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Generalizing Ellipsoidal Growth
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This paper generalizes previous work of Rios and Villa on spherical growth. The generalized 
equation applies to nucleation of ellipsoids according to an inhomogeneous Poisson point process. 
Microstructural evolution in three dimensions of nucleation and growth transformations of ellipsoids 
is simulated using the causal cone method. In the simulation, nuclei are located in space according 
to an inhomogeneous Poisson point process. The transformed regions grow with prolate and oblate 
ellipsoidal shapes. The ellipsoids have their corresponding axes parallel. The simulation and the exact 
analytical solution are in excellent agreement. Microstructures generated by the computer simulation are 
displayed. From these generated microstructures one can obtain the contiguity. In the contiguity against 
volume fraction plot, data from the sphere and all ellipsoids fall on the same curve. The contiguity 
curve for nucleation according to an inhomogeneous Poisson point process falls above the contiguity 
curve for nucleation according to a homogeneous Poisson point process. This behavior indicates that 
nucleation according to an inhomogeneous Poisson point process introduced a nucleus clustering effect.
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ellipsoidal growth.
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1. Introduction

The grains of polycrystals are usually equiaxed. In other 
words, the microstructure is isotropic. Nonetheless, because 
of processing, the grain shape may be elongated and the 
microstructure anisotropic.

For example, when a polycrystal is deformed by rolling, 
cold-drawing or ECAP1 the microstructure becomes anisotropic. 
Another example is the formation of ferrite from heavily 
deformed austenite2. In this situation, the ferrite grains may 
form elongated instead of equiaxed2. A less common example 
is the precipitation in a Ti-20wt%Mo alloy under compressive 
stress3 that results in parallel ellipsoidal precipitates. Ellipsoids 
are the first approximation for elongated grains. Therefore, 
it is of interest to study the formation of ellipsoidal grains 
in detail. In this paper, we use computer simulation and 
analytical methods to carry out this study.

One typically associates the classic work of Johnson-
Mehl, Avrami, and Kolmogorov (JMAK)4-6 with the growth 
of spherical grains. Nonetheless, Kolmogorov in his early 
work already stated that5: "The formulas hold either under 
the assumption of uniform growth in all directions (spherical 
growth) or for regions of arbitrary shape similarly oriented 
in space" (emphasis is ours).

This excerpt means that Kolmogorov already knew that 
his result could be valid for ellipsoidal growth provided 
the corresponding axes where parallel. Considering site 

saturation nucleation, that is, new regions nucleate at t=0 
and grow with an ellipsoidal shape with a constant rate the 
expression for ellipsoidal growth is
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4

V 1 2 3
3r

m= - -Q SV X	        (1)

In Eq. (1) the growing regions keep their shape during 
growth. G1, G2 and G3 are the growth velocities along the 
principal axes and λ is the number of nuclei per unit of volume. 
The axes lengths are a1 = G1t,a2 = G2t,a3 = G3t. Clearly if 
G1=G2=G3 then Eq. (1) reduces to the usual expression for 
spherical growth.

The critical issue here is Kolmogorov's assertive that 
regions must be similarly oriented in space. Eq. (1) is not 
valid if the ellipsoids are randomly oriented in space. Eq. (1) 
is not valid because if one has ellipsoids randomly oriented 
during a nucleation and growth transformation, one ellipsoid 
may prevent the growth of another. This phenomenon is 
called blocking or shielding7,8.

There have been many studies on this problem, and 
approximate solutions were proposed7,8. Still, an exact 
mathematical solution to this problem is unavailable. Godiksen 
et al.9 performed computer simulation of uniform randomly 
oriented oblate and prolate ellipsoids. Godiksen et al.'s results 
showed that the particular forms of Eq. (1) for prolates and 
oblates spheroids given by Vandermeer et al.10 are valid if 
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the ratio of the largest to the smallest ellipsoidal axis is less 
than four. For example, prolate ellipsoids with axes 4:1:1 
still obeyed Eq. (1) but not with axes 8:1:19.

In all those cases the nucleation of the ellipsoids was 
supposed to originate on sites uniform randomly located 
in space. In other words, nucleation sites that are located 
according to a homogeneous Poisson point process11. In 
addition to these nucleation and growth studies, exciting 
work has been done on the influence of anisotropy in the 
final nonequilibrium grain size distribution12,13.

