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Abstract

The fall army worm Spodoptera frugiperda (Smith) is a migratory 
important pest of corn, sorghum, rice, grass and bermudagrass 
in North and South America. This species has diverged into two 
genetically differentiated but morphologically identical strains, “the 
rice” and “the corn”. They have been analyzed by sequencing the 
genes cytochrome oxydase I, II and ITS1 from populations from the 
United States and Brazil. However, no such studies were performed 
in Colombia. In here, we identiϐied 43 haplotypes by sequencing a 
fragment of the COI gene from 102 individuals, of which 40 had already 
been identiϐied as the “corn” and “rice” strains or to their hybrids from 
Tolima, and the rest were collected from corn, cotton, sorghum, grass 
and rice ϐields in other regions of Colombia. The corn strain haplotype 
H1 was the most frequently found in this country, representing the 
main target for FAW monitoring programs. AMOVA analysis conϐirmed 
the population structure between Colombian and North American 
S. frugiperda haplotypes (FST = 0.76812, P < 0.001), but not within 
the different Colombian regions, suggesting high gene ϐlow within 
the country. The ML trees obtained for Tolima and for Colombia as a 
whole did not generate clustering amongst S. frugiperda sequences, 
neither via host-plant association nor by geographical areas. The 
minimum spanning network for Colombia corroborated our ϐinding 
that the haplotype H1 has the highest frequency in the country. Our 
data suggest that haplotype frequency determination will be useful 
in the establishment of a monitoring system for this species.

Introduc  on

The fall armyworm (FAW), Spodoptera frugiperda 
(J.E. Smith), is a tropical insect that is endemic to the 
Western Hemisphere (López-Edwards et al 1999), and is 
distributed from the United States to Argentina (López-
Edwards et al 1999, Prowell et al 2004, Murúa et al 2008). 
In Colombia, FAW is a primary pest of corn (Zea mays), 
and a secondary pest in sorghum (Sorghum spp.), cotton 
(Gossypium hirsutum), and pasture grasses (García et al 

2002). Likewise, in the United States (Nagoshi & Meagher 
2004, Nagoshi et al 2006, 2007a,b), México (López-
Edwards et al 1999), Argentina (Murúa et al 2008) and 
Brazil (Busato et al 2004), FAW larvae are a costly pest 
for all these crops, particularly for corn. 

The widespread distribution of FAW populations is 
thought to be due to long distance movement and a lack 
of diapause in adults (Luginbill 1928, Rose et al 1975). 
In North America, studies on the movement of FAW 
have shown that populations from central and eastern 
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United States and south of Canada disperse to Mexico, 
Texas and Florida as part of the annual migration of this 
moth (Luginbill 1928, Rose et al 1975, Young 1979, Pair 
et al 1987, Nagoshi et al 2007a). This wide distribution 
makes this pest difϐicult to control (Nagoshi & Meagher 
2004, 2008) and such detailed dispersal studies have 
never been carried out in Central and South America. 
However, Nagoshi et al (2007a) argue that in this part 
of the continent, movement of FAW can also occur as a 
response to seasonal changes in rainfall, temperature 
and agricultural plantings. In addition, Pashley (1988) 
suggests the possibility of gene ϐlow between FAW 
populations from the Caribbean region and North 
America. 

Analyses based on feeding behavior, physiology and 
molecular biology have identiϐied two morphologically 
identical, but genetically differentiated S. frugiperda 
strains, named the “corn” and the “rice” strains, which 
display host plant preferences (Pashley 1986, Levy et al 
2002, Prowell et al 2004, Nagoshi et al 2006). The corn 
strain has also been found in cotton and sorghum, while 
the rice strain in Bermuda grasses in the United States 
(Nagoshi & Meagher 2004) and Colombia (Vélez-Arango 
et al 2008). These strains also exhibit reproductive 
isolation under laboratory conditions, at behavioural 
(Pashley & Martin 1987), temporal (Pashley et al 1992) 
and chemical levels (Groot et al 2008). Both have a 
widespread distribution throughout America, including 
the Caribbean islands (Prowell et al 2004). In Brazil, 
they also display host plant preferences, physiological, 
developmental, and pesticide susceptibility differences 
that seem equivalent to the two North American strains 
(Busato et al 2004, 2005a,b, 2006). 

