.1371/journal.pone.0237774
  • WEI, X.; XU, J.; GUO, H.; JIANG, L.; CHEN, S.; YU, C.; ZHOU, Z.; HU, P.; ZHAI, H.; WAN, J. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiology, v.153, p.1747-1758, 2010. DOI: https://doi.org/10.1104/pp.110.156943
    » https://doi.org/10.1104/pp.110.156943
  • WENG, X.; WANG, L.; WANG, J.; HU, Y.; DU, H.; XU, C.; XING, Y.; LI, X.; XIAO, J.; ZHANG, Q. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiology, v.164, p.735-747, 2014. DOI: https://doi.org/10.1104/pp.113.231308
    » https://doi.org/10.1104/pp.113.231308
  • WING, R.A.; PURUGGANAN, M.D.; ZHANG, Q. The rice genome revolution: from an ancient grain to Green Super Rice. Nature Reviews Genetics, v.19, p.505-517, 2018. DOI: https://doi.org/10.1038/s41576-018-0024-z
    » https://doi.org/10.1038/s41576-018-0024-z
  • XING, Y.; TAN, Y.; HUA, J.; SUN, X.; XU, C.; ZHANG, Q. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theoretical and Applied Genetics, v.105, p.248-257, 2002. DOI: https://doi.org/10.1007/s00122-002-0952-y
    » https://doi.org/10.1007/s00122-002-0952-y
  • XING, Y.; ZHANG, Q. Genetic and molecular bases of rice yield. Annual Review of Plant Biology, v.61, p.421-442, 2010. DOI: https://doi.org/10.1146/annurev-arplant-042809-112209
    » https://doi.org/10.1146/annurev-arplant-042809-112209
  • XU, Y.; LI, P.; ZOU, C.; LU, Y.; XIE, C.; ZHANG, X.; PRASANNA, B.M.; OLSEN, M.S. Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany, v.68, p.2641-2666, 2017. DOI: https://doi.org/10.1093/jxb/erx135
    » https://doi.org/10.1093/jxb/erx135
  • YADAV, S.; SANDHU, N.; SINGH, V.K.; CATOLOS, M.; KUMAR, A. Genotyping-by-sequencing based QTL mapping for rice grain yield under reproductive stage drought stress tolerance. Scientific Reports, v.9, art.14326, 2019. DOI: https://doi.org/10.1038/s41598-019-50880-z
    » https://doi.org/10.1038/s41598-019-50880-z
  • YAN, W.; LIU, H.; ZHOU, X.; LI, Q.; ZHANG, J.; LU, L.; LIU, T.; LIU, H.; ZHANG, C.; ZHANG, Z.; SHEN, G.; YAO, W.; CHEN, H.; YU, S.; XIE, W.; XING, Y. Natural variation in G h d7.1 plays an important role in grain yield and adaptation in rice. Cell Research, v.23, p.969-971, 2013. DOI: https://doi.org/10.1038/cr.2013.43
    » https://doi.org/10.1038/cr.2013.43
  • YAN, W.-H.; WANG, P.; CHEN, H.-X.; ZHOU, H.-J.; LI, Q.-P.; WANG, C.-R.; DING, Z.-H.; ZHANG, Y.-S.; YU, S.-B.; XING, Y.-Z.; ZHANG, Q.-F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Molecular Plant, v.4, p.319-330, 2011. DOI: https://doi.org/10.1093/mp/ssq070
    » https://doi.org/10.1093/mp/ssq070
  • YONEMARU, J.-I.; YAMAMOTO, T.; FUKUOKA, S.; UGA, Y.; HORI, K.; YANO, M. Q-TARO: QTL annotation rice online database. Rice, v.3, p.194-203, 2010. DOI: https://doi.org/10.1007/s12284-010-9041-z
    » https://doi.org/10.1007/s12284-010-9041-z
  • ZHANG, A.; GAO, Y.; LI, Y.; RUAN, B.; YANG, S.; LIU, C.; ZHANG, B.; JIANG, H.; FANG, G.; DING, S.; JAHAN, N.; XIE, L.; DONG, G.; XU, Z.; GAO, Z.; GUO, L.; QIAN, Q. Genetic analysis for cooking and eating quality of super rice and fine mapping of a novel locus qGC10 for gel consistency. Frontiers in Plant Science, v.11, art.342, 2020. DOI: https://doi.org/10.3389/fpls.2020.00342
    » https://doi.org/10.3389/fpls.2020.00342
  • ZHANG, Z.-H.; WANG, K.; GUO, L.; ZHU, Y.-J.; FAN, Y.-Y.; CHENG, S.-H.; ZHUANG, J.-Y. Pleiotropism of the photoperiod-insensitive allele of Hd1 on heading date, plant height and yield traits in rice. PLoS ONE, v.7, e52538, 2012. DOI: https://doi.org/10.1371/journal.pone.0052538
    » https://doi.org/10.1371/journal.pone.0052538

Publication Dates

  • Publication in this collection
    22 Aug 2022
  • Date of issue
    2022

History

  • Received
    21 Dec 2021
  • Accepted
    10 May 2022
Embrapa Secretaria de Pesquisa e Desenvolvimento; Pesquisa Agropecuária Brasileira Caixa Postal 040315, 70770-901 Brasília DF Brazil, Tel. +55 61 3448-1813, Fax +55 61 3340-5483 - Brasília - DF - Brazil
E-mail: pab@embrapa.br