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Polycyclic aromatic hydrocarbons (PAHs) 
are a group of hydrophobic organic compounds 

© 2023 The authors. This is an open access article distributed under 
the terms of the Creative Commons license.

This study evaluated the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in Santos Bay (SB) and the 
adjacent Santos Continental Shelf (SCS) in Brazil. Biliary metabolites were measured in several fish species to 
establish a baseline for future monitoring programs. Bile samples from different species of fish were collected monthly 
from July to December 2005 in SB, and in August 2005 and February 2006 on SCS. Metabolite concentrations 
were determined using high-performance liquid chromatography with fluorescence detectors. Naphthalene, 
phenanthrene, and benzo[a]pyrene metabolite concentrations ranged from 24 to 810 µg g-1 of bile, 1.8 to 68 µg g-1 
of bile, and below the limit of quantitation to 1.3 µg g-1 of bile, respectively. Despite its high concentrations, the levels 
of naphthalene metabolites were in regions of low-contamination, while benzo[a]pyrene metabolite were in the 
same range as those reported in moderately contaminated areas, which may indicate pyrolytic contamination 
by PAHs. No significant differences in the metabolite concentrations were found between the SB and the SCS 
samples or during the periods of collection. Future studies with a single biomonitoring species should be conducted, 
considering age, sex, and feeding condition of the individuals. The metabolite data presented in this study is an 
important baseline information for this urbanized region, which hosts several sources of contaminants.
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widespread in the marine environment mainly 
due to anthropogenic activities (Bouloubassi 
and Saliot, 1993; Beyer et  al., 2010). These 
compounds are particularly concerning for their 
mutagenic and carcinogenic effects (White, 
1986; Baumann and Harshbarger, 1998) and are 
frequently monitored in environmental studies 
(Yunker et al., 2002; Beyer et al., 2010; Martins 
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et al., 2011; Kammann et al., 2017; Barreto et al., 
2020; Snyder et al., 2020).

PAHs levels and sources of contamination in 
a region are often determined by analyzing abiotic 
matrices such as sediment (Yunker et  al., 2002; 
Medeiros and Bícego, 2004a, 2004b; Guimarães 
et al., 2020), and analyzing the bioavailability of these 
compounds in organisms residing in contaminated 
areas is also essential. On the other hand, quantifying 
PAHs in fish tissue may underestimate exposure levels 
(Black, 1983; Varanasi, 1989; Beyer et al., 2010) since 
aquatic vertebrates have a well-developed enzyme 
system that efficiently metabolizes PAHs into more 
hydrophilic metabolites (Varanasi, 1989). In  fish, 
PAHs are metabolized by cytochrome P4501A, 
by  oxidation, producing short-lived compounds 

such as epoxides. After further metabolization, 
glucoronides and sulfate conjugates are excreted in 
the urine or secreted in the bile and rapidly eliminated 
(Collier et al., 2013). Determining PAH metabolites in 
fish bile is a useful biomarker of contamination and 
studies have shown that its presence correlates with 
recent exposure to PAHs (Collier and Varanasi, 1991; 
Britvić et  al.,  1993; Upshall et  al., 1993; Anulación 
et  al., 2020). This  determination has been used 
in international monitoring programs (Fuchsman 
et al., 2001; HELCOM, 2013; Kammann et al., 2017) 
and environmental studies to evaluate the 
bioavailability of PAHs (Krahn et al., 1984, 1986, 1993;  
Escartín and Porte, 1999a, 1999b; da Silva 
et al., 2006; Pulster et al., 2020; Snyder et al., 2020; 
Silva et al., 2021).