In Colombia, the presence of FAW was conϐirmed by 
Vélez-Arango et al (2008) in the region of Tolima (centre 
of Colombia), where the corn strain was mainly found in 
corn and cotton crops and the rice strain in rice, with very 
low frequency in corn and cotton. The existence of strains 
for FAW complicates the management of this moth (Levy 
et al 2002) as both have shown differential dispersal 
capabilities, as the corn strain seems to disperse for 
longer distances than the rice strain (Nagoshi et al 2007a). 
In addition, both strains differ in susceptibility to Bacillus 
thuringensis (particularly to the endotoxin Cry1AC) and 
to the insecticides diazinon and carbaril; the rice strain is 
more susceptible than the corn strain to both biological 
and chemical controls (Adamczyk et al 1997).

The identiϐication of FAW strains has largely been 
via the use of molecular markers, where the majority of 
the studies have focused on differentiating strains with 
PCR-RFLP and AFLP (McMichael & Prowell 1999, Levy et 
al 2002, Prowell et al 2004). Population genetic analyses 
performed so far have demonstrated little gene ϐlow 
between the strains (Saldamando & Vélez-Arango 2010) 
and substantial genetic differentiation within rather than 

between populations from samples from corn, lemon tree, 
princess tree and Bermuda grass from Argentina, Brazil, 
Puerto Rico and the United States (Clark et al 2007). 
However, the genetic analyses conducted by Clark et al 
(2007) did not concentrate on the identiϐication of FAW 
strains or on the use of the most appropriate marker to 
analyze the migration of the pest. 

Mitochondrial DNA (mtDNA) analysis is generally 
assumed to be more powerful than allozyme and nuclear 
DNA markers for revealing historical gene ϐlow versus 
current gene ϐlow (Lewter et al 2006). The cytochrome 
oxidase I (COI) and II (COII) genes of the mtDNA are useful 
for the measurement of genetic variation, haplotype 
identiϐication, construction of phylogenies and population 
genetic studies in insects (Avise 1994, Freeland 2005), 
and these mitochondrial genes have been mainly used for 
analysis of migratory patterns of FAW populations in the 
United States and Brazil (Nagoshi et al 2007a,b, Nagoshi 
& Meagher 2008). 

Lewter et al (2006) sequenced a 608 bp fragment from 
a COI, tRNA leu and COII regions of the mitochondrial 
DNA of 71 individuals collected in Arkansas, Mississippi, 
California and Florida, and found signiϐicant levels of 
genetic differentiation in all these populations. Nagoshi 
et al (2007b) analyzed a 937 bp COI fragment from 73 
individuals collected in Brazil, Texas  and Florida; in corn, 
sorghum, pasture, amaranthus, millet, cotton and rice, and 
found 28 haplotypes with similar host plant association 
in these two countries, but with differences in the host 
plant distribution between localities, with a seasonal 
pattern. Nagoshi et al (2007a) analyzed sequences of 
FAW larvae and adults identiϐied as the “corn strain”, to 
determine the level of haplotype differentiation within 
and between Florida  and Brazil  and observed four 
subgroup - haplotypes (CS-h1, CS-h2, CS-h3 y CS-h4) 
with a remarkable differentiation in distribution patterns 
across localities and host plants within each country. 
Similarities in haplotype compositions across several 
states of the US suggest migration of the species from 
Central to Southern US, as that Georgia was infested 
by corn-strain populations with the same haplotype 
distribution of southern Florida, and corn-strain 
populations in Louisiana, Mississippi, and Alabama 
were indistinguishable (Nagoshi et al 2008, Nagoshi & 
Meagher 2008).

