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AbstrAct

Subtidal observations along the Cape Horn Archipelago, Chile (CHA) in 
February 2017 revealed an unusually large aggregation (or pod) of juvenile 
false king crabs, Paralomis granulosa (Hombron and Jacquinot, 1846), in 
association with kelp forests (Macrocystis pyrifera and Lessonia spp.). This is 
the first study to report a dense aggregation of juveniles of this crab, which 
was observed at Wollaston Island (WI) (~ 10 m). Paralomis granulosa was 
present on half the transects at WI (N=10), with a density of 3.1 ± 9.9 ind. 
m-2. Photographs from the podding event showed densities of P. granulosa 
ranging from 63 to 367 ind. plant-1 (190 ± 133 ind. plant-1). Juveniles (32.8 ± 
7.3 mm carapace length) were recorded on kelp fronds, holdfasts, kelp stipes, 
and adjacent rocky bottom of this protected coast. This podding behavior 
resembles that of other juvenile king crabs in terms of homogeneity in size 
structure and may be a predator avoidance mechanism. These observations 
highlight three aspects of this kelp-animal relationship: (i) identification of 
a previously unknown ecosystem service provided by sub-Antarctic kelp 
forests to the associated benthic fauna; (ii) the ecological value of kelp as 
a bioengineering species; and (iii) pods being an important attribute for 
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population assessments. Due to the importance of the CHA in the life cycle for this and other species, we 
suggest the archipelago be incorporated within the recently established Diego Ramírez Island-Drake Passage 
Marine Park.

KeywOrds

Diego Ramírez Island-Drake Passage Marine Park, ecological recruitment, king crab ecology, seaweed-animal 
relationship, sub-Antarctic benthos

intrOductiOn

Podding is a social aggregation of individuals of 
a certain age, sex, or size, as previously described for 
species of marine crustaceans, including the large 
Chilean king crab (Lithodes santolla) (Molina, 1782) 
(Cárdenas et al., 2007). Podding can have various 
population effects on exploited lithodid crabs in the 
sub-Antarctic region due to: i) high parasite load 
(Roccatagliata and Lovrich, 1999; Cañete et al., 
2008; 2017); ii) biased stock assessments (Cárdenas 
et al., 2007; Cañete et al., 2017); iii) increased risk of 
predation (Morado et al., 2014); and iv) reduction in 
optimal settling areas (Cañete et al., 2008; Stevens, 
2014). 

A previous study described the podding of L. 
santolla around the holdfasts and stipes/sporophylls 
of giant kelp Macrocystis pyrifera (Linnaeus, 1771) C. 
Agardh, 1820 in a shallow, sandy-rocky embayment 
of the Magellan Strait, Chile (Cárdenas et al., 2007). 
However, this behavior has not been reported in 
other sub-Antarctic king crab species, such as the 
false king crab Paralomis granulosa (Hombron and 
Jacquinot, 1846).

Despite the economic importance of P. granulosa 
and extensive investigation into its fishery (Hoggarth, 
1993; Guzmán et al., 2004; Wyngaard et al., 2016; 
Almonacid et al., 2018), limited research has been 
conducted on the early benthic stages and population 
dynamics of this species (Lovrich and Vinuesa, 1993; 
1995; Lovrich, 1997; Tapella and Lovrich, 2006; 
Almonacid et al., 2018). This lack of research is due 
in part to the difficult working conditions presented 
by the remote and restricted geographical range of 
this species (Lovrich and Tapella, 2014; Friedlander 
et al., 2018).

The marine ecosystems of the Magellan Region 
in southern Chile are diverse and possess a unique 
biogeography; however, these ecosystems have been 
poorly studied to date (Rozzi et al, 2006). Persistent 
unknowns about the ecology of the region include 
the importance of these cold, estuarine, shallow-
water habitats as nurseries for commercially valuable 
species and the interconnectivity between deep and 
shallow water habitats (Friedlander et al., 2018). 
Vast unfragmented habitats within the region are in 
relatively pristine condition, but efforts to maintain 
this healthy ecological state are challenged by a 
variety of anthropogenic activities such as benthic 
fisheries (Pollack et al., 2008; Friedlander et al., 2018; 
Almonacid et al., 2018). 