Figure 1. Geographic location of the Santos Continental Shelf (A), Santos Bay (B), main sources of contamination in the 
region, and areas sampled

Santos Bay (SB) and the adjacent Santos 
Continental Shelf (SCS) (Figure 1) are located 
on the southeastern coast of Brazil, in one of the 
most economically important areas of the country. 
The increase in anthropogenic activity over the last 
100 years in this region contributed to the release 

of contaminants into the bay (Martins et al., 2011). 
A wide range of compounds and elements 
(e.g., petroleum hydrocarbons, benzothiazoles, 
polychlorinated biphenyls, polybrominated 
diphenyl ethers, cocaine, metals, etc.) have been 
detected in SB due to contamination sources 
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(Martins et al., 2007; Kim et al., 2016; Magalhães 
et  al.,  2017; Fontes et  al., 2019). Petroleum 
exploration also contribute to the release of PAHs 
in the region (Azevedo et al., 2012), especially in 
SCS. This activity has increased substantially in 
the last decade, making it necessary to establish 
a monitoring program in the area. Some studies 
conducted in SB and its estuary have evaluated the 
bioavailability of PAHs using fish biliary metabolites 
(de Albergaria-Barbosa et al., 2017, 2018), but no 
studies have been conducted in the adjacent SCS.

This study investigated the bioavailability 
of PAHs in fishes in Santos Bay and Santos 
Continental Shelf by measuring biliary PAH 
metabolites in several species to establish a 
baseline study for future monitoring programs.

Samples were collected in SB from July 
to December 2005 and in August 2005 and 
February 2006 on the SCS. A total of six areas of the 
bay (Figure 1) and eleven areas of the continental 
shelf (Figure 1) were sampled by trawling (towing 
speed: 3–4 knots; 10 minutes). The species 
were selected based on spatial and temporal 
occurrence, with an emphasis on demersal fishes. 
The  species sampled in SB were Stellifer 
brasiliensis, Cathorops  spixii, Larimus breviceps, 
Paralonchurus brasiliensis, and Orthopristis ruber. 
The species sampled on the SCS were 
Dactylopterus volitans, Paralonchurus brasiliensis, 
Paralichthys isosceles, Paralichthys patagonicus, 
Ctenosciaena gracilicirrhus, Lagocephalus 
laevigatus, and Menticirrhus martinicensis. Tables 1 
and 2 show further details on the species sampled 
and collection areas. After removing the gall bladder, 
bile was collected in a cryogenic vial until obtaining 

at least 20 µL of bile. Some bile samples were taken 
from a pool of two or more individuals of the same 
species collected in the same location and month 
(Tables 1 and 2). Samples were kept packed in dry 
ice until storage in an ultrafreezer at −80 °C.

PAH metabolites in the bile samples were 
analyzed in 2006 using high-performance liquid 
chromatography with fluorescence detectors 
(HPLC/F) (Agilent Technologies 1200 series), 
following the method described by Krahn 
et  al.  (1984). A more complete description of the 
HPLC/F conditions can be found in Albergaria-
Barbosa et  al. (2017). A standard solution 
containing naphthalene (NAP, 1.0 ng μL-1), 
phenanthrene (PHE, 0.5 ng μL-1), and benzo[a]
pyrene (BaP, 1.0 ng μL-1) was used as the external 
standard. Bile  (5  μL) was injected directly into 
the HPLC/F system, and  peaks were recorded 
in the chromatograms at excitation/emission 
wavelength pairs for each group of compounds, 
as follows: 290/335 nm for  NAP, 249/364 nm 
for  PHE, and 380/430 nm for BaP. Peak  areas 
that eluted after 2 minutes were integrated, 
summed, and quantified as NAP, PHE, or BaP 
metabolite equivalents. These peaks represented 
all compounds present in a bile sample that 
fluoresce at each wavelength pair. The NAP-type 
metabolite (metNAP), PHE-type metabolite 
(metPHE), and  BaP-type metabolite (metBaP) 
mainly comprise two-ring, three-ring, and  five-
ring structures, respectively. This study reports 
fluorescent PAHs in nonhydrolyzed bile samples 
at the given wavelengths, but notes the possible 
presence of interfering compounds (other than 
PAHs) that also fluoresce at these wavelengths.

Table 1. Average length (mm), weight (g) and concentrations of naphthalene (metNAP), phenanthrene (metPHE), 
benzo[a]pyrene (metBaP), and total biliary metabolites (TM) in µg g-1 of bile found in the species sampled in Santos Bay 
(n = number of fish used in each sample).

