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the effective cross-section area of the elements is increased14. Several 
studies describe the dependence of varistor properties on process-
ing conditions of Pr-doped ZnO varistors, especially in the field of 
grain boundary formation2-4, 13. It is very important to understand the 
structure, composition and properties of the boundaries since they 
have a strong influence on electrical properties. Our purpose is to in-
vestigate the microstructure, the current density-electric field (J vs. E) 
characteristics, and the capacitance-voltage (C-V) characteristics of 
ZPC varistor systems.

2. Experimental Procedure

The varistor systems (95-x) mol% ZnO + x mol% Pr
6
O

11 
+ 5 mol% 

CoO (x = 0.1, 0.5 and 1.0) were prepared from the mixture of oxide 
precursors method, all of them being analytical grade oxides: ZnO 
(Aldrich-99.99%), Pr

6
O

11
 (Aldrich-99.9%) and CoO (Riedel-99.9%). 

The starting materials were attrition-milled in water for 3 hours. 
Then the dry slurry was calcined at 750 °C in air for 2 hours. The 
calcined powders were pulverized using agate mortar and pestle and 
after 2 wt. (%) polyvinyl alcohol (PVA) binder addition, granulated 
by sieving 200-mesh screen to produce the starting powder. The 
powder was uniaxially pressed into discs of 12 mm diameter and 
1 mm thickness at a pressure of 80 MPa. The pellets were sintered 
at 1300 and 1350 °C for 2 hours with a heating rate of 5 °C/min 
followed by furnace cooling. The samples were characterized by 
X-ray diffraction (XRD, Rigaku, 20-2000), 40 kV and 150 mA from 
2θ (20 to 80°), ∆2θ = 0.02°, with Cukα wavelength monocromatized 
by a graphite crystal. To obtain the Scanning Electron Microscopy 
(SEM) micrographies (ZEISS® DSM 940 A) the sintered samples 
were polished and thermally etched by heating at 100 °C below the 

1. Introduction

ZnO varistor ceramics are resistor devices manufactured by 
sintering ZnO powder containing various minor additives1. It has 
been recognized that at least two different classes of additives must 
be added to the ceramic varistors in order to obtain good nonohmic 
characteristics2. The first class of such additives are varistor-forming 
oxides (VFO), such as Bi

2
O

3
, Pr

6
O

11
, La

2
O

3
, BaO, V

2
O

5
 and glass 

frits. The second class of additives are 3d transition-metal oxides, 
which improve significantly the nonohmic characteristics3. Zinc 
oxide ceramics, containing Pr

6
O

11
 and CoO, which exhibit current 

nonohmic characteristics, were first reported by Mukae et al.4. In fact, 
the history of Pr

6
O

11
-based ZnO varistors is similar to the Bi

2
O

3
-based 

ZnO varistors5, but they have not been adequately studied. However, 
the Pr

6
O

11
-based ZnO varistors don’t have volatilization of compo-

nents3 and they own a simpler microstructure when compared with 
Bi

2
O

3
-based varistors, which is an important fact for the stability 

and degradation phenomena6-9. Most of commercial ZnO varistors 
are ZnO-Bi

2
O

3
-based varistor ceramics, possessing as major additive 

Bi
2
O

3
. Although they exhibit excellent varistor performance, they 

possess few drawbacks due to the high volatility and reactivity of 
Bi

2
O

3
 at a sintering temperature above 1000 °C10. Another flaw of 

Bi
2
O

3
-based varistors is that they need many additives to obtain high 

nonlinearity and stable electrical properties. ZnO varistors generally 
contain three phases, such as ZnO grains, Bi

2
O

3
-rich intergranular 

layer and spinel particles10. To overcome the problems in Bi
2
O

3
-based 

varistors, ZnO varistors using praseodymium oxides as VFO have 
been reported3-5, 11-12. On the other hand, Pr

6
O

11
-based ZnO varistors 

are reported to have only two-phases detected by X-ray diffraction, 
namely, ZnO grains and intergranular layers enriched with praseo-
dymium13. The absence of a spinel phase increases the active grain 
boundary area through which the electrical current flows. Therefore, 
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6
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an obvious indication for the liquid phase of all compositions, at the 
temperature interval between 1300 and 1350 °C. Micrographs show 
that the average grain size reaches a maximum when x = 0.5. The 
increase of the average grain size by addition of a small amount of 
dopant (x = 0.5) may be caused by some lattice defects, similar to 
that related to the La doped BaTiO

3
17, which is reported elsewhere. 

