Synthesis and Characterization of Ca₂CoTaO₆, a New Monoclinically Distorted Double Perovskite Araceli Elisabet Lavata, Enrique José Baranb,* ^aDepartamento de Ingeniería Química, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, 7400, Olavarría, Argentina ^bCentro de Química Inorgánica – CEQUINOR/CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata – UNLP, CP 962, 1900, La Plata, Argentina Received: January 17, 2011; Revised: August 2, 2011 The new $\text{Ca}_2\text{CoTaO}_6$ double perovskite has been synthesized by a conventional solid state reaction and its unit cell parameters determined by X-ray powder diffractometry. It crystallizes in the monoclinic space group $\text{P2}_1\text{/n}$. The unit cell parameters are: a = 5.507(2) Å; b = 5.564(3) Å; c = 7.798(3) Å; $\beta = 89.99(4)^\circ$ and Z = 2. The IR spectrum of the material was recorded and is briefly discussed. Some comparisons with $\text{Ca}_2\text{CoNbO}_6$ and other isostructural perovskites are also performed. **Keywords:** Ca₂CoTaO₆, double perovskite, X-ray diffraction, IR spectrum ## 1. Introduction It is well-known that mixed oxides with the perovskite structure present an important number of interesting physicochemical properties and high potential for technological applications¹⁻³. Double perovskites of the type A₂BB'O₆ containing Nb(V), Mo(VI), W(VI) or Te(VI) associated with first-row transition metal cations have shown to posses interesting magnetic properties⁴⁻⁸ and are potentially useful as materials for oxide fuel cells and other similar applications⁹⁻¹⁵. In this context, a new perovskite of this type, Ca₂CoNbO₆, has been recently prepared and characterized¹⁶. As an extension of this work we have now prepared a similar double perovskite containing Ta(V) instead of Nb(V) and performed some comparisons between the two materials. # 2. Experimental Polycrystalline samples of Ca_2CoTaO_6 and Ca_2CoNbO_6 were prepared by mixing stoichiometric amounts of $CaCO_3$, Co_3O_4 and Ta_2O_5 (or Nb_2O_5). The mixtures were heated in air, in alumina crucibles, initially at 1000 °C during 8 hours. followed by multiple heatings, during other 8 hours more at 1250 °C with intermediate grinding after each step. Finally, the samples were furnace cooled to room temperature. The obtained mixed oxides were characterized by X-ray powder diffractometry, using a continuous step scanning procedure (step size: 0.020° (in 2θ); time per step: 0.5 seconds), with a Philips PW 1710 diffractometer and monochromatic Cu-K $_{\alpha}$ radiation ($\lambda=1.54186$ Å), using NaCl as an external calibration standard. The indexation of the powder diagrams and calculation of unit cell parameters were carried out using a locally modified version of the program PIRUM of Werner¹⁷. The infrared spectra were recorded with a Nicolet-Magna 550 FTIR instrument, using the KBr pellet technique. Spectral resolution was 4 cm⁻¹. Unfortunately, attempts to record the corresponding Raman spectra, using the FRA 106 Raman accessory of a Bruker IFS 66 FTIR instrument and the 1046 nm line of a solid state Nd:YAG laser for excitation, failed due to the darkness of the samples. ## 3. Results and Discussion # 3.1. Crystallographic data and structural aspects The prepared Ca₂CoTaO₆ and Ca₂CoNbO₆ perovskites show identical powder diagrams indicating the formation of a pair of isostructural materials. Besides, the diagram of Ca₂CoNbO₆ was identical to that previously published¹⁶ and also to that of the isostructural