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Multiphasic bioceramic scaffolds has been enhanced for dental and orthopedic applications. In this 
perspective, the laser surface texturing of metallic surfaces combined to bioactive calcium phosphate 
coatings have shown to be promising and economically feasible for biomaterial clinical applications. 
Ti-15Mo alloy samples were irradiated by pulsed Yb: YAG laser beam. The formation of HA and other 
calcium phosphates phases by biomimetic method should occur in the presence of Ca2+, PO4

3-, Mg2+, 
HCO3-, K+ and Na+. The modified surfaces were submitted to thermal treatment at 380 and 580°C. 
The results showed the processes of fusion and fast solidification from the laser beam irradiation, inducing 
the formation of stoichiometric α-Ti, TiO2 and non-stoichiometric titanium oxides, Ti3O and Ti6O with 
different oxide percentages depending on applied fluency (fluency of 0.023, 0.033, 0.040 and 0.048 J/mm2). 
The morphological and physicochemical properties have indicated the formation of a multiphase bioceramic 
coatings. It was observed the formation of amorphous calcium phosphate (ACP), octacalcium phosphate 
(OCP), and magnesium phosphate (Mg3(PO4)2) phases at 380°C, whereas β-TCP (tricalcium phosphate), 
OCP, and substituted β-TCP with Ca2,589Mg0,41(PO4)2 were obtained at 580°C. Therefore, the multiphasic 
bioceramic modified Ti-15Mo surface could enhance osteointegration for bone regeneration.
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1. Introduction
Calcium phosphates has been used in a variety of 

applications for the treatment of the bone system, since 
insulated material that surface coating of metallic implants1-7. 
The clinical limitations of the use of hydroxyapatite (HA) 
phase, due to its slow biodegradation, has aroused the 
interest in the others calcium phosphates phases, including 
amorphous calcium phosphate (ACP), octacalcium phosphate 
(OCP), magnesium phosphate (Mg3(PO4)2)

8-12. In this context, 
magnesium has been considered the most important ion used 
in calcium substitution, promoting a change in the biological 
and chemical behavior of these materials12-15.

The biomimetic coating method is based on the 
heterogeneous precipitation on titanium substrates and their 
alloys. The nucleation and growth of the calcium phosphate 
coating occurs after immersion in a balanced salt solution 
(Hank’s solution or SBF) at 37°C for several days4,16. This 
process is similar to the process of bone biomineralization4,17,18. 
The modified biomimetic method represented a major advance 
in the area of biomaterials. The growing interest in the use 

of other phases of calcium phosphates has resulted in more 
promising properties than the HA phase, new strategies have 
been described in bioceramic coating on metal surfaces16,19.

In our previous work2, Ti–Mo laser-activated surfaces were 
coated by sol-gel calcium phosphates, indicating a mixture of 
phases under diferents temperature control. As a continuation 
of our previous work, this study has evaluated six different 
simulated body fluid solutions, which were called modified 
SBF, in order to design a multiphase bioceramic coatings 
with controlled chemical deposition on metallic surface. 
The aim of this work was to evaluate the morphological and 
physicochemical properties of the surfaces of the Ti-15Mo 
alloy modified by Yb: YAG laser beam, as well as deposition 
of bioactive ceramics using the modified biomimetic method.

2. Materials and Methods

2.1 Laser-activated surface modification
Samples of Ti-15Mo alloy (4 mm length, 4 mm wide, 

2mm thick) were submitted to Yb:YAG multipulse laser 
irradiation using a Laser OmniMark 20 F (OmniTek, São *e-mail: carla.riccardi@unesp.br
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Paulo, Brazil) (λ = 1090 nm) at a short exposition time 
(1 minute). Our research group has evaluated the topography 
of metallic surfaces in order to relate parameters of Ti-15Mo 
surface, such as morphology and roughness and surface 
energy, depend on the formed phases2,3. The surfaces were 
modified under ambient pressure and air, using the parameters 
(power, frequency and scan speed) with four fluency 
(ablation) of 0.023, 0.033, 0.040 and 0.048 J/mm2 (n= 5 for 
each treatment), respectively (Table 1). After irradiation, 
the samples were treated ultrasonically and separately in 
solutions of ethyl alcohol, acetone and deionized water, 
followed by oven-drying and characterization.