Further addition of Pr
6
O

11
 above 0.5 mol% causes the suppression 

of grain growth (except for the sample with x = 1.0 mol% and sin-
tered at high temperature). Such suppression has been also reported 
for 2 mol% rare-earth (Sm, Eu, Y and Er) doped ZnO. The reason 
for this suppression has been attributed to the pinning effect during 
the movement of grain boundaries18-19. In the light of variations of 
intergranular material, the liquid phase formation temperature is 
expected to occur between 1300 and 1350 °C depending on the 
system’s composition. The crystals generation for the sample with 
x = 1 and sintered at 1350 °C suggests that the liquid phase has the 
lowest temperature formation in this case. EDS analysis (not shown) 
determined that the precipitated phase is Pr-rich.

Figure 3a and 3b show the nonohmic behavior (E vs. J) of ZPC 
varistors sintered at 1300 and 1350 °C, respectively. More detailed 
concerning the E vs. J characteristic parameters, including the break-
down electric field (Eb), leakage current (I

L
), nonlinear coefficient 

(α), are summarized in Table I. The amount of 0.5 mol% Pr
6
O

11
 is 

sintering temperature during 30 minutes The average grain size (d) 
was determined by the linear intercept method, given by d = 1.56 L/
MN, where L is the random line length on the micrograph, M the 
magnification of the micrograph, and N is the number of the grain 
boundaries intercepted by lines15. Gold contacts were deposited on 
the samples surfaces by sputtering in order to measure the nonohmic 
properties. Current-voltage measurements were taken by using a High 
Voltage Measure Unit (Keithley Model 237). The breakdown electric 
field (Eb) was obtained at a current density from 1 mA.cm–2 and the 
leakage current I

L
 was measured at 0.80 Eb. In addition, the nonlinear 

coefficient (α) was determined from linear regression of log J vs. log 
E in the 1-10 mA.cm–2 region. The impedance measurements were 
made with a frequency response analyzer (HP 4294 A LF) using fre-
quency ranging from 40 Hz up to 110 MHz. The capacitance-voltage 
(C-V) characteristics of ZPC varistors were measured as a function 
of frequency with the variable applied bias voltage (0-38 V). The 
donor concentration (Nd) of ZnO grains and the barrier height (φ

B
) 

at the grain boundary were determined from the slope and intercept 
of straight line, respectively, using the Equation 1:

1 1
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0
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p
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pd
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
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φ 	 (1)

proposed by Mukae et al.16. In this equation C is the capacitance 
per unit area of grain boundary, C

0
 is the capacitance when V = 0, 

V is the voltage applied per grain, q is the electronic charge, e
0
 is 

the permittivity of free space, k is the dielectric permittivity of ZnO 
(∼8.5) and p is the number of barriers between grains (obtained by 
calculating the distance between electrodes divided by average grain 
size). The density of the interface states N

IS
 at the grain boundary was 

determined using the Equation 2:

N
k N

qIS
d B=







2 0

1

2ε φ
	 (2)

Once the donor concentration and barrier height are known, the 
depletion layer width (ω) of either side at the grain boundaries was 
determined by the Equation 3. 

