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The fishes of the Haemulidae family are currently allocated to 19 genera with 
a worldwide distribution in the tropical and subtropical waters of the world’s 
oceans. Brachygenys and Haemulon are important genera of reef fish in Brazil, 
as they occur in large shoals, which are both ecologically and commercially 
valuable. This study identified the Brazilian species of the genera Brachygenys 
and Haemulon using DNA barcodes. While we found only a single lineage in 
Brachygenys chrysargyrea, Haemulon melanurum, H. parra, and H. squamipinna, 
more than one molecular operational taxonomic unit (MOTU) was identified in 
H. atlanticus, H. aurolineatum, and H. plumieri, indicating the possible existence of 
discrete populations or cryptic species. 
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Os peixes da família Haemulidae estão atualmente distribuídos em 19 gêneros, 
com distribuição mundial em águas oceânicas tropicais e subtropicais. Brachygenys 
e Haemulon são importantes gêneros de peixes recifais do Brasil, visto que ocorrem 
em grandes cardumes, de valores ecológicos e comerciais. Este estudo identificou 
as espécies brasileiras dos gêneros Brachygenys e Haemulon usando o código de 
barras de DNA. Embora apenas uma única linhagem de Brachygenys chrysargyrea, 
Haemulon melanurum, H. parra e H. squamipinna tenha sido encontrada em nosso 
conjunto de dados, mais de uma unidade taxonômica operacional molecular 
(MOTU) foi identificada em H. atlanticus, H. aurolineatum e H. plumieri, indicando 
a possível existência de populações discretas ou espécies crípticas.

Palavras-chave: Barreiras, DNA barcoding, Peixes marinhos, Delimitação de 
espécies, Atlântico Ocidental.

INTRODUCTION

Haemulidae is composed of 136 fish species in 19 genera (Fricke et al., 2021). Two 
of these genera, Brachygenys Poey, 1868 and Haemulon Cuvier, 1829, are considered 
important groups of reef fish found in Brazil, given that they occur in large shoals, 
which are ecologically and commercially valuable (Rocha et al., 2008). The most recent 
review of the Haemulidae identified 21 species in the genus Haemulon (scaled-fin 
grunts), of which, 16 occur in the western Atlantic, while five species are found in the 
eastern Pacific (Tavera, Wainwright, 2019; Fricke et al., 2021). Menezes et al. (2003) 
recorded the occurrence of nine Haemulon species on the Brazilian coast: Haemulon 
aurolineatum Cuvier, 1830, H. chrysargyreum (Günther, 1859), H. melanurum (Linnaeus, 
1758), H. parra (Demarest, 1823), H. plumieri (Lacepède, 1801), H. sciurus (Shaw, 1803), 
H. squamipinna Rocha & Rosa, 1999, H. steindachneri (Jordan & Gilbert, 1882) (currently 
identified as Haemulon atlanticus Carvalho, Marceniuk, Oliveira & Wosiacki, 2021 by 
Carvalho et al., 2020), and H. striatum (Linnaeus, 1758).

 Tavera, Wainwright (2019) reassigned Haemulon chrysargyreum to the genus 
Brachygenys, based on morphological and molecular evidence, with the current 
valid name Brachygenys chrysargyrea (Günther, 1859) (Fricke et al., 2021). The genus 
Brachygenys (smallmouth grunts) includes only three species, Brachygenys californiensis 
(Steindachner, 1875) and B. jessiae (Jordan & Bollman, 1890), which are found in the 
eastern Pacific (Tavera, Wainwright, 2019), and B. chrysargyrea which occurs in the 
Western Atlantic, where it is restricted to the oceanic islands of Brazil, the Fernando 
de Noronha and Atol das Rocas archipelagos (Rocha, Rosa, 1999; Fricke et al., 2021).