Sampled
Area Species n Length 

(mm)
Weight

(g) metNAP metPHE metBaP TM

July SB3 Cathorops spixii 3 201 ± 41 80.6 ± 34.2 750 8.7 0.87 760

SB5 Stellifer brasiliensis 1 174 71.6 78 68 0.88 150

August SB6 Larimus breviceps 1 217 121 200 15 0.83 220

October SB6 Larimus breviceps 1 255 237 180 15 0.45 200

November SB3 Paralonchurus brasiliensis 2 200 ± 44 74.7 ± 79.9 100 7.1 0.29 110
December SB2 Orthopristes ruber 1 271 226 130 12 0.77 140

SB3 Cathorops spixii 1 197 60.4 30 2.5 0.39 33
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Table 2. Average length (mm) and concentrations of naphthalene (metNAP), phenanthrene (metPHE), benzo[a]pyrene (metBaP), 
and total biliary metabolites (TM) in µg g-1 of bile found in the species sampled on the Santos Continental Shelf (n = number of 
fish used in each sample; <LOQ = concentration lower than the limit of quantitation). Individual weights not available.

Sampled 
area Species n Length 

(mm) metNAP metPHE metBaP TM

February SCS7 Paralonchurus brasiliensis 3 211 ± 5 45 2.0 <LOQ 47

SCS9 Dactylopterus volitans 2 189 ± 44 71 6.8 0.51 78

SCS10 Dactylopterus volitans 3 230 ± 6 49 4.6 0.49 54

SCS11 Dactylopterus volitans 3 206 ±28 52 3.7 0.35 56

SCS12 Paralichthys isosceles 4 306 ± 6 53 2.7 <LOQ 56

SCS16 Dactylopterus volitans 4 168 ± 13 99 8.8 0.60 110

SCS17 Menticirrhus martinicensis 2 393 ± 2 140 11 0.41 150

SCS17 Dactylopterus volitans 2 240 ± 28 59 6.0 0.53 66

SCS18 Lagocephalus laevigatus 1 600 110 12 0.80 120

SCS19 Dactylopterus volitans 3 196 ± 25 130 15 1.3 150

SCS19 Ctenosciaena gracilicirrhus 2 186 ± 5 130 1.8 1.1 130
SCS19 Paralichthys patagonicus 1 422 24 1.8 0.30 26

August SCS2 Dactylopterus volitans 2 254 ± 4 240 15 0.59 260

SCS5 Paralonchurus brasiliensis 3 198 ± 19 250 11 0.62 260

SCS9 Paralonchurus brasiliensis 5 194 ± 10 810 22 0.39 830

SCS11 Dactylopterus volitans 5 161 ± 9 93 9.1 0.44 100

SCS17 Dactylopterus volitans 3 237 ± 21 100 11 0.67 110

SCS20 Dactylopterus volitans 7 160 ± 9 120 8.1 0.67 130

stable when the standard deviations of the mean 
area of each analyte in the standard were less 
than 5% and the NAP, PHE, and BaP equivalent 
levels determined in the control material were 
within the range of control limits.

The control material, standard solution, and a 
methanol blank were injected before, during, 
and  after sample sequences. Concentrations in 
the control material and standard solution must 
be within the established upper and lower control 
limits and methanol blank levels should be less 
than 10% of the sample analytes. Replicate 
injections of selected samples were performed to 
ensure analytical precision and a relative standard 
deviation (RSD) lower than 10% was required for 
analyses to be considered valid. The results in all 
sample sets met these laboratory criteria.

The limit of quantitation (LOQ) values were 
determined as six times the standard deviations 
of six replicate injections of the standard solution, 
which were 0.99 µg g-1 for metNAP, 0.36 µg g-1 for 
metPHE, and 0.27 µg g-1 for metBaP.

Bile density was determined by weighing 
20  aliquots of 100 µL of bile on an analytical 
scale. The average was 1.024 ± 0.105 mg mL-1. 
This value was used to convert concentrations of 
metNAP, metPHE, and metBaP from µg mL-1 of bile 
to µg g-1 of bile, the most commonly used unit and 
the one adopted in this study.