N Nd ISω = 	 (3)

3. Result and Discussion

Figure 1a shows XRD pattern for the samples of the ZPC system 
sintered at 1300 °C. The samples with x = 0.1 and 0.5 contain only 
a wurtzite ZnO phase (card PDF 36-1451), while when x = 1.0, the 
sample contents a praseodymium sesquioxide phase, Pr

2
O

3
 (card 

PDF 47-1111), and exhibits a low intensity peak of Pr
2
CoO

4
 (card 

PDF 34-1282). XRD pattern for the samples sintered at 1350 °C are 
shown on Figure 1b. The difference concerning the sample sintered at 
1300 °C is that for x = 1.0 the Pr

2
CoO

4
 phase is not observed. At high 

(1350 °C) sintering temperature, a densification occurs through the 
liquid phase and the temperature where the eutectic appears depends 
strongly on the system's composition.

The Figures 2a, 2b and 2c show micrographs of the samples 
sintered at 1300 °C. In all cases dense ceramics (>95% of theoreti-
cal density) were obtained with presence of inter- and intragranular 
pores, in small amounts. For x = 1.0 the intragranular pores were 
completely eliminated, indicating that Pr

6
O

11
 helps densification. 

Pr
6
O

11
 strongly influences the grain size, which gets its maximum 

average value of 30 µm for x = 0.5 (see Table 1). Figures 2d, 2e 
and 2f show micrographs of the samples sintered at 1350 °C. The 
presence of a larger amount of precipitates in the grain boundary is 

Figure 1. XRD patterns of ZPC with a different content of Pr
6
O

11 
additive, 

indicating phases of samples sintered at a) 1300 °C and b) 1350 °C.
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states in the ZnO-based varistors, which can change dramatically the 
electrical behavior. The valence change is very sensitive to the applied 
process, as well as the Pr

6
O

11
 amount. This aspect should be care-

fully evaluated. In ZnO.Bi
2
O

3
-based varistor systems, changes also 

occur in both phases, the amorphous and crystalline phase of Bi
2
O

3
 

during the processing or its useful life7, 20. The varistors submitted 
to different stresses during use can modify its crystalline structure, 
which can cause the degradation process7.

Figures 4a and 4b show Nyquist complex impedance diagrams for 
ZPC system with 0.1 and 1 mol% of Pr

6
O

11
 and sintered at 1300 and 

1350 °C respectively. The inset of the region shows high frequencies. 
Two semicircles are observed which indicate the presence of two time 

not appropriate for varistors properties. This can be associated with 
the presence of a small number of effective barriers in the grain 
boundaries, besides the grain growth, generating few barriers among 
electrodes. The nonohmic properties have a significant increase for 
x = 1.0, as the highest value of the breakdown electric field since this 
dopant level inhibits grain growth, as shown by SEM.

It can be observed from Table I, that the nonohmic behavior of 
0.1 mol% Pr

6
O

11
 doped system sintered at 1300 °C is superior when 

compared with the sample with the same composition sintered at 
1350 °C. This indicates, that the liquid phase is important for homog-
enizing dopants, but the electric properties of this phase is as well an 
important aspect. For instance, praseodymium has several oxidation 

Figure 2. SEM micrographs of ZPC ceramics with different content of Pr
6
O

11 
additive: a) and d) 0.1% Pr

6
O

11
, b) and e) 0.5% Pr

6
O

11
, c) and f) 1.0% Pr

6
O

11
. 

The samples of micrographs showed in Figures a), b), c) have been sintered at 1300 °C and d), e), f) at 1350 °C.

Table 1. The current-voltage (I-V) and capacitance-voltage (C-V) characteristic parameters of ZPC varistors with different content of Pr
6
O

11
 additive sintered 

at 1300 and 1350 °C. The nonlinear coefficient (α) has been calculated for range values between 1-10 mA/cm2 and leakage current (I
L
) calculated at 20% of 

the breakdown electrical field.