Our study represents the first observations of 
dense aggregation behavior by P. granulosa juveniles 
associated with two sub-Antarctic kelp forest species, 
M. pyrifera and Lessonia spp. in the Cape Horn 
Archipelago (CHA), southern Chile, during February 
2017. This study brings attention to three aspects of 
this kelp-animal relationship: (i) the identification 
of previously unknown ecosystem services provided 
by sub-Antarctic kelp forests relative to associated 
benthic fauna in remote, pristine, high latitudes; (ii) 
the ecological value of kelp as a bioengineering species; 
and (iii) the importance of considering podding in 
stock-assessment surveys of king crabs.

MAteriAls And MethOds

Cape Horn is the southernmost headland of the 
Tierra del Fuego Archipelago, marking the northern 
boundary of the Drake Passage, where three great 
oceans meet (Cunningham et al., 2003). The Cape 
Horn National Park is the southernmost national 
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park in the world and was designated a UNESCO 
Biosphere Reserve in 2005 (Rozzi et al., 2006; 
Cañete et al., 2017; Friedlander et al., 2018). This 
park encompasses the entirety of the CHA and is 
comprised of a series of islands and islets, including the 
large islands of Wollaston and Hermite. However, the 
recently established the Diego Ramírez Island-Drake 
Passage Marine Park does not include the islands and 
nearshore areas of the archipelago (Diario Oficial, 
República de Chile, 2019).

In February 2017, an expedition was conducted to 
the Magellan Region in the extreme south of Chile 
(Fig. 1a-c). The aim of this expedition, which included 
the Cape Horn and Diego Ramírez archipelagos, was 
to conduct a comprehensive, integrated assessment 
of these marine ecosystems using non-destructive 
sampling techniques (e.g., visual surveys, video, 
and photography) (Friedlander et al., 2018). A total 
of twelve sampling stations were surveyed across 
five islands (Grevy, Hermite, Herschel, Wollaston, 
Hornos).

Characterization of the benthos was conducted by 
scuba divers along two 25-m long transects at each 
sampling station except for one station at Hermite 
Island, where only one transect was surveyed. 
Transects were run parallel to the shoreline, with a 
target depth of 10 m, depending on the location of 
the kelp forest. For sessile and mobile invertebrates, 
including P. granulosa, the number of individuals was 
estimated 1-m on either side of the transect line (50 
m2). Subtidal video and photography were conducted 
opportunistically at Wollaston, Hermite, and Grevy 
islands to document aggregations of P. granulosa  
(Fig. 1b, Suppl. material 1). 

Photographic surveys were conducted to 
determine the abundance and size structure of P. 
granulosa juveniles in the one large pod observed at 
Wollaston Island (WI). Ten points were randomly 
assigned to each photograph, and the benthic cover 
beneath each point was recorded. Photographs 
(N = 7) were obtained with a Nikon D800 in an 
Aquatica housing and a Nikkor 10.5 mm lens.  

Figure 1. a) Location of Cape Horn Archipelago (CHA), southern Chile; b) sites at Wollaston Island where the photographic survey 
observed podding in the crustacean Paralomis granulosa around two species of sub Antarctic kelp forest (February 2017); red dots 
show diving sites; c) spatial distribution of abundance of the subtidal kelps Macrocystis pyrifera and Lessonia spp. around CHA (black 
dots are just high densities of red dots; 1.5 to 2.5 kg m-2; black dots just represent areas where the density of kelp was very high; > 
2.5 kg m-2). Floating canopy of giant kelp was observed using the Landsat 8 Operational Land Imager (OLI) multispectral sensor. 
Kelp canopy biomass was ~ 2.5 ± 1.3 kg m-2. Densities of M. pyrifera were nearly three times higher than densities of Lessonia spp. 
(Friedlander et al., 2018).