The quality control assurance procedures 
of the analytical methods used in this study 
were adopted from Albergaria-Barbosa et  al. 
(2018). Briefly, Atlantic salmon (Salmo salar) 
exposed to crude oil (ASMBC) was used as 
the control material. ASMBC was donated 
by the Northwest Fisheries Science Center 
of the United States National Oceanic and 
Atmospheric Administration, Seattle, USA, and it 
has been used as a control material since 2001. 
Before injecting the samples, the stability of 
the HPLC system was verified by analyzing 
at least five replicate samples of the standard 
solution and one sample of the control material. 
The performance of the system was considered 
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Statistical analyses were performed using 
STATISTICA – version 7. The Mann–Whitney U 
test was used to compare spatial differences in 
metabolite concentrations. The level of significance 
for rejecting the null hypothesis (no difference 
between groups) was set to 0.05.

Total metabolite (TM) concentrations (sum  of 
all analyzed metabolites) ranged from 33 to 
760 µg g-1 of bile (230 ± 241 µg g-1 of bile) in 
SB (Table 1) and 26 to 830 µg g-1 of bile (152 ± 
181 µg g-1 of bile) on the SCS (Table 2). This wide 
concentration range has also been reported in 
other studies (Pulster et al., 2020) and may have 
occurred due to the use of individuals of different 
species, sexes, sizes, and weights (Tables 1 
and 2). Nevertheless, such levels agree with data 
described in previous studies in SB and its estuary 
(de Albergaria-Barbosa et  al., 2017, 2018) and 
can be compared with other urban coastal regions 
(McCain et al., 1990; Escartín and Porte, 1999b; 
da Silva et al., 2006; Silva et al., 2021).

MetNAP was the most abundant compound, 
contributing from 52 to 99% of the TM in all bile 
samples; its concentrations ranged from 30  to 
750 µg g-1 of bile (209 ± 245 µg g-1 of bile) in SB and 
from 24 to 810 µg g-1 of bile (143 ± 177 µg g-1 of bile) 
in SCS (Tables 1 and 2). MetPHE concentrations, 
which corresponded to 1.1 to 45% of TM levels, 
ranged from 2.5 to 68 µg g-1 of bile (18 ± 22 µg 
g-1 of bile) and from 1.8 to 22 µg g-1 of bile (8.5 ± 
5.5  µg g-1 of bile) in SB and SCS, respectively. 
Levels of metBaP in SB and SCS ranged from 0.29 
to 0.88 µg g-1 of bile (0.64 ± 0.25 µg g-1 of bile) and 
<LOQ to 1.3 µg g-1 of bile (0.57 ± 0.30 µg g-1 of bile), 
respectively, corresponding to less than 1.5% of 
TM in all samples. The  dominance of metNAP 
and lower concentration of metBaP are commonly 
found in studies with fish bile metabolites (Krahn 
et  al.,  1986; Escartín and Porte, 1999a, 1999b; 
da Silva et al., 2006; de Albergaria-Barbosa et al., 
2017, 2018; Pulster et al., 2020). 

According to Fuchsman et al. (2001), metNAP 
levels above 500 µg g-1, metPHE levels above 
50 µg g-1, and metBaP levels above 1 µg g-1 are 
indicative of bile sampled in highly contaminated 
environments. MetNAP levels between 300 
and 500 ng g-1, metPHE levels between 10 and 
50  ng  g-1, and metBaP levels between 0.2 and 

1 ng g-1 are indicative of bile sampled in moderately 
contaminated environments. Levels below the 
values presented above suggest areas minimally 
contaminated by PAHs. Only one sample in 
SB and one sample in SCS presented levels of 
metNAP in the moderated contamination range. 
All other samples presented low contamination 
by NAP. For  metPHE, 43% of samples in SB 
and 39% in SCS were comparable to moderately 
contaminated areas, while 43% in SB and 61% in 
SCS were in the range of low-contaminated areas. 
For metBaP, all samples from SB and 78% of the 
samples from SCS presented levels in the range 
of moderate contamination. This indicates that 
the studied areas are moderately contaminated 
mainly by high molecular weight compounds 
(HMW) and slightly contaminated by low molecular 
weight (LMW) compounds.