Ca₂CrTaO₆^[18]. The powder diagrams of the three materials present some clearly splitted reflections as well as a number of weak superstructure reflections (cf. also^{16,18}). The powder diagram of $\text{Ca}_2\text{CoTaO}_6$ could be clearly indexed in the monoclinic system. The refined unit cell parameters, together with other relevant crystallographic data, are shown in Table 1 and the complete indexed powder diagram is presented in Table 2. By comparison with the Rietveld refined structures of $\text{Ca}_2\text{CoNbO}_6^{[16]}$ and $\text{Ca}_2\text{CrTaO}_6^{[18]}$, one can admit that the space group of the new perovskite is also $\text{P2}_1\text{/n}$, with the Co^{III} and Ta^{V} ions distributed randomly over Wykoff positions 2c and 2d whereas Ca^{II} and all the O-atoms are at general Wykoff positions 4e. Briefly, the structure is built up by two types of octahedral MO_6 polyhedra, running along the c-axis of the unit cell, over which the Ta(V) and Co(III) ions are distributed in a disordered way. The Ca(II) ions are located in the holes generated by this arrangement of octahedra, coordinated by twelve O-atoms. On the other hand, and as suggested in the case of Ca₂CoNbO₆ and other related systems¹⁶, it is possible that the material presents a slight oxygen deficiency, derived from the presence of a low percentage of Co^{II} ions at the Co^{III} sites. This supposition is supported additionally by the presence of weak bluish spots on the crucible walls after the final heating step, due probably by generation of small amounts of the CoAl₂O₄ spinel. **Table 1.** Crystallographic data of Ca₂CoTaO₆. | a (Å) | b (Å) | c (Å) | β (°) | Vol. (ų) | Space group | Z | $\delta_{\text{calc.}}(\text{g.cm}^{-3})$ | |----------|----------|----------|----------|------------|--------------------|---|---| | 5.507(2) | 5.564(3) | 7.798(3) | 89.99(4) | 238.94(20) | P2 ₁ /n | 2 | 5.78 | **Table 2.** Indexed powder pattern of Ca₂CoTaO₆. | h k l | d _{obs.} (Å) | d _{calc.} (Å) | I/I _o | | | | | | |--------|-----------------------|------------------------|------------------|--|--|--|--|--| | 1 0 1 | 4.550 | 4.498 | 5 | | | | | | | 110 | 3.933 | 3.913 | 85 | | | | | | | 111 | 3.523 | 3.536 | 5 | | | | | | | 112 | 2.800 | 2.800 | 100 | | | | | | | 200 | 2.759 | 2.752 | 45 | | | | | | | 003 | 2.599 | 2.597 | 5 | | | | | | | -2 0 1 | 2.5646 | 2.5631 | 4 | | | | | | | 2 1 0 | 2.4688 | 2.4663 | 6 | | | | | | | 2 1 1 | 2.3741 | 2.3755 | 4 | | | | | | | -1 0 3 | 2.3114 | 2.3142 | 5 | | | | | | | 022 | 2.2661 | 2.2640 | 6 | | | | | | | 113 | 2.1910 | 2.1923 | 5 | | | | | | | -1 1 3 | 2.1402 | 2.1367 | 6 | | | | | | | 220 | 1.9605 | 1.9563 | 55 | | | | | | | 203 | 1.9294 | 1.9268 | 4 | | | | | | | 3 0 1 | 1.8006 | 1.8013 | 7 | | | | | | | -3 0 1 | 1.7722 | 1.7701 | 32 | | | | | | | -3 0 2 | 1.6334 | 1.6350 | 30 | | | | | | | 0 2 4 | 1.5965 | 1.5957 | 45 | | | | | | | 3 2 1 | 1.5113 | 1.5120 | 4 | | | | | | | 2 2 4 | 1.3993 | 1.4000 | 17 | | | | | | | 205 | 1.3796 | 1.3794 | 10 | | | | | | | -1 4 1 | 1.3268 | 1.3266 | 10 | | | | | | | -1 0 6 | 1.2530 | 1.2531 | 20 | | | | | | The unit cell parameters of Ca_2CoTaO_6 are very close to those of Ca_2CoNbO_6 , as expected from the fact that Shannon and Prewitt's radii for both Nb(V) and Ta(V) in octahedral coordination are identical¹⁹. ## 3.2. Infrared spectra The FT-IR spectra of both, Ca₂CoTaO₆ and Ca₂CoNbO₆ samples, are also totally similar and present a very simple spectral pattern, as usually found in