http://www.editoraletra1.com.br
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The P. granulosa podding event was used to estimate 
the abundance and size of juveniles, as well as their 
position on each section of the kelp plant. Abundance 
and size structure analyses were carried out using the 
Coral Point Count software with Excel extensions 
(CPCe 4.1, Kohler and Gill, 2006; Ferrari et al., 2018). 
A comparative sizing scale for the photographed 
P. granulosa juveniles was established by recording 
the diameters of fresh M. pyrifera stipes of plants 
stranded in the intertidal fringe of Navarino Island, 
Chile (Fig. 1b). A total of 30 stipes of equal number 
of plants were examined (mean diameter = 1.0 ± 0.2 
cm; N = 30). Due to the presence of three species of 
the genus Lessonia in southern Chile (Searles, 1978; 
Santelices and Meneses, 2000; Rosenfeld et al., 2019), 
we identified all individuals of this genus as Lessonia 
spp. due to previous reports in the study area. Due 
to the high abundance of P. granulosa juveniles on 
some kelp plants, an area of 0.1 m2 was established 
in the core of each photograph where all juveniles 
of P. granulosa were highlighted to determine their 
size. This also reduced errors relative to the angle of 
the photograph. The antero-posterior length of the 
carapace and the number of juveniles were determined 
for each photograph.

results

A total of twenty-three benthic transects (1,150 
m2) were conducted at twelve different stations within 
the CHA (Tab. 1). Paralomis granulosa was present on 

only seven (30.4 %) transects and at only five stations 
(41.7 %). The one transect at WI where podding of 
P. granulosa was observed had a density of 31.2 ind. 
m-2. Paralomis granulosa was present on half of the 
transects conducted at WI (N=10), with an overall 
mean density at WI of  3.1 ± 9.9 ind m-2. Both transects 
conducted at Grevy Island had P. granulosa present, but 
the densities were low (0.05 ± 0.01 ind. m-2). Paralomis 
granulosa was not recorded at any of the other islands 
surveyed during the expedition.

Photographs from the podding event at WI show 
densities of P. granulosa varying between 63 and 367 
ind. plant-1 (mean abundance = 190 ± 133 ind. plant-1). 
Mean carapace length averaged 32.8 ± 7.3 mm, with 
a coefficient of variation of 22.3 % (Fig. 2a–f). This 
dense aggregation extended along the south side of 
WI and was protected from the strong westerly winds. 
In this area, P. granulosa was observed in association 
with both M. pyrifera (Fig. 2a–c, e, f) and Lessonia 
spp. (Fig. 2d). Podding was denser on the single 
Lessonia plant photographed (367 ind. plant-1; N = 1) 
compared to M. pyrifera (161 ± 104 ind. plant-1; N = 
6). Combined, podding densities varied between 63 
and 367 ind. plant-1 (mean abundance = 190 ± 123 
ind. plant-1). Juveniles were mainly recorded on kelp 
fronds and stipes and, to a lesser extent, on the rocky 
bottom and holdfasts (Tab. 2; Fig. 2a–d). Of note, 
some P. granulosa were found on the upper parts of 
M. pyrifera, reaching heights of 2 m above the bottom 
(Fig. 2c). Two adult king crabs (Lithodes santolla) were 
also recorded on the fronds (Fig. 2e, f).

Table 1. Densities of Paralomis granulosa at islands and stations in the Cape Horn Archipelago, southern Chile. Values are means 
per station with one standard deviation of the mean in parentheses. Station numbers shown in Fig. 1.
Island Station Depth (m) Latitude Longitude Number/m-2

Hornos 3 12 -55.961 -67.224 0

Hornos 4 8 -55.965 -67.214 0

Herschel 9 10 -55.812 -67.285 0

Herschel 10 15 -55.826 -67.270 0

Hermite 11 10 -55.810 -67.515 0

Hermite 12 12 -55.834 -67.522 0

Wollaston 13 9 -55.759 -67.485 15.60 (22.06)

Wollaston 14 9 -55.750 -67.479 0.01 (0.01)

Wollaston 15 9 -55.750 -67.508 0.07 (0.10)

Wollaston 16 15 -55.590 -67.525 0.02 (<0.01)

Wollaston 17 11 -55.625 -67.481 0

Grevy 18 11 -55.530 -67.606 0.05 (0.01)

http://www.editoraletra1.com.br
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Figure 2. Podding of Paralomis granulosa (Lithodidae) juveniles on sub-Antarctic kelp: (a–c, e, f) Macrocystis pyrifera; (d) Lessonia 
spp. All photographs were taken at the Wollaston Island, Cape Horn Archipelago, south of Chile (February 2017); c) yellow arrow 
shows fouled plant of M. pyrifera with the bivalve Gaimardia trapesina, a possible prey of P. granulosa; e, f) large spiny crustaceans 
seen in each photo are adult king crab Lithodes santolla. 