2.2 Preparation of the modified SBF solution and 
biomimetic coating

The irradiated samples were immersed in modified SBF 
solution (SBFMg). This solution contained different ions in order 
to improve the formation of the phases of interest. The reagents 
used were: NaCl, K2HPO4, CaCl2.2H2O, MgCl2.2H2O and HCl 
supplied by J. T. Baker; Tris (hydroxymethyl) aminomethane 
was purchased from Mallinckrodt. Table  2 indicates the 
ionic concentrations of the SBFMg solution used to obtain 
the calcium phosphate coatings on the laser beam irradiated 
Ti-15Mo surfaces. The preparation of the SBFMg solution 
was modified from reported protocol by Aparecida (2007), 
in order to minimize the possibility of solution loss caused 
by its precipitation.

The substrates were washed sequentially with alcohol, 
acetone and deionized water. To obtain the calcium phosphate 
coatings using the SBFMg solution, all the samples were 
immersed in 50 mL of modified SBF solution (pH 7.4), 
and remained in controlled temperature condition at 37ºC 
for 4 days11,16,20. The solution was exchanged every 24 hours 
for the purpose of promoting the super-saturation conditions 
of the solution and, consequently, inducing the formation of 
the calcium phosphate coating. After the period to obtain the 
coatings, the samples were air dried and submitted to thermal 
treatment at 380 and 580ºC for 3 hours, without atmospheric 
control. The heating and cooling rate used was 5°C/minute.

2.3 Characterization
All the coated and uncoated samples were characterized 

by scanning electron microscopy (SEM), using a Zeiss EVO 
LS-15, with EDS/EBDS Oxford INCA Energy 250 system. 
The X-ray diffraction analysis was performed in a Siemens 
D5000 X-ray diffractometer, using a scan angle of 5 at 60º 
with a step size of 0.02 (2θ). Each sample was subjected to a 
counting time of 10s/step in a Bragg-Brentano configuration, 
using Cu (kα1) radiation. Quantification by Rietveld refinement 
was performed in a Rigaku RINT-2000 X-ray diffractometer 
with rotating anode, operating under the experimental 

conditions of 42KV, 120mA, with divergence slits, scattering 
angle of 0.5º, 5 mm horizontal opening of the divergence 
slit, 0.3 mm receiving signal, 5° Soller, copper anode, and 
wavelengths of Kα1 = 1.55056 Å and kα2 = 1.5444 Å, 
Iα2/Iα1 = 0.5. The chemical bonds of the calcium phosphates 
coatings were characterized by vibrational infrared spectroscopy, 
using a Bruker Vertex 70 FTIR spectrophotometer equipped 
with a diffuse reflection DRIFT CollectorTM.

3. Results and Discussions

3.1 Morphological properties
The micrographies of the surfaces of the uncoated samples 

Ti-15Mo alloy submitted to laser beam using different 
fluencies (0.023, 0.033, 0.040 and 0.048 J/mm2, respectively) 
are presented in Figure 1A. It can be observed the increased 
fluency, due to longer exposure time of the laser beam to the 
alloy surface, promotes typical morphologies with different 
surface energies. This can be explained through the formation 
of new structures (metal oxides) produced during the fast 
melt and solidification process2,3,21

Figure 1B shows the morphologies of the coatings obtained 
in samples 1, 2, 3 and 4, using the SBFMg solution and heat 
treated at 380ºC. It was possible to identify the formation 
of a coating with morphology characteristic of the ACP 2, 
OCP and Mg3(PO4)2 phases2,6,10,12,13,17,18,22.

The morphologies of the coatings obtained for samples 1, 
2, 3 and 4, using the SBFMg solution and heat treatment 
treated 580ºC are presented in Figure 1C. The formation 
of a multiphase coating was evidenced, evidenced by the 
presence of particles with different morphologies and size, 
characteristic of the phases of β-TCP, TCP replaced with 
magnesium - Ca2,589Mg0,41(PO4)2

23,24, magnesium phosphate 
[Mg3(PO4)2]

23,25 e OCP13,17,22,26. The presence of magnesium 
phosphate phases resulted in the absence of calcium deficient 
HA or HA, since these compounds present crystallization 
temperatures from 580ºC, inhibiting the conversion of 
calcium phosphates to HA27,28. According to the literature, 
the Mg2+ ion inhibits HA growth, since it complexes more 
easily with PO4

3- ions than Ca2+ ions17,18,22.