The biological characteristics of the Brachygenys and Haemulon species, including 
their ample geographic ranges, ecological features, genetic patterns, and speciation 
mechanisms, has been the subject of many taxonomic, evolutionary, and phylogenetic 
studies (e.g., Rocha et al., 2008; Motta-Neto et al., 2011a,b; Sanciangco et al., 2011; Liang 
et al., 2012; Tavera et al., 2012, 2018; Bernal et al., 2017; Tavera, Wainwright, 2019). 
The formation of marine biogeographic barriers, in particular, the Isthmus of Panama, 
resulted in the establishment of geminal species (Jordan, 1908), that is, allopatric twin 
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species in the eastern Pacific and western Atlantic oceans, as in the case of H. steindachneri 
from the eastern Pacific and H. atlanticus from the western Atlantic (Carvalho et al., 
2020). 

The principal objective of this study was to identify the Brachygenys and Haemulon 
species from Brazil based on the DNA barcode method. We also evaluated the influence 
of oceanic barriers on the dispersal of the study species. 

MATERIAL AND METHODS

Sample collection. Three specimens of Brachygenys chrysargyrea and 47 specimens of 
Haemulon (H. atlanticus = 15 specimens; H. aurolineatum = 17 specimens; H. melanurum = 
4 specimens; H. parra = 5 specimens; H. plumieri = 5 specimens; and H. squamipinna = 1 
specimen) were collected between 2006 and 2019 off the coasts of Brazil, between the 
northern extreme of the country and the southeastern state of São Paulo (Fig. 1; S1). 

The species collected were identified based on their morphological characteristics 
(Lindeman, Toxey, 2002; Marceniuk et al., 2017). Barcode sequences of 149 specimens 
were obtained from the GenBank and BOLD databases (S1), and were inserted in the 
distribution map of the study species, in order to obtain a more ample sample of the 
different coastal regions of the Atlantic.

A small fragment of muscle tissue was removed from each specimen collected 
during this study and preserved in 95% ethanol at -20°C, before being deposited in 

FIGURE 1 | Species of the genera Haemulon and Brachygenys collected off the coast of Brazil during this study. A. Haemulon aurolineatum (16.2 

cm of Total Length, TL); B. H. melanurum (18.3 cm of TL); C. H. parra (21.7 cm of TL); D. H. squamipinna (15.9 cm of TL); E. H. plumieri (23.5 cm 

of TL); F. H. atlanticus (16.1 cm of TL); G. Brachygenys chrysargyrea (16.0 cm of TL).
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the collection of the Fish Genetics and Biology Laboratory (Laboratório de Biologia 
e Genética de Peixes, LBP) at UNESP, in Botucatu, São Paulo, and the zoological 
collection of the Universidade Santa Cecília (AZUSC), in Santos, São Paulo (S2). 

The species were sampled in accordance with Brazilian legislation, as regulated by 
the National Council for the Control of Animal Experimentation (CONCEA) and 
authorized by the Ethics Committee on the Use of Animals (CEUA) of the Biosciences 
Institute at UNESP through its (protocol 1057/2017).

Extraction of DNA, PCR amplification, and sequencing. The total DNA was 
extracted from the muscle tissue samples following the protocol proposed by Ivanova 
et al. (2006). Partial sequences of approximately 650 base pairs (bps) of the COI gene 
were obtained by PCR amplification using the FishF2 and FishR2 primers (Ward et 
al., 2005). The PCR reactions were run in a Veriti® 96-well Thermal Cycler (Applied 
BiosystemsTM or Mastercycler® EPGradient, Eppendorf) using the following 
temperature cycle: initial denaturation at 94°C for 4 min, followed by 30 cycles of 
denaturation at 94°C for 30 sec, annealing at 52°C for 30 sec, and extension at 68°C 
for 1 min, with a final extension at 68°C for 10 min. Each PCR solution comprised of: 
7.55 μl of ultrapure water (milli-Q); 1.15 μl of (10X) buffer; 0.5 μl of MgCl2 (50 mM), 
0.5 μl of dNTPs (2 mM); 0.25 μl of each primer (5 mM); 0.2 μl of (5 U/μl) Taq DNA 
polymerase PHT (Phoneutria Biotechnologies and Services Ltda., Brazil), and 2 μl of 
the DNA template (50 – 100 ng/ul), for a final volume of 12.5 μl. 