Table 2. Quantitative data regarding the relationship of two sub-Antarctic kelp species and recruits of the false king crab Paralomis 
granulosa during a survey at Wollaston Island, Cape Horn Archipelago, southern Chile (date: February 9, 2017; 10 m depth). All 
data were obtained from subtidal photography (N = 7 photos) on two kelp forest species. Some photographs of podding (columns 
1–7) are showed in the Fig. 2a–e. Mp = Macrocystis pyrifera; Ls = Lessonia spp.; N = No; Y = Yes; * = values in parentheses indicate 
standard deviation.

Parameters
Photos recording the podding of P. granulosa recruits

1 2 3 4 5 6 7

Kelp taxa Mp Mp Mp Ls + rock Mp Mp Mp

Total abundance of P. granulosa recruits/photo 234 335 85 367 139 109 63

Mean abundance of P. granulosa recruits/0.1 m-2 34 135 22 57 45 27 23

Mean size of P. granulosa juveniles (mm, 
cephalothoracic length) *

33.8
(32)

32.5
(32)

43.2
(5)

39.9
(32)

31.3
(20)

21.1
(15)

27.9
(8)

Position of juveniles along plant Fronds Fronds Stipes Stipes, holdfast and rock 
dominated by Corallinaceae algae

Fronds 
and stipes Fronds Fronds 

and stipes

Lithodes santolla adults 0 0 0 0 0 1 1

Presence of Gaimardia trapesina (Bivalvia) N N Y N N N N

http://www.editoraletra1.com.br
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discussiOn

Kelp communities are considered one of the 
most diverse marine ecosystems on earth, providing 
abundant ecosystem services to humans (Dayton, 
1985; Graham et al., 2007; Smale et al., 2013; Schiel 
and Foster, 2015). Kelp plants are ecosystem engineers 
that create complex habitats, which support a myriad 
of species with associated behaviors (Steneck and 
Johnson, 2014; Teagle et al., 2017). The results of 
this study highlight the importance of plant/animal 
interactions during the early life of the sub-Antarctic 
Chilean false king crab P. granulosa, with massive 
podding of this species associated with kelp forests. 
Podding refers to structurally dense and socially 
organized groups of organisms in aggregations. In 
these pods, all individuals are similar in size and 
are in physical contact with one another (Stone et 
al., 1993; Dew, 2010). Our observations are the first 
report of podding in the Chilean false king crab in 
sub-Antarctic kelp forests.

Kelp forests were the dominant nearshore 
ecosystem in the study area, with the giant kelp M. 
pyrifera being the most conspicuous component of this 
community. The brown seaweed Lessonia spp. forms 
dense understories within the Macrocystis canopy. 
Kelp canopy biomass was dense at the CHA with a 
mean canopy biomass density of 2.51 ± 1.27 kg m-2 
(Friedlander et al., 2018). Kelp extent was greater on 
the eastern and northern coasts of the CHA, likely 
due to being sheltered from the prevailing wind and 
swell that originate from the west (Fig. 1c). Podding 
was observed in the subtidal protected zone extended 
along the southwest coast of WI (Fig. 1b–c), where 
high densities of kelp were reported by Friedlander et 
al. (2018). Protected coasts (channels, embayments, 
and fjords) appear to favor podding in sub-Antarctic 
king crabs (Cárdenas et al., 2007). 