3.2 XRD Rietveld refinement
Figure 2 shows the diffractograms of samples (0.023, 

0.033, 0.040 and 0.048 J/mm2), respectively.
It was possible to produce the formation of stoichiometric 

and non-stoichiometric oxides as predicted by the fluency 
equation. X-ray diffraction spectra revealed (Figure 2A), 
in addition to α-Ti peaks (#: 89-4913), the presence of 
TiO2 (#:77-441), Ti3O (#: 76-1644), Ti6O (#: 72-1471) and 
was in accordance with Joint Committee Powder Diffraction 
Standard29.

Table 3 shows the oxide phases percentage obtained by 
Rietveld refinement, corresponding to laser beam-irradiated 
Ti-15Mo surfaces30,31. It can be observed the fusion and 
solidification process under ambient air, inducing the 

Table 1. Fluency obtained by irradiation of the laser beam.

Samples Am1 Am2 Am3 Am4
Fluency (J/mm2) 0.023 0.033 0.040 0.048

Table 2. The ionic concentrations of the solution SBFMg (nmol.mm-3)

Na+ K+ Mg2+ Ca2+ Cl- HPO4
2- SO4

2- HCO3
-

SBFMg 45,30 - 0,32 1,00 46,09 0,60 - -
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Figure 1. SEM of the (A) Ti-15Mo alloy submitted to laser beam using different fluences 0.023, 0.033, 0.040 and 0.048 J/mm2 (Samples 
Am 1, 2, 3 and 4, respectively). 500x; and after coating by immersion in modified SBFMg and heat treatment at (B) 380 °C and 
(C) 580 °C. 50.000X.

Table 3. Percentage of phases composed of Ti and O after refinement by Rietveld

Fluency(J/mm2)
0.023 0.033 0.040 0.048

Phases (%) Am1 Am2 Am3 Am4
α-Ti 34.39 18.35 15.59 19.09
Ti3O 23.00 29.57 38.36 32.26
Ti6O 23.84 23.19 29.61 31.26
TiO2 18.77 28.89 16.44 17.39
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formation of titanium oxides with different degrees of 
oxidation by laser ablation. The oxidation mechanism of 
titanium is complex owing to the high solubility of oxygen in 
the hexagonal-close-packed (h.c.p.) structure of α-titanium. 
A recent study has shown there are two other potential 
intersticial site (hexahedral and crowdion) in α -Ti where 
the oxygen can be located32. The presence of the Ti3O and 
Ti6O, substoichiometric phases can be explained by interstitial 
oxygen diffusion in the Ti lattice33.

The X-ray diffraction patterns of the bioceramic coatings, 
obtained using the SBFMg solution on the surfaces of the samples 
(1: F = 0.023 J / mm2, 2: 0.033 J / mm2, 3: 0.040 J / mm2 and 4: 
0.048 J / mm2), Figure 2B. All peaks corresponding to the 
Ti-15Mo alloy (#: 89-4913) were identified, formation of 
an ACP 2 phase mixture OCP (#: 26-1056) and magnesium 
phosphate (#: 48-1167)29.

The formation of the ACP phase to the HA phase can 
occur directly from ACP1, whereas its transformation through 
the formation of intermediates occurs with ACP2 as another 
intermediate2,27,34.

The use of the SBFMg solution favors the formation 
of OCP (octacalcium phosphate) due to the presence of the 
Mg2+ ion which allowed the crystallization of the ACP 2 and 
its partial transformation to OCP and the appearance of the 
magnesium phosphate phase. It was observed the amount of 
Mg2+ incorporated into calcified tissues associated with the 
calcium phosphates phase decreases with stronger calcification, 
leading to changes of the bone matrix that determines the 

bone fragility13,35. Therefore Mg2+ ions were incorporated 
into calcium phosphate ceramics, it is expected the in vivo 
process of this synthetic materials is more similar to bone 
mineral, as compared to Mg free synthetic materials13,36

Figure 2C shows the X-ray diffraction patterns of the 
bioceramic coatings, obtained using the SBFMg solution 
on the surfaces of samples 1, 2, 3 and 4. In all samples 
the peaks corresponding to the Ti-15 Mo (#: 89-4913), 
the formation of a mixture of phases tricalcium phosphate 
(β-TCP) (#:70-2065) TCP replaced with magnesium - 
Ca2,589Mg0,411(PO4)2 (#:87-1582), magnesium phosphate 
-Mg3(PO4)2(#: 48-1167) e OCP (#: 26-1052)29. The formation 
process of the β-TCP and CaxMgy(PO4)2 phases may be 
related to the decomposition of the non-stoichiometric 
hydroxyapatite phase, between 600 and 750°C, reaction 
below13,27,37,38:

( ) ( )
 

  ( , ) ( )  ( )
600 C

10 4 3 6 3 4 2 10 4 6 22 2Ca PO  CO OH Ca PO Ca PO OH  COβ
≥ °
→ − + + ↑

( ) ( )( )   ( ) ( )   1 x x 9 4 4 5 1 x x 3 4 2 2Ca Mg HPO PO OH 3 Ca Mg PO H O− −→ +

The Mg2+ ion is one of the most abundant trace ions in 
biological hard tissues. In dental enamel, the concentration 
is 0.4%, in the 1% dentin and in the bone 0.5%. The amount 
of Mg2+ in dental enamel increases from the surface to the 
enamel / dentin junction area. The properties of calcium 
phosphates of biological interest can be affected by the 
presence of Mg2+. This ion has been reported as responsible 

Figure 2. X-ray diffraction samples 0.023, 0.033, 0.040 and 0.048 J/mm2, before (2A) after calcium phosphate coatings obtained by 
immersion in SBFMg and heat treated at 380 °C (2B) and 580 °C (2C).
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for the calcium phosphate crystallization disorder, especially 
HA, when present in the solution in quantities sufficient to 
compete with Ca2+ ions. Studies have shown that when the 
Mg / Ca molar ratio of the solution is greater than 0.05, 
formation of Mg2+-substituted TCP will occur13,37-39.

3.3 Fourier transform infrared spectroscopy
The spectra in the middle infrared region of the bioceramic 

coatings using the SBFMg solution on the surfaces of 
samples 1, 2, 3 and 4 are shown in Figure  3A 380 °C 
and 3B 580 °C.

In the Figure 3B, it can be observed that all the spectra present 
bands in the regions between 1129-946 and 730 cm-1 which 
indicate the asymmetric stretching of the P-O-P bond, and a 
band in the 1242 cm-1 region relative to the P = O stretch40,41. 
For samples (1, 2, 3 and 4), the bands 630 and 572 cm-1 were 
associated with the stretching of the OH-group, the vibration 
of the PO4

3- group and the depletion of the PO4
3- group42. 

The band at 1646cm-1 is due to the incorporation of water 
molecules. The bands at 1370 and 1474 cm-1 may be associated 
with the vibration of the CO3

2- group, from the CO2 of the 
atmosphere during the processes of dissolution, agitation, 
reaction and calcination, or to the formation of carbonated 
hydroxyapatite due to the possibility of substitutions occurring 
of the ions PO4

3- or hydroxyl of the hydroxyapatite by the 
ion CO3

2-24,27,41,43,44.
For the coatings using modified SBFMg 

at 580°C (Figure 3B), all the spectra bands in the regions 

between 1240-940 and 760-720 cm-1 which indicate 
the asymmetric stretching of the P-O-P bond, and a 
band in the 1240 cm-1 region relative to the stretching 
of P = O40,41. In all samples (1, 2, 3 and 4) the presence of 
the 630 and 545 cm-1 regions was observed, which may be 
associated with the OH- group stretching, the PO4

3- group 
vibration and the unfolding of the group PO4

3- and refer to 
the probable formation of the hydroxyapatite phase2,42,45. 
Bands in the region of 1733-1630 cm-1 are attributed to the 
incorporation of water molecules. The bands 1386-1455 cm-1 may 
be associated with the CO3

2-, vibration from the CO2 of the 
atmosphere during the processes of dissolution, agitation, 
reaction and calcination24,27,41,43,44,

4. Conclusion
Bioceramics coatings have been deposited on metal 

and its alloy surfaces by laser ablation process. Multiphasic 
calcium phosphates must exhibit a combination of enhanced 
bioactivity and mechanical stability that is difficult to obtain 
in single-phase materials. In the present study, it has been also 
demonstrated the formation of different stoichiometric and 
non-stoichiometric oxides, such as α-Ti, TiO2, Ti3O, Ti6O, 
as well as the different oxide percentages depending on the 
applied fluency. This aspect has provide typical morphologies 
of the calcium phosphates phases. In this perspective, a 
multiphase bioceramic coatings on Ti-15Mo surfaces could 
be obtained depending on the thermal tratment performed 
to 380 and 580°C. Therefore, the multiphase bioceramic 
coatings deposited on Ti-15Mo surfaces can be further 
improved by providing an biocompatible and long term 
performance for biomedical applications, including bone 
regeneration in orthopaedics, oral and maxillofacial surgery.
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