Given that mtDNA is a useful tool to study migratory 
pattern in insects, particularly in FAW, the objective of 
this study was to carry out a molecular identiϐication of 
S. frugiperda haplotypes from 102 larvae collected from 
ϐive regions of Colombia between 2006 and 2009, from 
corn, rice, grass, sorghum and cotton. We compare these 
sequences to the US sequences obtained from GenBank 
in order to a) identify haplotype variants in Colombia, b) 
determine the level of genetic differentiation within and 
between these two countries and, c) obtain nucleotide 
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polymorphism and effective population size estimators. 
We discuss our results in relation to the implementation 
of DNA sequencing for the FAW monitoring system and 
the improvement of the Integrated Pest Management 
(IPM) in Colombia.

Material and Methods

Larvae collec  on

FAW larvae were collected from corn, cotton, rice, 
sorghum and grass ϐields from the regions of Antioquia, 
Córdoba, Meta, Tolima and Valle del Cauca in Colombia 
(Fig 1). In Tolima, collections were made during late 2006 
and early 2007, and in the other regions during late 2008 
and early 2009. Following collection, larvae were stored in 
2.5 ml plastic tubes with 70% ethanol, while larvae were 
stored at -70˚C until processing. The larvae sequenced for 
the region of Tolima were genotyped in a previous study 
by Vélez-Arango et al (2008) and were used in here in 
order to detect whether both FAW strains have haplotypes 
in common and whether these haplotypes showed host 
plant association (Table 1). 

Fig 1 Map of Colombia representing the ϐive regions were larvae of 
Spodoptera frugiperda were collected (Valle = Valle del Cauca).

Table 1 Number of Spodoptera frugiperda larvae analyzed 
in Colombia with sampling localities and host plant where 
the samples were collected.

Region Crop N° individuals 

Tolima 

Co on 18 

Rice 12 

Corn 6 

Sorghum 4 

Meta 

Corn 19 

Rice 4 

Sorghum 4 

An oquia 
Grass 2 

Corn 6 

Córdoba 

Co on 12 

Corn 7 

Sorghum 4 

Valle del Cauca 
Co on 3 

Corn 1 

Total 102 

DNA prepara  on

Spodoptera frugiperda genomic DNA was extracted 
using the CTAB method (Black & Duteau 1997) with 
some modiϐications. Larvae were homogenized in 400 μl 
extraction buffer (100 mM Tris-HCL pH 8.0, 1.4M NaCl, 
0.02m EDTA, 2x CTAB), and 4 L β-mercaptoethanol and 
20 l Proteinase K were added to the homogenate for 
1h; each tube was mixed by inversion every 10 min. The 
homogenate was centrifuged (3,000 g for 6 min at 10º 
C), the supernatant was collected and mixed with 500 μl 
of chloroform isoamyl - alcohol (24:1), and centrifuged 
(3,000 g for 30 min at 10ºC). The aqueous phase was 
transferred into a 1.5 ml vial and the chloroform isoamyl 
- alcohol step was repeated. The aqueous phase was 
transferred into a new tube, an equivalent volume of 
chloroform (100%) was added and the phases were 
separated by centrifugation (3,000 g for 20 min at 10ºC). 
The ϐinal aqueous phase obtained was transferred into a 
new tube, 400 μl isopropanol were added, and sample was 
incubated at -20º C for 1h before centrifugation (3,000 g 
for 30 min at 4ºC). The obtained DNA pellet was washed 
with 500 μl 100% of ethanol and centrifuged (3,000 g for 
6 min at 4ºC) twice before left to dry at room temperature 
for 45 min. The obtained DNA was re-suspended in 50 
μl TE buffer (1x) (TRIS HCL 100 mM, EDTA 10 mM, pH 
8.0). Finally, 1 l RNAse (1 mg/ml) was added to each 
tube for RNA removal and then incubated for 1h at 37ºC. 
Each sample yielded an approximately 22.2 ng/μl of 
genomic DNA. 