Podding behavior is probably a generalized 
characteristic of lithodids such as in Paralithodes 
J.F. Brandt, 1848 (Loher and Armstrong, 2000; 
Dew, 2010) and L. santolla (see Cárdenas et al., 
2007). This behavior has been well documented for 
other crustaceans of the family Majidae, including 
Chionoecetes bairdi Rathbun, 1924 (Stevens et al. 
1994; Zhou and Shirley, 1997), Chionoecetes opilio 
O. Fabricius, 1788 (Comeau et al., 1998), Hyas lyratus 

Dana, 1851 (Stevens et al., 1992), and Maja squinado 
(Herbst, 1788) (Sampedro and González-Gurriarán, 
2004). Aggregations of M. squinado were reported 
by Carlisle (1957) to facilitate molting and mating, 
and Stevcic (1971) reported that such aggregations 
consisted primarily of females. Similar aggregations 
of mostly female Loxorhynchus grandis Stimpson, 1857 
were reported by Hanauer (1988) and Culver (1991).

The term “podding” has been used for many species 
and behaviors, but there are important distinctions 
between different types of behavior. Podding has been 
used primarily to describe aggregations of juvenile 
or sub-adult king crabs of the genus Paralithodes 
(see Powell and Nickerson, 1965; Dew, 1990), and 
has been ascribed primarily to protection from 
predation for juveniles or to facilitate reproduction 
for subadults. Although the term was also applied 
to lyre crabs H. lyratus by Stevens et al. (1992), that 
behavior was an aggregation of mating individuals. 
Intense aggregations of hundreds of thousands of 
C. bairdi, consisting almost exclusively of females, 
was determined to be a mechanism for facilitating 
massive larval hatching (Stevens et al., 2000), and 
are coordinated with onshore tidal current patterns 
(Stevens, 2003). 

Although “mounds” (sensu Stevens et al., 2000; 
Stevens, 2014) of crabs may look similar to pods, the 
structure, behavior, and characteristics of such aggre-
gations differ greatly from that of king crab pods. All 
of these exist on a continuum of aggregative behavior 
ranging from: (1) loosely associated groupings of crabs 
at higher-than-average density (>1/m2) but without 
contact; to (2) high density (>10/m2) groups of crabs in 
contact in a single layer, to (3) extremely high density 
(>100/m2) groups formed into a 3-dimensional stack, 
and (4) high densities of such stacks in a small area 
(as in C. bairdi). Possible explanations for podding 
behavior include: (i) protection during moulting, 
(ii) finding mates, (iii) aid in food capture, and (iv) 
protection against predation (Powell and Nickerson, 
1965; Gardner, 1999). These prior studies further 
indicate that pods can vary in form and structure 
depending on the species, time of year, geographical 
area, as well as individual traits (e.g., maturity stage, 
inter-moult stage). A protective function has also been 
suggested for juvenile aggregations of the spiny lobster 
Jasus edwardsii (Hutton, 1875) (Butler et al., 1999). 

http://www.editoraletra1.com.br
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Similarly, podding with high abundance of L. 
santolla juveniles was reported in protected channels, 
embayments, sounds, and fjords along the west 
Magellan Coast (Cañete et al., 2017). High rates 
of infestation by the isopod Eremitione tuberculata 
on L. santolla were noted in these podding events. 
Similarly, aggregations of P. granulosa juveniles could 
favor the epibiosis by caprellid amphipods, which has 
been described around Navarino Island (Medina et 
al., 2017).

Our observations in the study area indicate that 
podding of juveniles may be induced by high densities 
of epiphytic invertebrates on the stipes and fronds 
of M. pyrifera, which are prey for P. granulosa. For 
example, the bivalve Gaimardia trapesina (Lamarck, 
1819) comprised 74.2 % of benthic taxa abundance at 
CHA, while the sea snail Tegula atra (Lesson, 1830) 
was also abundant in these kelp forests (Friedlander 
et al., 2018). Paralomis granulosa juveniles likely feed 
on the small spat of this brooding bivalve based on 
their buccal appendage size and an abundance of this 
bivalve observed on the fronds and stipes of both kelp 
taxa (Fig. 2c). Prior research, however, does not report 
evidence of G. trapesina shell debris in the diet of P. 
granulosa juveniles, although molluscs were frequently 
observed in the diet of P. granulosa collected from the 
Beagle Channel off the Argentine coast (Comoglio 
and Amin, 1999).