Samples* E
b
 (V/cm) ± 100 I

L
 (µA) ± 1 α ± 10 d (µm) ± 1 N

d
 (m–3) 

(×1024) ± 0.02
N

IS
 (m–2)

(×1016) ± 0.01
φ

B
 (eV) ± 0.01 ω (nm) ± 0.02

0.1 (1300) 1050 174 9.0 22 1.17 2.08 0.454 10.3

0.1 (1350) 308 217 6.5 26 1.01 2.30 0.483 9.86

0.5 (1300) 201 210 3.8 30 - - - -

0.5 (1350) 40 613 1.7 33 - - - -

1.0 (1300) 1584 235 8.2 11 0.68 1.34 0.286 10.0

1.0 (1350) 425 287 5.5 35 0.57 2.04 0.674 8.5
*The first number indicates Pr

6
O

11
 amount, the second number that this between parentheses indicates the sintered temperature.
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between the (1/C – 1/2C
0
)2 vs. dc voltage (except the samples with 

x = 0.5 and sintered at 1350 °C) indicating that the barriers formed at 
the grain boundaries of highly dense ZnO are of Schottky nature. 

The corresponding Mott-Schottky plot is shown in 
Figures 6a and 6b. The observed frequency, depending on capacitance 
in conjunction with the information on grain size, reflects the averaged 
Mott-Schottky response. The φ

B
, Nd, N

IS
 and ω values calculated from 

this averaged Mott-Schottky response is displayed in Table 1. It is 
observed in this table that increasing the temperature from 1300 to 
1350 °C, Nd decrease due to oxidation of Zn donor defects2. Nd 
decrease is accompanied by an increase of interfacial states density 
N

IS
 and height barrier φ

B
, as well as decrease of depletion layer ω. 

The values of barrier height φ
B
 are calculated based on the fact that 

all the grains are considered electroactive. The obtained values are 
small, indicating that not all the barriers are active. In ZnO-Bi

2
O

3
 

constants in the systems. The samples sintered at 1350 °C showed 
more conductivity, this result occurs according to the leakage current 
values. The semicircles arcs in the complex moved with the center 
displaced below the real axis, because of the presence of distributed 
elements and relaxation process resulting from the trapped states. 

Figures 5a and 5b show Nyquist complex capacitance behavior 
of the ZPC system with different content of Pr

6
O

11
 and sintered at 

1300 and 1350 °C, respectively. The capacitive complex diagrams 
for semiconductor polycrystalline devices are discussed in detail 
in reference21 and reviewed in reference22. The samples sintered at 
1350 °C possess a larger grain size, and therefore exhibit a higher 
capacitance than samples sintered at 1300 °C. The decrease of the 
amount of the grain boundary, resulting from a faster grain growth 
at higher liquid sintering temperature, makes a contribution to the 
increase of the capacitance of the ZnO varistors, a capacitance of 
grain boundary barrier-layer type, which depends on the grain size23. 
The accumulate defects in the grain boundary region can lead to this 
widening thus decreasing the grain boundary capacitance. The grain 
boundary capacitance is located in the transition region, while the 
electrical manifestation of the trapping states is evident in intermedi-
ate frequencies when the Mott-Schottky behavior is not satisfied. At 
low frequencies exists a conductive component (G/ω) related to the 
grain boundary resistance. A good linear relationship can be seen 

Figure 3. The current density-electric field (J-E) characteristics of ZPC 
varistors with different content of Pr

6
O

11 
additive sintered at a) 1300 °C and 

b) 1350 °C.

Figure 4. Nyquist diagram for ZPC system with 0.1 and 1.0 mol% of Pr
6
O

11 

sintered at a) 1300 °C and b) 1350 °C. 
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1350 °C which does not follow a Mott-Schottky behavior), this aspect 
is related to a lower number of electrically active barriers. According 
to DRX, doping with 1.0 mol% Pr

6
O

11
 generates secondary phases of 

Pr
2
O

3
 and the properties have been recovered, showing similar elec-

tric parameters like the samples doped with 0.1 mol% Pr
6
O

11
. SEM 

analyses showed that all compositions contain precipitates Pr-rich, 
which should be carefully studied, specifically regarding the oxidation 
state and their influence on the nonohmic properties. ZPC systems 
own a simpler microstructure than ZnO.Bi

2
O

3
 traditional varistors 

and a potential application for low-tension varistors. However new 
dopants should be used in order to increase the potential barrier and 
decrease the leakage current.
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