Caribbean sea

Venezuela

Córdoba

An  oquia

Valle Tolima
Meta

Ecuador

Peru

Brasil

N
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PCR analysis

PCR ampliϐication of the mitochondrial COI gene was 
performed in a 50 l reaction mixture containing 5 l of 
reaction buffer (1x), 1 l of dNTP (0.2 mM), 2 l of each 
primer (0.4 M), 2 l of DNA template and 1 l of Taq 
polymerase (0,5 U/ l) (Invitrogen). The thermocycling 
program was 94ºC (3 min), followed by 30 cycles of 
94ºC (1 min), 59ºC (1 min), 72ºC (1 min), with a ϐinal 
extension at 72ºC for 10 min. The set of primers used 
were JM76 (5’ GAGCTGAATTAGGRACTCCAGG 3’) and 
COI-1483 (5’ GCTGGTGGTAAATTTTGATAT 3’) (Nagoshi 
et al 2007a,b).

DNA sequence analyses

DNA sequencing was performed by Macrogen Inc. 
(Korea). The sequences obtained were edited by hand 
with Bioedit (Hall 1999) and aligned with the algorithm 
Clustal W (Cheena et al 2003, Larkin et al 2007). The 
estimations for nucleotide polymorphism, nucleotide 
divergence, segregant sites, number of polymorphic sites 
and number of haplotypes were obtained using DNAsp 
V5 software (Librado & Rozas 2009). The software 
jModelTest was used (Guindon & Gascuel 2003, Posada 
2008) to determine the nucleotide model of substitution 
(Nei & Kummar 2000). 

ML trees were chosen to visualize the genetic 
similarity within and between Colombian haplotypes 
with US haplotypes. These phylogenies were obtained 
with the online software Phylogeny.fr (www.phylogeny.
fr), which uses MUSCLE for multiple alignments, Gblocks 
for alignment curation, PhyML for cladogram construction 
based on maximum likelihood and 100 bootstrapping and 
TreeDyn for the visualization of the tree (Dereeper et al 
2008). 

To determine whether FAW haplotypes produced 
structured populations amongst the ϐive regions of 
Colombia and between Colombia and the US, an AMOVA 
test was performed using Arlequin 3.11 (Excofϐier et 
al 2005). This latter software was also used to obtain 
the estimator of gene neutrality Tajima-Nei (1984). 
The Tajima-Nei test was performed to determine: a) 
whether FAW Colombian population’s size is in expansion 
(or positive selection pressure), b) whether FAW 
populations are under balancing selection (or negative 
selection pressure) and ϐinally c) whether FAW they 
under a selective neutral hypothesis (Nei & Kummar 
2000). In addition, dendrograms based on Fst values 
were constructed in Mega 4.0 (Kummar et al 2008) and 
used to compare the genetic differentiation across the 
ϐive Colombian regions and the US samples. Finally, a 
minimum spanning tree was obtained for all ϐive regions 
of Colombia in TCS v. 1.21 (Clement et al 2000). 

Nine sequences from the US were used for genetic 
comparisons between Colombian and US FAW populations. 

The GenBank access number and origin (Country/ State, 
crop) are: SFU72974 (US, corn), SFU72977 (US, rice), 
AY714298 (Florida, Arkansas, Mississippi and California, 
corn), AY714299 (Florida, corn), AY714300 (Florida, 
corn), AY714301 (Florida, rice), AY714302 (Florida, 
Arkansas, rice), AY714303 (Florida, Arkansas, rice) and 
AY714304 (Florida, rice).

Results and Discussion

FAW haplotypes for Tolima region

A 642 bp portion of the 5´ region of the mitochondrial 
DNA was sequenced from a total of 40 larvae from Tolima, 
previously identiϐied as the rice or corn strain or as a hybrid 
strain (Velez-Arango et al 2008, Saldamando & Vélez-
Arango 2010) (Table 2). The average base (nucleotide) 
frequencies were A = 41.6%, C = 12.6%, G = 14.3% and T 
= 31.5%. Ten polymorphic sites were found for the 624 bp 
fragment: 1st position (T/C), 2nd position (A/C), 6th position 
(A/C), 10th position (A/T), 14th position (C/T), 20 (A/C), 
105th position (T/C), 177 (T/C), 180th position (A/G) and 
190th position (A/G). Moreover, the DNA polymorphism 
found for the sample from Tolima is summarized by the 
following parameters: π (nucleotide diversity) = 0.14976, 
Hd (haplotype diversity) = 0.926, S (segregant sites) = 399 
and θ (nucleotide polymorphism) = 0.16196.