The podding behavior shown by P. granulosa 
resembles that reported for the Alaskan red crab 
Paralithodes camtschaticus (Tilesius, 1815) (Zhou and 
Shirley, 1997) and Chilean king crab (L. santolla) 
in terms of size of juveniles, which ranged between 
21- and 43-mm CL and may represent predation 
avoidance. Pods of L. santolla are comprised of 
individuals with a similar carapace length (< 50 mm; 
Cárdenas et al., 2007; Cañete et al., 2008; 2017) (Tab. 
2). Another aspect of the podding of P. granulosa is 
the homogeneity in the size structure of individuals.

Podding in association with kelp forests may 
represent a key step in the life cycle of the false king 
crab and therefore likely provides an important 
benefit to maintaining the productively of this 
valuable fisheries species. As a result, the life cycle of 
P. granulosa could be adversely affected by alterations 
to kelp communities in the Magellan Region, making 
the observations presented here of direct interest to 

the management of both the crab fishery and the kelp 
harvesting industry (Cárdenas et al., 2007; Almonacid 
et al., 2018). We thus recommend protective measures 
be taken for the region, especially as they may be 
important for the sustainability of the fishery for 
the false king crab around the Beagle Channel and 
throughout the CHA.

Future research is needed to improve abundance 
estimates for the non-exploited phase of the false king 
crab population in southern Chile. Such estimates 
would be useful in determining the conservation status 
of P. granulosa, as well as for considering sustainability 
in fishery regulations (Subpesca, 2018). Given that the 
patchy nature of pod aggregations could introduce 
bias into population stock assessments, podding 
behavior needs to be included as a potentially crucial 
attribute of the population. It has been shown that 
highly predictable aggregations of some fisheries 
species can lead to hyperstable catch rates despite 
declining stock size (Erisman et al., 2011; Alós et al., 
2019). Gaining better understanding of the spatial 
and temporal variability of pods requires long-term 
monitoring and efforts to protect P. granulosa juveniles 
and their associated habitats. 

This study is one of many to highlight the 
importance of kelp forests for local biodiversity and 
ecosystem functioning (Santelices and Ojeda, 1984; 
Costanza et al., 1997; Almanza et al., 2012; Smale et 
al., 2013; Rosenfeld et al., 2014; Steneck and Johnson, 
2014). This fact emphasizes the need for kelp forests to 
be given the highest conservation priority, particularly 
in sub-Antarctic habitats. Coldwater species that 
are large and have low fecundity and slow growth 
rates, such as king crabs, are at an elevated risk of 
overexploitation and extinction (Stevens, 2014; 
Kindsvater et al., 2016). Paralomis granulosa juveniles 
with a carapace length < 50 mm are roughly 5 years 
of age (Lovrich and Vinuesa, 1995). Consequently, 
the protection of kelp forests, such as those observed 
along the CHA, are essential for effective marine 
conservation and the sustainability of sub-Antarctic 
fishing activities. The CHA lies at the southern end 
of South America, making the protection of this 
marine protected area of high priority to guarantee 
the connectivity of P. granulosa larvae and juveniles 
for Chilean and Argentinian exploited populations.

http://www.editoraletra1.com.br
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The fishing grounds of P. granulosa along the 
southern Chilean coast include three important 
protected areas (i.e., Cape Horn Biosphere Reserve, 
Cape Horn National Park, and the recently established 
Diego Ramírez-Drake Passage Marine Park) (Diario 
Oficial de la República de Chile, 2018) (Cañete et al., 
2017). However, only land biodiversity is included in 
the conservation goals of the Cape Horn Biosphere 
Reserve and Cape Horn National Park. Based on 
the present results, we suggest that the entire CHA 
be included within the recently established Diego 
Ramírez Island-Drake Passage Marine Park due to 
their importance during early life phase for valuable, 
sub-Antarctic benthic resources such as the false king 
crab (Vinuesa et al., 2013; Almonacid et al., 2018; 
this study). 
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