The amplification of the target sequence was confirmed by electrophoresis in 1% 
agarose gel using Blue Green Loading dye I (LGC Biotecnologia). The amplified PCR 
products were purified with an ExoSap-IT® (USB Corporation) solution, and the 
purified products were sequenced using the BigDye Terminator v3.1 Cycle Sequencing 
Ready Reaction kit (Applied Biosystems). This reaction solution consisted of: 3.9 μl of 
ultrapure water; 1.05 μl of 5X buffer; 0.7 μl of BigDye Terminator mix; 0.35 μl of the 
FishF2 or FishR2 primers (10 mM), and 1.0 μl of the purified PCR product (50 ng/μl). 
The amplification cycle was: 2 min at 96°C, and 35 cycles of 30 sec at 96°C, 15 sec at 
54°C, and 4 min at 60°C. The purified PCR products were then precipitated in EDTA 
125 nM/sodium acetate/alcohol, and the samples were sequenced automatically using 
an ABI 3130X1 Genetic Analyzer sequencer (Applied BiosystemsTM).

Data analysis. The sequences were edited and aligned using the Geneious Pro 
4.8.5 software (Kearse et al., 2012). The edited sequences were compared with those 
deposited in the National Center for Biotechnology Information (NCBI) GenBank 
using the BLASTn tool (Johnson et al., 2008). The final matrix had 199 sequences, 
including 50 obtained in the present study and 149 extracted from GenBank (ncbi.nlm.
nih.gov/genbank) or BOLD (boldsystems.org) (S1). The end alignment was exported 
and analyzed to generate trees in the MEGA v 7.0 software (Kumar et al., 2018), based 
on the neighbor-joining (NJ) method using the Kimura -2- Parameter model (K2P) 
(Kimura, 1980) and the maximum likelihood (ML) method with the best Tamura-
Nei model (Kumar et al., 2018) and gamma distribution (TRN+G) identified by the 
PartitionFinder software (Lanfear et al., 2012). All trees were tested by bootstrap, with 
1000 pseudoreplicates (Felsenstein, 1985).
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Species delimitation analyses. Three methods of species delimitation were used: (1) 
The Automatic Barcode Gap Discovery, ABGD (Puillandre et al., 2012) which is based 
on a pairwise genetic distance matrix (generated in MEGA V7.0) run on the ABGD 
web server (https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html) with the Kimura 
distance model (K2P) and other parameters at default (Pmin = 0.001; Pmax = 0.1); (2) 
the Bayesian Poisson Tree Process PTP (Zhang et al., 2013) run on the PTP web server 
(species.h-its.org/ptp), using the best Maximum Likelihood (ML) tree, 10,000 MCMC 
generations, and a 0.1 burn-in rate as the default settings, and (3) the general mixed 
Yule-coalescent GMYC (Pons et al., 2006; Fujisawa, Barraclough, 2013), run on the 
GMYC web server (https://species.h-its.org/gmyc/).

This analysis was conducted using the ultrametric gene tree estimated from the birth-
death prior and the relaxed lognormal parameters. The number of polymorphic sites, 
the number of haplotypes, and the haplotype (HD) and nucleotide diversity (Pi) were 
estimated using DnaSP v5 (Librado, Rozas, 2009), with the median-joining network 
being produced using the PopArt program (Leigh, Bryant, 2015), for mutational 
analyses.

RESULTS

Barcode sequences were obtained from 50 specimens, which were complemented with 
149 sequences obtained from GenBank and BOLD (S1), totaling 199 sequences in 
the final matrix (184 for Haemulon and 15 for Brachygenys) representing the different 
regions of the western Atlantic and eastern Pacific. The barcode sequences obtained 
here ranged in length from 440 to 558 bps. The overall mean nucleotide frequencies 
were 23.1% adenine, 26.6% cytosine, 19.6% guanine, and 30.6% thymine. No stop 
codons, deletions or insertions were found in any of the sequences. 