In previous work, Rios and Villa14 generalized JMAK's 
treatment so that nuclei can be located in space not only according 
to a homogeneous Poisson point process but also according to 
an inhomogeneous Poisson point process. As a result, instead 
of volume fraction one now has a position-dependent mean 
volume density, Vv(t,x). Rios and Villa still managed to give a 
simple expression for the generalized site saturated case with 
constant and isotropic velocity, G, that is spherical growth

, expV t x x G t1 3
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where λ(x) is the position dependent intensity of an 
inhomogeneous Poisson point process.

One readily recognizes that when one has a homogeneous 
Poisson point process, λ is independent of the position and 
is equal to the number of nuclei per unit of volume. If λ is a 
constant, Eq. (2) reduces to the well-known JMAK's formula.

Nevertheless, for Eq. (2) to have such a convenient 
expression Rios and Villa assumed that λ(x) was a harmonic 
function, that is, Δλ(x)=0. Otherwise, if λ(x) were not 
harmonic, Rios and Villa showed that one still could obtain 
an expression for an arbitrary inhomogeneous Poisson point 
process, but it would involve integrals, see ref.14 for details. 
Eq.(2) was tested against computer simulation using cellular 
automata in a previous work15.

Because of this, one cannot merely introduce λ(x) into 
Eq. (1) "by analogy" to obtain an expression for ellipsoids 
nucleated according to an inhomogeneous Poisson point 
process.

In this paper, we generalize Eq. (1). The nucleation of 
ellipsoids follows an inhomogeneous Poisson point process. 
We determine the conditions that λ(x) should satisfy so that 
one can still have a convenient expression such as Eq. (2). 
We test this expression against computer simulation of the 
nucleation and growth of prolate and oblate ellipsoids similarly 
oriented in space for several ratios of the axis's length.

2. Mathematical Background

As demonstrated by Rios and Villa14, the critical point 
for obtaining Eq. (2) in such a convenient form is a property 
of integrals of harmonic functions: the mean value property. 
In 3D, this property states that the integral of a harmonic 

function f within a ball of unit ratio centered at x is equal to 
(4π/3)f(x). For details see Rios and Villa14. In what follows 
we derive which conditions should the function f satisfy so 
that a similar property applies. This similar property is that, 
instead of a ball centered at the origin, one has an ellipsoid 
centered at the origin. From this property, an expression like 
Eq. (2) can be obtained for ellipsoids.

For the sake of simplicity, let us consider the case of site 
saturation. Site-saturation means that all nucleation sites are 
exhausted early in the transformation. In other words, all 
nucleation takes place a t=0, and no more nucleation takes 
place during further transformation progress.

Let the growth model be as follows: the grains grow with 
an ellipsoidal shape with a constant rate. That is, at time t 
the grain born at point x is given by an ellipsoid centred at x 
with axes of length a1, a2 and a3, respectively. The ellipsoids 
are oriented in space so that their corresponding axes are 
parallel. Thus, let us denote by E(x; a1, a2, a3) the ellipsoid in 
ℝ3 centered in x = (x1, x2, x3) with axes a1, a2 and a3, and such 
that the direction of the a1-axis is along the vector (1,0,0).

					            

					            (3)

In this way we can model the nucleation process by a 
point process N = {xn} in ℝ3 where xn represents the spatial 
location of the n-th nucleus of the ellipsoidal grain. Thus, 
denoted by θt (x) the grain born at point x and grown until 
time t, we have that the crystallized region θt at time t is the 
random closed set

					            (4)

where

					            (5)

The causal cone C(t,x) at time t at point x is then given by

					            (6)

It follows that

					            (7)

As we well know14, if the nucleation process N is a 
Poisson point process, then the mean volume density Vv(t,x) 
is given by

					            (8)

The problem is now to compute the integral in Eq. (7).
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If the intensity λ(y) is a function in ℝ3 such that

					            (9)

where f(y) = λ(a1y1 + x1, a2y2 + x2, a3y3 + x3).
Eq. (9) ensures that has the mean value property for 

ellipsoids. Therefore, following a similar procedure described 
in Rios and Vila14 one can integrate Eq. (7)

					            (10)

Note that, the case of spherical growth is a particular 
case of the ellipsoidal case where G1 = G2 = G3.

In the above one obtained an expression for a spatially 
dependent but time-independent number of nuclei. Following 
the same reasoning as above14, we can also derive an expression 
for a spatially dependent but time-dependent number of 
nuclei: a constant nucleation rate, I(x), i. e., a constant (but 
spatially dependent) nucleation rate

					            (11)

The function, I(x), must satisfy the same criterion derived 
for λ(x) expressed by Eq. (9).