The number of haplotypes obtained for this region 
was 18, with H1 being the most frequent (8/40), followed 
by haplotypes H5 (6/40), H10, H11 (3/40), H6 (2/40), 
and haplotypes H7-9 and H12-18 were the least frequent 
(1/40) (Fig 1). 

For the Maximum likelihood (ML) tree, we obtained 
the substitution model HKY (Hasehawa, Kishino and 
Yano) given by the BIC criteria (BIC = 3872.6662, -lnL = 
1677.9257) provided in jModeltest (Posada 2008) (Fig 2). 
In general, this tree failed to show associations between 
sequenced samples of FAW and their respective hosts: corn, 
cotton, rice and sorghum. Moreover, this tree also mixed 
haplotypes from both FAW strains and their respective 
hybrids suggesting that genetic differentiation at COI 
gene between “corn” and “rice” strains is low, as early 
demonstrated by PCR-RFLP analysis (Lu & Adang 1996).

With respect to the frequency of each haplotype and 
its host, H1 was the most frequent from all samples. 
This haplotype was collected from corn, sorghum and 
cotton. Given the distribution on these host plants, H1 
could represent the “corn” strain, as Vélez-Arango et al 
(2008) demonstrated signiϐicant host plant association 
of the corn strain with these three crops at the region 
of Tolima. Haplotype H5 was found in cotton and rice, 
and haplotypes H2 and H10 in corn, cotton and rice. 
The other haplotypes were less frequent and their host 
plant association less deϐined. It is important to take into 
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Table 2 FAW haplotypes found in Tolima for each strain and 
the respective type of hybrid between them (H++ = positive 
for both mitochondrial and nuclear markers; H-- = negative 
for both mitochondrial and nuclear markers)

Haplotype No sampled Crop Type (No individuals) 

1 8 

Co on H - - (1) 

Co on H ++(3) 

Co on Corn strain (1) 

Sorghum Corn strain (1) 

Corn Corn strain (1) 

Rice Rice strain (1) 

2 4 

Co on H - - (1) 

Co on Corn strain (2) 

Corn Corn strain (1) 

3 2 
Co on H -- (1) 

Co on H ++ (1) 

4 2 
Co on H -- (1) 

Co on Corn strain (1) 

5 6 

Co on H - - (1) 

Rice Rice strain (2) 

Rice H - -(1) 

Rice Corn strain (1) 

Rice H ++ (1) 

6 2 
Co on Rice strain (1) 

Co on Corn strain (1) 

7 1 Co on Corn strain (1) 

8 1 Co on Corn strain (1) 

9 1 Co on H ++ (1)  

10 3 

Rice H - -(1) 

Corn Rice strain (1) 

Rice Rice strain (1) 

11 3 

Sorghum Rice strain (1) 

Corn Rice strain (1) 

Rice Rice strain (1) 

12 1 Rice H - - (1) 

13 1 Rice H - - (1) 

14 1 Sorghum Corn strain (1) 

15 1 Corn Corn strain (1) 

16 1 Corn Corn strain (1) 

17 1 Sorghum H - -(1) 

18 1 Rice Rice strain (1) 

account that most of the FAW haplotypes were found in 
cotton and, therefore, this crop was the most sampled. 