The intraspecific genetic distances (based on the K2P model) ranged from 
0.001±0.001, in both H. melanurum and H. parra, to 0.027±0.005 in H. plumieri (Tab. 
1). The interspecific values ranged from 0.0746±0.0121 between H. steindachneri and H. 
atlanticus to 0.1645±0.0212 between B. jessiae and H. atlanticus (Tab. 1).

The results of the Maximum Likelihood (ML) analyses and the GMYC species 
delimitation method indicated the presence of 15 MOTUs in the database, while the 
ABGD and PTP species delimitation methods identified 13 MOTUs (Fig. 2; S3). 

A single MOTU was found in B. californiensis, B. chrysargyrea, B. jessiae, H. atlanticus, 
H. melanurum, H. parra, H. squamipinna, and H. steindachneri in all analyses. Three 
MOTUs were identified in H. aurolineatum based on to the PTP and ABGD approaches, 
while the ML and GMYC methods identified four units in the samples of this species. 
In H. plumieri, the PTP and ABGD approaches identified two MOTUs, while the ML 
and GMYC methods identified three (Fig. 2; S3). Given these results, we decided to 
calculate the genetic distances between these MOTUs using the K2P model (Tab. 2), 
as described below.
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TABLE 1 | Pairwise K2P genetic distances between the Brachygenys and Haemulon species (below the diagonal) and standard errors (above 

the diagonal). The numbers in bold type represent the intraspecific K2P genetic distances and their standard errors. 

Species 1 2 3 4 5 6 7 8 9 10

1. Brachygenys jessiae - 0.0188 0.0182 0.0178 0.0185 0.0207 0.0177 0.0206 0.0202 0.0212

2. B. chrysargyrea 0.1376 0.004±0.001 0.0169 0.0201 0.0168 0.0199 0.0179 0.0186 0.0186 0.0178

3. B. californiensis 0.1398 0.1269 0.002±0.001 0.0156 0.0157 0.0176 0.0176 0.0169 0.0173 0.0164

4. Haemulon aurolineatum 0.1502 0.1643 0.1185 0.022±0.003 0.0146 0.0156 0.0157 0.0157 0.0145 0.0155

5. H. plumieri 0.1553 0.1365 0.1258 0.1192 0.027±0.005 0.0156 0.0169 0.0161 0.0149 0.0167

6. H. melanurum 0.1608 0.1604 0.1332 0.1128 0.1223 0.001±0.001 0.0175 0.0163 0.0180 0.0190

7. H. squamipinna 0.1314 0.1516 0.1394 0.1288 0.1482 0.1374 0.004±0.002 0.0124 0.0168 0.0158

8. H. parra 0.1565 0.1425 0.1253 0.1178 0.1342 0.1221 0.0846 0.001±0.001 0.0169 0.0145

9. H. steindachneri 0.1554 0.1483 0.1259 0.1041 0.1157 0.1381 0.1306 0.1277 0.003±0.001 0.0121

10. H. atlanticus 0.1645 0.1396 0.1150 0.1143 0.1372 0.1498 0.1287 0.1018 0.0746 0.005±0.002

FIGURE 2 | The Maximum Likelihood tree of the 

Haemulon and Brachygenys specimens, based on 

the sequences of the mitochondrial cytochrome c 

oxidase subunit I gene under the TRN+G model. 

The numbers at each branch indicate the bootstrap 

values (1000 pseudoreplicates) and those between 

parentheses are the number of specimens analyzed. 

The species delimitation methods were ABGD, PTP, 

and GMYC (see Material and Methods section).
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TABLE 2 | Pairwise K2P distances between Brachygenys and Haemulon genetic lineages (below the diagonal) and standard errors (above the 

diagonal). The numbers in bold type represent the intraspecific K2P genetic distances. + Only one sample available. The species identified by 

letters correspond to the distribution of the specimens as described in the article.

Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1. Brachygenys jessiae - 0.018 0.017 0.019 0.020 0.017 0.019 0.020 0.017 0.020 0.020 0.021 0.021 0.021 0.018 0.018

2. B. chrysargyrea 0.137 0.003 0.016 0.019 0.018 0.017 0.017 0.019 0.017 0.018 0.018 0.017 0.017 0.017 0.020 0.020

3. B. californiensis 0.139 0.126 0.001 0.016 0.018 0.015 0.016 0.017 0.017 0.017 0.017 0.016 0.016 0.015 0.016 0.016

4. Haemulon aurolineatum A 0.154 0.157 0.127 0.000 0.012 0.012 0.012 0.017 0.016 0.016 0.015 0.016 0.017 0.017 0.015 0.014

5. H. plumieri C 0.170 0.139 0.139 0.083 0.001 0.011 0.010 0.016 0.018 0.017 0.016 0.017 0.017 0.017 0.016 0.017

6. H. plumieri B 0.139 0.139 0.121 0.079 0.064+ 0.000 0.006 0.015 0.017 0.017 0.016 0.019 0.019 0.015 0.015 0.015

7. H. plumieri A 0.152 0.134 0.120 0.080 0.048+ 0.024+ 0.004 0.016 0.017 0.017 0.015 0.018 0.018 0.015 0.016 0.016

8. H. melanurum 0.160 0.160 0.133 0.133 0.127 0.119 0.120 0.001 0.017 0.016 0.018 0.019 0.019 0.015 0.015 0.016

9. H. squamipinna 0.131 0.151 0.139 0.138 0.159 0.143 0.143 0.137 0.003 0.012 0.017 0.016 0.016 0.016 0.016 0.016

10. H. parra 0.156 0.142 0.125 0.129 0.138 0.133 0.132 0.122 0.084 0.001 0.017 0.015 0.015 0.016 0.016 0.016

11. H. steindachneri 0.155 0.148 0.125 0.120 0.124 0.120 0.110 0.138 0.130 0.127 0.002 0.012 0.012 0.015 0.015 0.014

12. H. atlanticus B 0.171 0.139 0.121 0.123 0.127 0.154 0.138 0.151 0.128 0.104 0.073+ 0.001 0.004 0.016 0.015 0.015

13. H. atlanticus A 0.162 0.139 0.113 0.131 0.129 0.153 0.136 0.149 0.128 0.101 0.074+ 0.012+ 0.001 0.016 0.016 0.016

14. H. aurolineatum B 0.185 0.143 0.120 0.138+ 0.135 0.116 0.122 0.110 0.133 0.118 0.114 0.127 0.129 - 0.014 0.014

15. H. aurolineatum C 0.151 0.158 0.119 0.116+ 0.120 0.109 0.119 0.105 0.131 0.122 0.107 0.118 0.122 0.098+ 0.002 0.005

16. H. aurolineatum D 0.149 0.165 0.117 0.108+ 0.125 0.112 0.122 0.111 0.127 0.116 0.102 0.112 0.112 0.106+ 0.018+ 0.003

The three species delimitation methods used in the present study (PTP, ABGD, and 
GMYC) identified only one H. atlanticus MOTU in all the samples analyzed (Fig. 2). 
However, the ML tree included two lineages, H. atlanticus A, with 19 specimens from 
the Brazilian states of Pará, Ceará, Alagoas, and São Paulo, as well as Colombia, and 
H. atlanticus B (5 specimens from Colombia, Guatemala, and Venezuela). The genetic 
distance between the H. atlanticus A and B lineages was 0.012±0.004. The comparative 
network analysis of H. steindachneri, H. atlanticus A, and H. atlanticus B further reinforced 
the presence of three groups (Fig. 3), with 30 mutations separating H. steindachneri (Pi 
= 0.00271; HD = 0.81667) from H. atlanticus (Pi = 0.00567; HD = 0.65217), and nine 
mutations between H. atlanticus A Pi = 0.00177; HD = 0.45614) and H. atlanticus B (Pi 
= 0.00155; HD = 0.70000).