Regarding a constant nucleation rate in the context of 
an inhomogeneous Poisson point process, Eq. (11), refer to 
Rios and Villa14.

Returning to Eq. (10) one may notice that an intensity 
function λ of the type

					            (12)

satisfies Eq. (9).
Moreover, one may also define a normalized time for 

each transformation as ,G G G t1 2 3
3x =  Eq. (2) and Eq. (10) 

can be rewritten as Eq. (13). Note that, in this case, each 
transformation has its normalized time that depends on the 
geometric parameters a1, a2 and a3

					            (13)

The normalized time will be useful in what follows as 
we will be able to combine in the same plot the kinetics of 
ellipsoids of different shapes.

The volume fraction transformed can be defined as the 
integral of the mean volume density over the whole volume 
[0,1]x[0,1]x[0,1]

					            (14)

3. Methodology

For the nucleation and growth process, one performed 
a computer simulation using the Causal Cone method16. 

The matrix comprised 300x300x300 cubic cells. Prolate 
ellipsoids with aspect ratios 8:1:1, 4:1:1 and 2:1:1 and 
oblate ellipsoids with aspect ratios 8:8:1, 4:4:1 and 2:2:1 
were simulated. Simulations employing spherical growth 
were also carried out for comparison. All simulations used 
site-saturated nucleation described above.

The nuclei were located within the matrix according 
to an inhomogeneous Poisson point process with an 
intensity, λ(x), varying along only one direction x1. 
The intensity was equal to λ(x) = λ(x1, x2, x3) = mx1 + 
n where "m" and "n" are constants equal to 596 and 2, 
respectively. The same values of "m" and "n" were used 
in an earlier work of in which growth was equiaxed15. For 
dimensional purposes, we consider that each the side of 
a cell measures 1µm. Therefore, the matrix has a volume 
equal to 3003 µm3. These numbers were chosen to give 
a total number of nuclei equal to 300. As a result, the 
mean grain size is roughly 44 µm that is a reasonable 
value. Periodic boundary conditions were adopted 
except along the x1 axis. All growth velocities were kept 
constant throughout the transformation. Each quantity 
reported here is the mean value of 50 simulations. That 
is, we repeated each simulation 50 times. This number 
of repetitions, 50, was used in several of our previous 
work with reliable results. The function λ(x) used here 
was similar to that used in a previous work in which the 
regions were equiaxed15.

4. Results and Discussion

4.1 Microstructural evolution

Figure 1 shows the microstructural evolution for oblate 
ellipsoidal grains with aspect ratios 4:4:1. There is an 
increase in the mean volume density, VV(t,x), from x1 = 0 
to x1 = 1. This is consistent with the fact that nuclei density 
increases with x1.

Therefore, the lower part of the matrix contains larger 
grains as it has fewer nuclei than the upper part. Figure 2 
shows an analogous situation for the microstructural evolution 
of prolate ellipsoids with aspect ratios 4:1:1.

Figure 3 exhibits the fully transformed microstructure 
on the planes x1 = 0.1, x1 = 0.5 and x1 = 0.9, respectively. 
The growing ellipsoids have aspect ratios: (a) 1:1:1; (b) 
1:1:1; (c) 1:1:1, (d) 8:8:1, (e) 8:8:1, (f) 8:8:1, (g) 8:1:1, (h) 
8:1:1 and (i) 8:1:1. As expected, the grain size decreases as 
the nuclei intensity increases from x1 = 0.1 to x1 = 0.9 in all 
cases. Prolate ellipsoids displays anisotropic growth more 
clearly compared with oblate ellipsoids.

4.2 Volume fraction transformed against time

For oblate ellipsoids, Figure 4a shows the mean volume 
density, VV(t,x) as a function of normalized time (See section 2.). 
Figure 4b shows the volume fraction, VV(t), as a function 
of normalized time.
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Figure 1. Computer simulated microstructures of the transformations inhomogeneous nucleated with grains that grow as oblate spheroids 
with aspect ratios 4:4:1: (a) VV = 0 (b) VV = 0.3, (c) VV = 1

Figure 2. Computer simulated microstructures of the transformations inhomogeneous nucleated with grains that grow as prolate spheroids 
with aspect ratios 4:1:1: (a)VV = 0 (b) VV = 0.3, (c) VV = 1.