43 TOL-Rice0.07

0.01
0.02

0.04

0.34

0.04
0.35

0.23

0.36
0.26

0.13
0.08

0.60

0.34

0.06

0.61

0.35

0

0

0

0

0

0
0.1

0.77

0.99
0.98

0.68
0.39

1

0
0

0
0.1

0.3

0.22

0.11

0.35

21 TOL-Rice

4 TOL-Cot

15 TOL-Cot

46 TOL-Rice

34 TOL-Corn

37 TOL-Corn

20 TOL-Cot

45 TOL-Rice

23 TOL-Rice

32 TOL-Sorghum

31 TOL-Sorghum

28 TOL-Rice

17 TOL-Cot

3 TOL-Cot

44 TOL-Rice

24 TOL-Rice

10 TOL-Cot

42 TOL-Rice

5 TOL-Cot

39 TOL-Sorghum

18 TOL-Cot

7 TOL-Cot

25 TOL-Rice

22 TOL-Rice

16 TOL-Cot

6 TOL-Cot

12 TOL-Cot

26 TOL-Rice

36 TOL-Corn

8 TOL-Cot

38 TOL-Sorghum

9 TOL-Cot

19 TOL-Cot

13 TOL-Cot

35 TOL-Corn

40 TOL-Corn

11 TOL-Cot

14 TOL-Cot

41 TOL-Corn

Fig 2 ML tree based on the HKY distance constructed from 40 
sequences of the COI gene obtained from larvae collected at the 
region of Tolima and their hosts (RS: Rice strain, CS: Corn strain, 
H++: hybrid ++, H- -: hybrid - -). Bootstrap values are in black. 

FAW haplotypes for Colombia (An  oquia, Córdoba, 
Meta, Tolima and Valle del Cauca)

A 528 bp portion of the 5´ region of the mitochondrial 
DNA was sequenced from a total of 102 larvae from the 
regions: Antioquia, Córdoba, Meta, Tolima and Valle del 
Cauca (Table 2). The average base frequencies of the 
fragment found for the ϐive regions were A = 40.5%, C 
= 14.7%, G = 12.4% and T = 32.4%. Six polymorphic 
sites were found for the 528 bp fragment: 2 (T/G/C), 60 
(A/T), 150 (T/A), 199 (A/G) and 456 (C/T). The DNA 
polymorphism for Colombia is given by the following 
parameters: π (nucleotide diversity) = 0.18956, Hd 
(haplotype diversity) = 0.912, S (segregant sites) = 363 
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and θ (nucleotide polymorphism) = 0.18956. All these 
FAW estimators are high if compared to the values 
obtained for the butterϐlies Papilio xuthus (L.) and Pieris 
rapae (L.) (Lepidopera: Pieridae) in Korea from a COI 
fragment of 658 bp (Jeon et al 2009). 

Forty-three haplotypes were detected in all areas 
sampled, with haplotype H1 (29/102) being the most 
common, and followed by H4 (12/102) and H5 and H9 
(8 and 7, respectively). H1 was found in all crops and 
regions of Colombia, but not in any US sequence. H4 was 
in cotton, corn and rice in all sampled areas of Tolima, 
Antioquia and Córdoba. H5 found was in all regions 
but in Antioquia, only in corn, cotton and rice, and H9 
in all regions, but only in corn and sorghum. These 
haplotypes were used to produce a multifurcated tree that 
corroborated the previous results, where haplotypes H1 
and H4 were the most frequent haplotypes of the species 
in Colombia (Fig 3). The high number of haplotypes found 
in Tolima compared to the other sites can be explained 
by the number of individuals analyzed, since Tolima 
was the most extensively sampled. H22 from Colombia 
exhibited an identical sequence to the US (SFU72974). 
This haplotype represents the only shared sequence 
between Colombia and the US. 

The FAW ML tree based on 61 sequences analyzed 
here (52 sequences dropped, low bootstrap values) 
produced a cladogram that did not cluster sequences 
from both countries, showing no clear differentiation 
mediated by host plant association (Fig 4), as observed in 
previously analysis including Brazilian and US sequences 
of FAW (Nagoshi et al 2007a,b). Our results suggest either 
little genetic differentiation between the corn and the 

H1

H38
H37

H16

H2

H42

H43

H41
H7

H18H33

H31
H3

H5

H39H40

H8

H4

H20
H22

H28
H17

H36
H35
H24

H10
H26

H6 H15 H23 H34 H25
H19

H21
H30

H27

H29

H12

H32
H14 H9

H11

H13

Fig 3 Minimum spanning network of 111 sequences of COI gene 
from Colombian and US samples of Spodoptera frugiperda.

Fig 4 ML tree based on the HKY distance constructed from 102 
sequences of the COI gene obtained from larvae collected at ϐive 
regions of Colombia (Ant = Antioquia, CB = Córdoba, Met = Meta, Tol 
= Tolima, VC = Valle del Cauca). Bootstrap values are in black.