In the case of H. aurolineatum, the ML and GMYC identified four MOTUs, 
denominated here as H. aurolineatum A (four specimens from Bermuda), H. aurolineatum 
B (one specimen from Bermuda), H. aurolineatum C (four specimens from the Gulf of 
Mexico), and H. aurolineatum D, with 49 specimens from Belize, Brazil, Colombia, 
Jamaica, Venezuela, and the Gulf of Mexico (Fig. 2; S3). 

The genetic distances between the pairs of these MOTUs ranged from 0.0183±0.049 
between H. aurolineatum lineages C and D to 0.1382±0.0172 between H. aurolineatum 
lineages A and B (Tab. 2). When the PTP and ABGD methods were applied, 
however, only three MOTUs were observed - H. aurolineatum A, H. aurolineatum B, 
and H. aurolineatum C+D (Fig. 2; S3). The genetic distances between these MOTUs 
were 0.1382±0.0173 between H. aurolineatum A and B, 0.1089±0.0147 between H. 
aurolineatum A and C+D, and 0.1059±0.0150 between H. aurolineatum B and C+D. 

There were 37 mutations between H. aurolineatum A (Pi = 0.00000; HD = 0.00000) 
and H. aurolineatum D (Pi = 0.00389; HD = 0.72364), five between H. aurolineatum C 
and H. aurolineatum D (Pi = 0.00281; HD = 0.83333), and 34 mutations between H. 
aurolineatum B and H. aurolineatum C (Pi = 0.00000; HD = 0.00000) (Fig. 3).
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The ML and GMYC analyses identified three MOTUs in H. plumieri, identified here 
as H. plumieri A (20 specimens from the Caribbean and Gulf of Mexico), H. plumieri B 
(five specimens from the Gulf of Mexico), and H. plumieri C, with 10 specimens from 
Brazil and the Caribbean (Fig 2; S3). The genetic distances between these MOTUs were 
0.064±0.011 between H. plumieri lineages A and B, 0.048±0.010 between H. plumieri 
A and C, and 0.024±0.006 between H. plumieri B and C (Tab. 2). When the PTP 
and ABGD methods were considered, however, only two MOTUs were observed, 
one containing H. plumieri A+B and the other, H. plumieri C (Fig. 2; S3). The genetic 
distance between H. plumieri A+B and H. plumieri C was 0.052±0.009. There were 11 
mutations between H. plumieri C (Pi = 0.00194; HD = 0.20000) and H. plumieri B (Pi = 
0.00097; HD = 0.40000) and 19 mutations between H. plumieri C and H. plumieri A (Pi 
= 0.00394; HD = 0.87368) (Fig. 3).

DISCUSSION

Four of the species analyzed, B. chrysargyrea, H. melanurum, H. parra, and H. squamipinna, 
presented extremely low intraspecific distances, and all the different analytical approaches 
indicated that they represented a single MOTU. In the specific case of H. squamipinna, 
the evidence that the samples represented a single species was expected, given the very 
restricted distribution of the species off the northeastern coast of Brazil (Rocha, Rosa, 
1999). In the other cases, however, the species are much more amply distributed, with 
H. melanurum being found from southeastern Florida to northern Brazil, including the 
whole of the Caribbean (Menezes et al., 2003), while H. parra and B. chrysargyrea are 

FIGURE 3 | Haplotype networks of the three Haemulon species in which multiple MOTUs were identified. The dashes represent mutational 

steps. The size of the circle representing each haplotype is proportional to the number of individuals with that haplotype. The black dots 

represent missing haplotypes. A. H. steindachneri = Haemulon steindachneri (eastern Pacific); H. atlanticus B = specimens from Colombia, 

Guatemala, and Venezuela; H. atlanticus A = specimens from Brazil and Colombia; B. H. aurolineatum A = specimens from Bermuda; H. 

aurolineatum B = specimens from Bermuda; H. aurolineatum C = specimens from the United States; H. aurolineatum D = specimens from Belize, 