For prolate ellipsoids, Figure 5a exhibits the mean 
volume density, VV(t,x) as a function of normalized time. 
Figure 5b shows the volume fraction, VV(t), as a function 
of normalized time.

We can compare the present work with previous work15 
that used cellular automata to simulate the transformation 
nucleated according to an inhomogeneous Poisson point 
process. In the previous work15, the growing regions were 
not spherical but equiaxed owing to the use of cellular 
automata. In that work, analytical theory and experiment 
were also in good agreement.

The reference plane for the transformation kinetics is 
the plane with x1 = 0.5. On this plane, one has λ(0.5) = 300. 
This means that the transformation curve associated with 
x1 = 0.5 is the same curve that would be obtained if the 300 
nuclei were located within [0,1]x[0,1]x[0,1] according to 
an homogeneous Poisson point process. Any plane above 
the reference plane has a faster kinetics as more nuclei are 
present. By contrast, any plane below the reference plane 
has a slower kinetics owing to the smaller number of nuclei.

Thanks to the use of normalized time the kinetics of 
all ellipsoids on a given plane in Figures 4a and 5a fell on 
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Figure 3. Fully transformed microstructure on x1 sections with grains that grow with aspect ratios (a) 
1:1:1 on plane x1 = 0.1; (b) 1:1:1 on plane x1 = 0.5; (c) 1:1:1 on plane x1 = 0.9; (d) 8:8:1 on plane x1 
= 0.1; (e) 8:8:1 on plane x1 = 0.5; (f) 8:8:1 on plane x1 = 0.9; (g) 8:1:1 on plane x1 = 0.1; (h) 8:1:1 on 
plane x1 = 0.5; and (i) 8:1:1 on plane x1 = 0.9; .

the same line for a given value of x1. This means that the 
kinetics of the simulation carried out here could be reduced 
to the kinetics of the spherical growth. But one must bear in 
mind that a critical condition for this to be possible is that 
λ(x) must satisfy Eq. (9) for all values of ai. Only when λ(x) 
satisfies Eq. (9) one can obtain Eq. (10) formally similar 
to the equation derived for spherical growth by Rios and 
Villa14. One can recall that, for spherical growth, as already 
said above, it is enough that λ(x) is a harmonic function, 
that is, Δλ(x)=0.

Moreover, notice that, according to Rios and Villa14, if 
the nucleation takes place too close to x1 = 0 or x1 = 1 one 
must introduce correction factors. These correction factors 
are necessary to compensate for the fact that a region 
cannot grow beyond x1 = 0 or x1 = 1. As mentioned in the 
Methodology, there are no periodic boundary conditions on 
the top, x1 = 0, and bottom, x1 = 1, plane. Periodic boundary 
conditions were used only on the x2 = 0 and x2 = 1 and on he 

x3 = 0 and x3 = 1 planes. In the present case, transformations 
nucleated on x1 = 0.1 or x1 = 0.9 still gave good agreement 
with analytical theory without correction.

A significant difference from a transformation 
homogeneously nucleated is that the volume fraction 
transformed has to be calculated integrating over the total 
volume [0,1]x[0,1]x[0,1], Eq. 14. The volume fraction 
against time curves are shown in Figure 4b and 5b. Likewise 
Figures 4a and 5a, all curves can be normalized to fall on a 
single curve. One critical point is that the volume fraction 
curves showed in Figures 4b and 5b are different from the 
curve shown in Figures 4a and 5a for x1 = 0.5. In other 
words, the volume fraction against time curves of Figures 
4b and 5b do not coincide with the curve that would be 
obtained if the 300 nuclei were located within [0,1]x[0,1]
x[0,1] according to an homogeneous Poisson point process. 
The volume fraction against time curves are significantly 
influenced by the inhomogeous nucleation.
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Figure 4. Transformation kinetics for oblate ellipsoids with aspect ratios: 2:2:1, 4:4:1, 8:8:1. (a) Mean volume density as a function of 
normalized time; (b) Volume fraction as a function of normalized time.

Figure 5. Transformation kinetics for prolate ellipsoids with aspect rations: 2:1:1, 4:1:1, 8:1:1. (a) Mean volume density as a function of 
normalized time; (b) Volume fraction as a function of normalized time.