81 CB-Co  on

48 MET-Corn

39 TOL-Corn

97 CB-Corn

27 TOL-Rice

67 MET-Sorghum

41 MET-Corn
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AY714304-H4-Rice

86 CB-Co  on

58 MET-Corn

44 MET-Corn

54 MET-Corn

74 ANT-Corn

78 CB-Sorghum

43 MET-Corn

36 TOL-Co  on
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40 TOL-Corn
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60 MET-Rice
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AY714303-H3-Rice
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63 MET-Rice
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AY714298-H1-Corn
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56 MET-Corn

66 MET-Sorghum

96 CB-Corn

49 MET-Corn

24 Tol-Rice

10 TOL-Co  on

AY714302-H2-Rice

21 Tol-Rice
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45 MET-Corn

AY714301-H1-Rice

28 Tol-Rice

57 MET-Corn

SFU72974-Co  on
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0.01

0.32

0.02
0.03

0.07

0.65
0.03

0.01
0
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0.11

0.68
0.16

0.03

0.6

0.03

0.66
0.24
0.52

0.07

0.67

0.09

0.02

0

0.01
0.02

0
0

0
0.7

0.31

0.75

0.21

0.17

0.05

0.34

0.10

0.49

0.48
0.54

0.12

0.98
0.23

0.23

0.09

0.20

1

1
0.59

0.18

0.02

0.17
0.91

0.64
0.08

0.05
0.14
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rice strains or a very high mutation rate for the COI gene 
in S. frugiperda. In addition, the ML tree clustered most 
of the US sequences together, demonstrating that FAW 
populations from US are genetically different from FAW 
populations from Colombia. 

The Tajima-Nei analysis indicated that all sampled 
areas, with the exception of Antioquia, were neutral, 
indicating they are not under selection pressure, 
population expansion, bottleneck, or heterogeneity of 
mutation rate (Table 3) (Tajima 1989, 1996). The outcome 
obtained for Antioquia might be due to the low sample 
size analyzed for this location and also because most of 
the FAW samples were collected in grass.

The F statistics (Table 4) obtained here (FST = 0.76, FCT 
= 0.16 and FCS = 0.20) demonstrate population genetic 
differentiation between FAW from Colombia and the 
US; most of the genetic variation (76.37%) was amongst 
groups (group 1 composed by all ϐive regions vs. group 
2 composed by US samples), followed by 23.19% of 
the variation within groups and only 4.5% of variation 
amongst groups/within populations. These results imply 

reduced or non-existent gene ϐlow between populations 
of both countries, but high gene ϐlow across the ϐive areas 
of Colombia sampled. Based on our pairwise FST analysis, 
we found high genetic differentiation between US FAW 
samples and the ϐive sampled areas from Colombia, 
particularly between Córdoba (at the Caribbean of 
Colombia) and the US (Table 5, Fig 5). Our data also 
contradicts Pashley (1988) work, given that this author 
suggests the possible genetic contact between FAW 
populations from North and South America, particularly 
with the Caribbean countries. 

In general, F statistics obtained for FAW were higher 
than the F (FCT and FCS) values obtained for Ostrinia 
nubilalis (Hübner) (Malausa et al 2007), suggesting that 
the population structuring in S. frugiperda is stronger than 
in the European corn borer. Thus, the evolutionary biology 
of both lepidopterans is similar, since both have shown 
host plant association, but FAW strains are differentiating 
more rapidly. Nevertheless, it is important to mention that 
nuclear genes (Tpi, Ket, Pbp and Mpi) were used in the 
case of O. nubilalis (Malausa et al 2007), whereas we used 

Source of varia on d.f. Sum of squares Variance components Percentage of varia on 

Among groups 1 1672.172 98.90881 Va 76.37 

Among popula ons/ within groups 4 162.464 0.57834 Vb 0.45 

Within popula ons 105 3153.454 30.03290 Vc 23.19 

Total 110 4988.090 129.52005 VT  

 
FCT = 0.76366 

(Va/VT) 

FSC = 0.01889 

(Vb/Vb+Vc) 

FST = 0.76812 

(Va+Vb/VT) 

 P = 0.16617 P = 0.20197 P < 0.0001 

Table 4 Population structure analysis performed for Colombia and United States sequences of Spodoptera frugiperda (Group 
1 = Antioquia, Córdoba, Meta, Tolima, Valle del Cauca, Group 2 = United States).