perovskite materials^{1,20}. The spectrum of one of the prepared Ca₂CoTaO₆ samples is shown in Figure 1. IR and Raman spectra for Sr_2LnTaO_6 materials (with Ln = trivalent lanthanides, Y(III) and In(III)), which are also isostructural to Ca_2CoTaO_6 and Ca_2CoNbO_6 , have recently been investigated²¹ and also theoretically analyzed²². In all cases, two groups of bands, together with a certain number of weak shoulders, could be clearly identified. Measured band positions for Ca₂CoTaO₆ and Ca₂CoNbO₆ are shown in Table 3. The very strong higher energy band is assigned to the antisymmetric stretching vibration (v_3 of an O_h -symmetry species) of the MO_6 octahedra containing the Co(III) and Ta(V) ions and is surely dominated by the Ta-O motions, which involves the stronger Figure 1. FTIR spectrum of one of the prepared $\text{Ca}_2\text{CoTaO}_6$ samples in the spectral range between 900-300 cm⁻¹. Table 3. FTIR spectra of Ca₂CoTaO₆ and Ca₂CoNbO₆ (band positions in cm⁻¹). | Ca ₂ CoTaO ₆ | Ca ₂ CoNbO ₆ | Approximate assignment | |------------------------------------|------------------------------------|------------------------| | 823 sh | 806 sh | | | 660 vs, 558 sh | 652 vs, 540 sh | $v_{as} (MO_6)$ | | 463 sh, 440 sh, 371 vs | 466 sh, 440 sh, 370 vs | $\delta_{as} (MO_6)$ | vs: very strong; sh: shoulder. metal-oxygen bonds. The second strong band, at 370 cm⁻¹, can be assigned to the antisymmetric deformation (ν_4 of an O_h -symmetry species) of these same octahedra. Only slight energy differences are observed between the band positions of ${\rm Ca_2CoTaO_6}$ and ${\rm Ca_2CoNbO_6}$, in agreement with their practically identical unit cell dimensions and M-O bond strengths. The determined band positions are also comparable to those measured in the ${\rm Sr_2LnTaO_6}$ materials²¹. #### 4. Conclusions Ca₂CoTaO₆ constitutes a new example of a monoclinically distorted double perovskite. Its unit cell parameters are close to those of the recently reported isostructural Ca₂CoNbO₆ material. The very simple two-band infrared spectra of both compounds are also totally similar and resemble that of other perovskite materials. In order to go deeper and to provide more details about this compound, further studies should be conducted. # Acknowledgements This work has been supported by the Universidad Nacional del Centro de la Provincia de Buenos Aires, the Universidad Nacional de La Plata and the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina. E.J.B. is a member of the Research Career from this organization. #### References - Baran EJ. Structural chemistry and physicochemical properties of perovskite-like materials. *Catalysis Today*. 1990; 8(2):133-151. http://dx.doi.org/10.1016/0920-5861(90)87015-U - Galasso FS. Perovskites and High T_c Superconductors. New York: Gordon & Breach; 1990. - Tejuca LG and Fierro JLG, editors. Properties and Applications of Peroskite-Type Oxides. New York: Marcel Dekker; 1993. - Yoshii K. Magnetic transitions in the perovskite Ba₂CoNbO₆. *Journal of Solid State Chemistry*. 2000; 151(2):294-297. http://dx.doi.org/10.1006/issc.2000.8656 - Martínez-Lope MJ, Alonso JA, Casais MT and Fernández-Díaz MT. Preparation, crystal and magnetic structure of the double perovskites Ca₂TWO₆ (T = Co,Ni). Zeitschrift für Naturforschung. 2003; 58b(2-3):127-132. - Gateshki M, Igartua JM and Hernández-Bocanegra E. X-ray powder diffraction results for the phase transitions in Sr₂MWO₆ (M = Ni, Zn, Co, Cu) double perovskite oxides. *Journal of Physics Condensed Mater*. 