4.3 Contiguity

Contiguity is defined as17

					            (15)

In Eq. (15) is the parent phase and β is the new phase. 
Sv

ab  is the interface area per unit of volume between the 
new phase and the parent phase. Sv

bb  is the interface area 
per unit of volume between the new phase. Both interfacial 
areas: Sv

ab  and Sv
bb  were obtained from the microstructures 

generated by computer simulation.
This parameter allows quantifying the impingement of the 

grains within the 3D matrix. According to Vandermeer17, the 
contiguity detects deviations from nucleation randomness. For 
example, if nuclei form clusters or are arranged periodically, 
the contiguity will be significantly different17.
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Figure 6 shows a plot of the contiguity measured over 
the total volume [0,1]x[0,1]x[0,1] as a function of the 
volume fraction transformed. Figure 6 shows for nucleation 
according to an inhomogeneous Poisson point process the 
contiguity of spheres, dashed line in Figure 6, and ellipsoids 
of different shapes, symbols on Figure 6, fall on the same 
line. A similar phenomenon takes place when spheres, 
solid line in Figure 6, and ellipsoids (not shown) nucleate 
according to a homogeneous Poisson point process9. Figure 
6 demonstrates that the contiguity curve of a transformation 
nucleated according to an inhomogeneous Poisson point 
process lies above the contiguity curve of a transformation 
nucleated according to a homogeneous Poisson point process. 
The contiguity is considered a reliable parameter to determine 
the arrangement of grains in space relative to one another10. 
According to Vandermeer10, when the contiguity curve of a 
transformation lies below the line for homogeneous Poisson 



7Generalizing Ellipsoidal Growth

Figure 6. Contiguity against volume fraction. Solid line: the growth 
of spheres nucleated according to a homogeneous Poisson point 
process. Dashed line: the growth of spheres nucleated according to 
an inhomogeneous Poisson point process. The symbols correspond 
to ellipsoids nucleated according to an inhomogeneous Poisson 
point process

point process nucleation, the solid line in Figure 6, this indicates 
that the nuclei tend to a periodic arrangement. By contrast, 
when the contiguity curve of a transformation lies above the 
line for homogeneous Poisson point process nucleation, this 
indicates that the nuclei tend to cluster. Nuclei clusters have 
a broad meaning. Whenever there is a group of nuclei closer 
to one another than the average distance between nuclei, one 
has a nuclei cluster. For example, when nuclei form at the 
grain boundary of a polycrystal, they form a cluster, and their 
subsequent transformation has a contiguity curve above that 
of a homogeneous Poisson point process. In the present case, 
the inhomogeneous Poisson point process results in more 
nuclei located near than near x1 = 1 than near x1 = 0. Therefore, 
one might say that there is a clustering effect of nuclei at the 
upper part of the transformation volume. This is reflected in 
the fact that the contiguity curve for nucleation according 
to an inhomogeneous Poisson point process lies above the 
curve for nucleation according to a homogeneous Poisson 
point process. This behavior is coherent with Vandermeer10 
observation. It is also coherent with computer simulation 
by Rios et al.18 that systematically changed nuclei location: 
from periodic to clustered. Rios et al.18 results were totally 
in agreement with Vandermeer's statement that was based 
on experimental observation.

5. Conclusions

•	 This paper further generalizes previous work of Rios 
and Villa on spherical growth14. The generalized 
equations, Eq. (10) and Eq. (11), apply to nucleation 
of ellipsoids according to an inhomogeneous Poisson 
point process.

•	 Spherical growth is a particular case of the 
more general equation derived here. However, 

the general equations, Eq. (10) and Eq. (11), manage 
to preserve the convenient form of the spherical 
growth equation.

•	 Computer simulation results showed excellent 
agreement with the theoretical results.

•	 Moreover, the computer simulation generates the 
microstructures obtained by nucleation and growth 
of oblate and prolate ellipsoids. The microstructures 
allow better visualization of the effect of the ellipsoid 
shape on the microstructure.

•	 Furthermore, computer simulation permits the 
measurement of the interfacial area between 
transformed and untransformed regions as well 
as the interfacial area between the transformed 
regions. The determination of these interfacial 
areas permits the determination of the contiguity. 
In the contiguity against volume fraction plot, data 
from the sphere and all ellipsoids fall on the same 
curve. The contiguity curve for nucleation according 
to an inhomogeneous Poisson point process falls 
above the contiguity curve for nucleation according 
to a homogeneous Poisson point process. This 
behavior indicates that nucleation according to an 
inhomogeneous Poisson point process introduced 
a nucleus clustering effect.
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