Table 5 Pairwise Fst comparisons between Spodoptera frugiperda populations from Colombia and the United States.

 Tolima Meta An oquia Córdoba Valle del Cauca USA 

Tolima 0.00000      

Meta -0.01061 0.00000     

An oquia -0.05638 -0.03082 0.00000    

Córdoba 0.05902 0.12342 0.17974 0.00000   

Valle del Cauca -0.04126 -0.02074 0.01944 0.02011 0.00000  

USA 0.72962 0.66114 0.68997 0.88883 0.77249 0.00000 

 Tolima Meta An oquia Córdoba Valle del Cauca E.U Mean 

N 40 27 8 23 4 9 18.5 

D (Tajima-Nei) -0.025 0.835  -1.742  0.45     0.591       0.319   0.0714 

P 0.52  0.835  0.003 0.712 0.822      0.673    0.6058 

Table 3 Tajima-Nei neutrality test performed for the ϐive regions of Colombia and the samples of the United States.
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a mitochondrial gene, which has a higher mutation rate 
and an effective population size lower than that of nuclear 
DNA (Freeland 2005). However, even though these moth 
species have been differentiating at different rates, both 
exhibit signiϐicant genetic differentiations, meaning that 
host plant adaptation is an important cause of divergence 
and, therefore, speciation. 

The effective population size (Ne) represents the 
minimum number of individuals that a population 
requires to lessen the effects of genetic drift on reducing 
genetic variation and it represents 10% of a census 
population (Mallet 2001). For this reason, Ne is important 
for conservation biology (Rieman & Allendorf 2001) 
and for the insect integrated pest management (IPM) 
(Pinto et al 2002). Ne is relevant to IPM as ϐluctuations 
in population size over time provide information on the 
success of the control measures adopted (Pinto et al 
2002). This estimator can be calculated in various ways 
(Freeland 2005, Malausa et al 2007), and one of them is 
by using the nucleotide polymorphism value (θ) (Yu et al 
2004). For mitochondrial DNA, θ = 2Neμ (Freeland 2005, 
Hedrick 2004), therefore if one assumes a mutation rate 
(μ) of 1 x 10-7 for the COI gene, the Ne for S. frugiperda 
will equals 1,889,100 individuals, suggesting that a 
substantial reduction in population size is necessary for 
the control of this pest. 

The Ne value obtained in here is much higher than 
that estimated for other lepidopterans using different 
methods (Brakeϐield et al 2001, Malausa et al 2007). If 
compared to the Ne value (150,000-200,000 individuals) 
reported to O. nubilalis, we can infer that the actual 
effective populations size (Ne) of S. frugiperda is higher 
than that of O. nubilialis or that the mutation rate is higher 
for mitochondrial than for nuclear genes, and therefore 
our Ne estimation was biased by the type of gene analyzed 
(COI). However, both lepidopterans have provided high 
values of Ne and thus their integrated pest management 
must be undertaken with care. 

General guidelines suggest that effective population 
sizes between 50 and 500 individuals are essential to 
minimize inbreeding effects in natural populations 
(Riemman & Allendorf 2001). This implies that the S. 
frugiperda effective population size is quite high, and 

indicates that a great effort will be required to decrease 
the movement of FAW populations (Nagoshi et al 2007a,b) 
within different crops and areas of Colombia in order 
to reduce the population size of this species. Moreover, 
previous studies have demonstrated differential resistance 
of the corn and rice strains to Bacillus thuringensis and 
several insecticides (Adamczyk et al 1997). Thus it is 
important to use the appropriate chemical and biological 
control strategies for the pest management, depending 
on the host plant.
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