Brazil, Colombia, Jamaica, Venezuela, and the United States; and C. H. plumieri C = specimens from Brazil and Puerto Rico; H. plumieri B = 

specimens from the United States; H. plumieri A = specimens from the Bahamas, Belize, Haiti, Mexico, Puerto Rico, and the United States.
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distributed from southeastern Florida to southeastern Brazil (Menezes et al., 2003).
In all three cases, the distribution of the species straddles the potential barrier formed 

by the Amazon-Orinoco Plume. In addition, the southern limit of the distribution of 
H. parra in Brazil was originally described as being São Paulo (Menezes et al., 2003), and 
we collected samples in São Paulo during the present study, which indicates that this 
species also traverses the Vitória Trindade seamount chain, off the eastern coast of Brazil, 
which was a potential biogeographic barrier during periods of marine regression, in the 
Quaternary and Tertiary, as observed in other genera and species, such as Orthopristis 
ruber (Cuvier, 1830) (Marceniuk et al., 2019), Macrodon ancylodon (Bloch & Schneider, 
1801) (Santos et al., 2006), and Chaetodipterus faber (Broussonet, 1782) (Machado et al., 
2017).

Some of the haemulids from the western Atlantic have ample geographic distributions 
and have larvae that are able to disperse rapidly on oceanic currents, as well as the ability 
to migrate vertically in the water column (Majoris et al., 2019). These characteristics 
would maximize the potential for gene flow between the northern and southern 
populations of these species in the Western Atlantic, which would minimizing the 
chances of forming isolated groups (Rocha, 2003; Rocha et al., 2002, 2005, 2007, 2008). 
The ample geographic ranges and genetic homogeneity detected here in H. melanurum, 
H. parra, and B. chrysargyrea may thus also be at least partially due to the swimming 
capabilities of these fishes. 

Some Haemulon species have dispersed from the Pacific Ocean to the western Atlantic 
(Tavera et al., 2012), followed by reverse invasions during the occurrence of vicarious 
events and the formation of the Isthmus of Panama (Stange et al., 2018). These historical 
processes resulted in allopatric speciation, which has given rise to twin species (Jordan, 
1908), and both sister and novel lineages (Rocha et al., 2007; Luiz et al., 2012; Tavera 
et al., 2018; Tavera, Wainwright, 2019). In contrast with the species represented by 
a single lineage in the western Atlantic, as discussed above, the presence of multiple 
MOTUs in H. atlanticus, H. aurolineatum, and H. plumieri is an intriguing phenomenon, 
which cannot be accounted for by either the current barriers to gene flow (such as the 
Amazon-Orinoco Plume) or ancient processes, such as the isolation of the fauna of the 
Gulf of Mexico and the southern coast of Brazil (Victoria Trindade seamount chain) 
during the Quaternary and Tertiary glacial cycles.

Until recently, H. steindachneri was believed to occur in both the Pacific and Atlantic 
oceans, but an ample taxonomic review, supported by cytogenetic and molecular data 
(Rocha et al., 2008; Tavera et al., 2012, 2018; Bernal et al., 2017, 2019; Motta-Neto et al., 
2012, 2019; Tavera, Wainwright, 2019), confirmed that H. steindachneri is restricted to 
the Pacific, while a new species, H. atlanticus, was described for the Atlantic (Carvalho et 
al., 2020). Ours results also support the separation of the eastern Pacific H. steindachneri 
from H. atlanticus, which is found in the western Atlantic (Carvalho et al., 2020), with a 
genetic distance of 0.0746±0.0121 (Tab. 1), and the two species were separated clearly 
in all analyses.

However, while all three species delimitation methods used here (PTP, ABGD, and 
GMYC) indicated that only one MOTU was present in the H. atlanticus samples, the 
ML tree identified two groups, denominated here as H. atlanticus A (specimens from the 
Caribbean and the Atlantic coast of South America) and H. atlanticus B (specimens from 
the Caribbean). The genetic distance between these two MOTUs was 0.012±0.004, 
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which is lower than that usually found between valid marine fish species, i.e., around 
2% (Ward, 2009), although it was consistent with that found by Rocha et al. (2008) and 
Carvalho et al. (2020), which supports the need for further studies to determine whether 
this difference is due to the simple isolation of populations or the existence of a cryptic 
species derived from a recent speciation process (Rocha et al., 2007; Motta-Neto et al., 
2011a). 