The presence of LMW PAHs, such as NAP, 
is usually linked to petrogenic sources (Soclo 
et al., 2000; Colombo et al., 2006), whereas the 
presence of HMW compounds, such as BaP, 
is mainly linked to pyrolytic sources (Fernández-
Tajes et  al.,  2011). The Santos region has 
historically several types of contamination. 
The  sediment of the area is moderately 
contaminated by PAHs (Martins et  al.,  2011), 
especially those derived from the burning of 
organic matter (Medeiros and Bícego,  2004a; 
Martins et al., 2011). This is an important source 
of PAHs in the studied areas (Martins et al., 2011), 
mainly due to the Industrial Pole of Cubatão (IPC) 
activities that occur in SB (Figure  1) (Medeiros 
and Bícego, 2004a; de  Albergaria-Barbosa 
et  al., 2017, 2018). IPC is one of the most 
important metallurgical/petrochemical industrial 
centers in Brazil, with the presence of steel mills, 
oil  refineries, fertilizer, cement, and chemical/
petrochemical plants that sum up to 260 pollutant 
emission sources (Cetesb, 1999).

No significant differences in TM, metNAP, 
metPHE, or metBaP levels were found 
between the two areas (Mann–Whitney U  test, 
p > 0.05). This  means that, according to 
our  data, the  bioavailability characteristics of 
PAHs in the sampled species in SB and SCS 
were similar. As SB is closer to the sources of 
PAHs, the  bioavailability of these compounds 
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in this area was expected to be greater than 
that of the SCS. This suggests that onshore 
anthropogenic activities in the SCS also serve 
as an important source of PAHs to  fishes. 
However, as distinct species were found in the 
studied  areas, it is difficult to determine the 
differences in contamination levels between SB 
and SCS. Factors such as feeding strategy, age, 
sex, dietary preference, habitat, and metabolic 
rate of each species can influence the uptake and 
metabolism of PAHs (Varanasi, 1989), masking 
the differences between the regions.

To allow for statistical analyses of metabolite 
concentrations during collection periods, 
SCS  assessments were made using only the 
results obtained from D. volitans. This test was not 
performed when the number of species sampled 
in each month in SB was low. No  significant 
differences in the levels of TM, metNAP, 
metPHE, or metBaP were found between the 
two sampling periods in the SCS (Mann–Whitney 
U test, p > 0.05). PAH metabolite levels may be 
associated with the season, as metabolism tends 
to decrease in colder months and increase in 
warmer months (Eggensl et  al., 1996; Hylland 
et  al., 1996; Rotchell et  al.,  1999). However, 
previous studies conducted in the Santos 
region found no differences in PAH metabolite 
concentrations in fishes collected during different 
periods (de  Albergaria-Barbosa et  al.,  2018). 
As observed by Albergaria-Barbosa et al. (2018), 
studies in which such differences were found were 
conducted in temperate regions, where seasonal 
temperature variations are considerable. 
SCS  does not have a marked temperature 
variation throughout the year. However, grouping 
organisms with different characteristics (e.g., 
sexes, ages, size, and maturity stages) or feeding 
status may mask the effects of climate and 
oceanographic conditions. Metabolism can also 
be affected by the biological characteristics of 
the sampled fish (Varanasi, 1989), and variations 
in the dataset increase by combining different 
organisms (Kammann,  2007). Due to the 
carcinogenicity of PAHs and their impacts on 
metabolism in the immune and reproductive 
systems and on ichthyoplankton (Collier 
et al., 2013), further studies are needed.

The levels of metabolites in the bile 
of demersal fishes indicated moderate 
contamination in SB and  SCS, especially by 
high molecular weight  PAHs. No differences in 
metabolite concentrations were found between 
the studied areas. Future studies with a single 
biomonitoring species should be conducted to 
establish differences in bioavailability between 
Santos Bay and Santos Continental Shelf, 
considering the age, sex, and feeding condition 
of the samples. Nonetheless, the PAH metabolite 
data presented in this study using multiple 
species are important as baseline information 
for this urbanized region, which harbors 
several sources of PAHs and other chemicals. 
Such data are still lacking in the literature for 
this area, as  well as other heavily urbanized 
coastal areas of South America. This study can 
potentially support long-term monitoring studies 
around Santos Bay using any of the species 
presented here and help initiate discussions 
leading to regulatory decisions. Analysis of bile 
metabolites in fishes using high-performance 
liquid chromatography with fluorescence 
detectors may be important in present and future  
environmental monitoring programs.
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