2003; 15(36):6199-6217. http://dx.doi.org/10.1088/0953-8984/15/36/309 - Ortega-San Martín L, Chapman JP, Lezama L, Sánchez-Marcos J, Rodríguez-Fernández J, Arriortua MI et al. Factors determining the effect of Co(II) in the ordered double perovskite structure Sr₂CoTeO₆. *Journal* of Materials Chemistry. 2005; 15(1):183-193. - Augsburger MS, Viola MC, Pedregosa JC, Muñoz A, Alonso JA and Carbonio RE. Preparation, crystal and magnetic structures of two new double perovskites: Ca₂CoTeO₆ and Sr₂CoTeO₆. *Journal of Materials Chemistry*. 2005; 15(9):993-1001. http://dx.doi.org/10.1039/b413976c - Nowick AS, Yang D and Liang KC. Some factors that determine proton conductivity in nonstoichiometric complex perovskites. *Solid State Ionics*. 1999; 125(1-4):303-311. http://dx.doi.org/10.1016/S0167-2738(99)00189-7 - Nowick AS and Liang KC. Effect of non-stoichiometry on the protonic and oxygen-ionic conductivity of Sr₂(ScNb)O₆: a complex perovskite. - Solid State Ionics. 2000; 129(1-4):201-207. http://dx.doi.org/10.1016/ S0167-2738(99)00326-4 - Tao S, Canales-Vázquez J and Irvine JTS. Structural and electrical properties of the perovskite oxide Sr₂FeNbO₆. Chemistry of Materials. 2004; 16(11):2309-2316. http://dx.doi.org/10.1021/cm049923+ - Huang YH, Dass RJ, Denyszyn JC and Goodenough JB. Synthesis and characterization of Sr₂MgMoO₆₋₈. *Journal of the Electrochemical Society*. 2006; 153(7): A1266-A1272. http://dx.doi.org/10.1149/1.2195882 - Xia T, Li Q, Meng J and Cao X. Structural characterization, stability and electrical properties of strontium niobate ceramic. *Materials Chemistry* and Physics. 2008; 111(2-3):325-340. - Huang YH, Liang G, Croft M, Lehtimäki M, Karppinen M and Goodenough JB. Double perovskite anode materials Sr₂MMoO₆ (M = Co, Ni) for solid oxide fuel cells. *Chemistry of Materials*. 2009; 21(11):2319-2326. http://dx.doi.org/10.1021/cm8033643 - De Souza ECC and Muccillo R. Properties and applications of perovskite proton conductors. *Materials Research*. 2010; 13(3):385-394. http://dx.doi.org/10.1590/S1516-14392010000300018 - Shaheen R and Bashir J. Ca₂CoNbO₆: a new monoclinically distorted double perovskite. Solid State Sciences. 2010; 12(8):1496-1499. http://dx.doi.org/10.1016/j.solidstatesciences.2010.06.015 - 17. Werner PE. FORTRAN program for least-squares refinement of crystal-structure cell dimensions. *Arkiv för Kemi*. 1969; 31(43):513-516. - Choy JH, Park JH, Hong ST and Kim DK. Competition of covalency between Cr^{III}-O and Ta^V-O bonds in the perovskites Ca₂CrTaO₆ and Sr₂CrTaO₆. *Journal of Solid State Chemistry*. 1994; 111(2):370-379. http://dx.doi.org/10.1006/jssc.1994.1241 - Shannon RD and Prewitt CT. Effective ionic radii in oxides and fluorides. Acta Crystallographica B. 1969; 25(5):925-946. http://dx.doi. org/10.1107/S0567740869003220 - Fadini A and Schnepel FM. Vibrational Spectroscopy: Methods and Applications. Chichester: Ellis Horwood Ltd; 1989. - Dias A, Khalam LA, Sebastian MT, Lage MM, Matinaga FM and Moreira RL. Raman scattering and infrared spectroscopy of chemically substituted Sr₂LnTaO₆ (Ln = lanthanides, Y and In) double perovskites. *Chemistry* of Materials. 2008; 20(16):5253-5259. http://dx.doi.org/10.1021/ cm800969m - Gupta HC and Karandeep. A lattice dynamical investigation of the Raman and the infrared wavenumbers of Sr₂LnTaO₆ (Ln = Nd, Gd, Dy, Er, Yb). Journal of Molecular Structure. 2010; 980(1-3):214-217. http://dx.doi.org/10.1016/j.molstruc.2010.07.016