In H. aurolineatum, by contrast, some of the analyses identified four MOTUs, that 
is, H. aurolineatum A and B (specimens from Bermuda), H. aurolineatum C (specimens 
from the United States), and H. aurolineatum D (specimens from the Gulf of Mexico, 
Caribbean, and the Atlantic coast of South America), while the other analyses indicated 
that H. aurolineatum C and D constitute a single MOTU (C+D). In H. plumieri, some 
of the analyses identified three MOTUs, that is, H. plumieri A (specimens from the Gulf 
of Mexico and the Caribbean), H. plumieri B (specimens from the Gulf of Mexico), and 
H. plumieri C (specimens from the Caribbean and the Atlantic coast of South America), 
while the other analyses indicated that H. plumieri A and B constitute a single MOTU 
(A+B). Although the genetic distances between some of these MOTU pairs were lower 
than 2%, many were higher, and reached up to 13%.

In recent years, advances in sequencing technology have supported a substantial 
increase in the DNA sequences available in databases, such as GenBank, for biodiversity 
studies. This includes fish, and these advances have contributed to the identification of 
species from groups with major taxonomic disagreements (Porter, Hajibabaei, 2018; 
Leray et al., 2019).

However, some authors have questioned the validity of the discrimination of 
fish species based on DNA sequences, given the frequent misidentification of the 
sequences available in these databases due to taxonomic inconsistencies, sampling 
errors, contamination, and hybridization, which reduces their reliability for comparison 
with other sequences (Locatelli et al., 2020; Pentinsaari et al., 2020). This problem was 
identified in the case of the five H. aurolineatum GenBank sequences from Bermuda, 
which we believe have been identified mistakenly as H. aurolineatum, given their 
considerable genetic distance from the other specimens analyzed, as well as the lack of 
published reports of this species in the region of the Bermuda archipelago.

Studies of reef fish have identified a number of processes that may have influenced the 
present-day intra- and inter-specific structuring observed in some groups found in the 
western Atlantic (Santos et al., 2006; Rodríguez-Rey et al., 2014; Silva et al., 2014, 2015; 
Ashe et al., 2015; Souza et al., 2015; Bernal et al., 2018, 2019).

These processes include the glacial cycles of the Pleistocene and Miocene, when 
the Vitória Trindade seamount chain, off the eastern coast of Brazil, isolated the fish 
fauna of southern Brazil, with a similar process of isolation occurring in the Gulf of 
Mexico. Another important event was the uplifting of the Andes, around 8 million years 
ago, which reconfigured the continental drainages of South America, establishing the 
transcontinental flow of the Amazon River to the Atlantic Ocean. 

All these processes may have caused alterations in the gene flow of reef fish populations. 
In the specific cases of H. atlanticus, H. aurolineatum, and H. plumieri, however, the 
well-known barriers, such as the Amazon-Orinoco plume and the Victoria Trindade 
seamount chain would not account for the differentiation of the MOTUs found herein, 
which implies the influence of alternative phenomena, such as other paleogeographical 
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events or even parametric or sympatric speciation events resulting from processes of 
ecological specialization.

The DNA barcode method contributed to the identification of the Brazilian reef fish 
fauna of the genera Brachygenys and Haemulon, and how barriers and ocean currents 
may influence the population dynamics of these species in the Western Atlantic. Our 
results indicated that some Haemulon species have been able to traverse the barrier 
of the Amazon plume and that the action of ocean currents may contribute to the 
dispersion of these species. However, the evolution of the populations of H. plumieri, H. 
atlanticus, H. steindachneri, and H. aurolineatum may have been influenced by variations 
in oceanographic conditions and barriers resulting in the formation of distinct MOTUs, 
as identified here, that have enriched the diversity of the reef fish species found off 
Brazil.
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