Acessibilidade / Reportar erro

Characterization of Ti6Al4V Alloy Produced by Laser-Powder Bed Fusion and Surface Modification Using Nanosecond Laser

Ti alloys are widely used in severe corrosion environments where corrosion resistance is required, as biomedical industry. Additive manufacturing produces customized and complexes products. Laser texturing is a process of structuring surfaces using laser pulses, that allows the creation of periodic patterns on the surfaces of materials, to modify them, functionally and/or aesthetically, in a precise and direct way, allowing parameterization, versatility and repeatability. Consequently, bringing together metallic additive manufacturing with laser texturing process could be an alternative to obtain parts with functional hydrophilic surfaces, which improves osteointegration and reduces bacteria adhesion. Thus, the aim of this work is to characterize and evaluate the influence of LASER parameters in as-built additive manufactured potential biomedical components. Ti6Al4V specimens were produced by L-PBF, using Ytterbium LASER with maximum power of 500 W, varying the laser power from 61 W to 244 W. The samples were characterized by SEM, Microhardness, and wettability. After that, some specimens were Laser textured using an Ytterbium optical fiber laser, and then evaluated by SEM, wettability, and 3D roughness. It was possible to observe that the surface of all studied samples was flattened after Laser texturing in comparison with as-built condition, due to the melting of the powder particles.

Keywords:
LASER texturing; L-PBF; wettability


ABM, ABC, ABPol UFSCar - Dep. de Engenharia de Materiais, Rod. Washington Luiz, km 235, 13565-905 - São Carlos - SP- Brasil. Tel (55 16) 3351-9487 - São Carlos - SP - Brazil
E-mail: pessan@ufscar.br