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Electrostatic Deposition of Nanofibers for Sensor Application
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This work addresses the formation of nanofibers (with hundred of nanometers) by using electrospinning
(electrostatic deposition) aiming at applications as sensors. Different quantities of a colloidal dispersion of
graphite particles were blended with polyacrylonitrile (PAN) and N,N dimethylformamide (DMF), resulting in a
series of solutions with carbon concentrations ranging from 0 to 25%. Precipitation was observed depending on
the concentration of carbon added to the precursor blend. As a consequence, the relative viscosity decreases, due
to PAN molecules removal from the solution by carbon particles adsorption, forming precipitates. The resulting
fibers show an irregular shape, as observed by SEM and the diameters decrease with the increase of the carbon
concentration in the precursor blend. The incorporation of carbon particles in the fibers was confirmed by FTIRS

and Raman spectroscopy.
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1. Introduction

The electrospinning process (electrostatic deposition) has been
largely used in order to produce filters, membranes, optical and
electronics applications, among others'2. This process occurs when
the electrical forces at the surface of a polymer solution overcome
the surface tension and cause an electrically charged jet to be ejected.
The solvent evaporates as the jet travels in air, leaving behind charged
polymer fibers that lay themselves randomly on a collecting metallic
electrode’.

It is well known that the morphology of the resulting fibers is
determined by a synergetic effect of solution parameters and elec-
trostatic forces*. These parameters include viscosity, surface tension,
concentration and dielectric properties of the spinning solution and
process parameters such as the feed rate of the solution to the tip
and electric field. Also, ambient parameters including temperature,
humidity and air velocity in the electrospinning chamber influence
the results. Controlling these parameters, the fibers can be electrospun
from different precursor solutions and their melts, like water soluble
polymers and biopolymers. Also, the precursor solution can include
pigments, carbon particles and many others materials that can be
incorporated in the resulting fibers>®.

Electrospun fibers may have diameters ranging from less than
50 nm to 5 wm. The small diameters provide high surface area to
volume and high length to diameter ratios. These characteristics
together, associated to the easy way to obtain the fibers, makes
the nanofibers a good choice to be used in sensors technology'¢”.
Other applications may be devised, such as separation membranes
and non-woven fabrics. Otherwise, the non-woven fabrics obtained
with the electrospun process may be coated with a metal layer and,
subsequently, be used as an electrode in a dye based photovoltaic cell
and other different kinds of sensors®®.

This work addresses the preparation and characterization of the
polymer blends and the resulting nanofibers. The incorporation of
carbon particles in the fibers during the deposition process may facili-
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tate the conversion to carbon after subsequent thermal annealing and
also improve their electrical characteristics'®!", as we want to explore
further. Given the broad distribution of the carbon particle size in the
colloidal dispersion that we are using (300 nm to 1.5 um)'?, we are
looking forward to obtain process conditions that can lead to composite
fibers with diameters in the range of hundreds of nanometers.

2. Experimental

Fibers were electrospun using a homemade apparatus, schema-
tized in Figure 1, composed of: a DC power supply, a syringe (volume
of 3 cm?, needle type 23G1 - 0.6 mm X 25 mm) and a collection screen
(copper plate placed at a horizontal distance of 15 cm from the tip) that
sustained the samples (silicon, <100>, 10—20 Qcm, 1.5 cm X 1.5 cm).
The syringe was tilted at approximately 15° from the horizontal so
that a small drop was maintained at the capillary tip, due to the surface
tension of the solution. We worked with a fixed potential difference
of 15 kV between the tip and the grounded screen.

The polymer solutions were prepared with 600 mg of commer-
cial polyacrylonitrile (PAN) and 10 ml of N,N dimethylformamide
(DMF)". Different quantities of a colloidal dispersion of graphite
particles'?, with diameters ranging from 300 nm to 1.5 um, were
blended with the polymer solution, resulting in a series of solutions
with carbon concentrations ranging from 0 to 25%. The precursor
solutions were stirred (900 rpm) during 24 hours, at room temperature,
but some difficult was encountered to dissolve the PAN into DMF.
Due to the presence of precipitate, just before filling the syringe
the solutions were stirred (900 rpm) during 1 hour, to perform the
electrospinning process.

The viscosities of the different solutions were measured using a
calibrated viscometer Ubbelohde, from Cannon. Relative viscosity
was determined dividing the flow time of the solutions with carbon
by the flow time of the solution without carbon. After deposition, the
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fibers were analyzed by Scanning Electron Microscopy (SEM) to
evaluate the fibers shape and diameter. The chemical bonds and car-
bon incorporation into the fibers were analyzed by Fourier Transform
Infrared Spectroscopy (FTIRS) and Raman Spectroscopy.

3. Results

Figure 2 presents SEM images of fibers that were electrospun us-
ing different concentrations of carbon particles in the blend. Figure 2a
shows that for a concentration of 0% the fibers result very smooth and
uniform in diameter. In this case, diameters lower than 100 nm can be
easily obtained. With the addition of a small concentration of carbon
particulates to the blend, as for example 1%, Figure 2b, the fibers
present a more irregular shape. Increasing further the carbon particle
concentration, for example to 7% as presented in Figure 2c, the fibers
get a curled shape and the presence of beads and agglomerates can be
noticed. For concentrations higher than 15% no fiber is deposited at
all and one observes only the presence of the agglomerates.

It is reported that the solution characteristics like viscosity,
conductivity and charge density are factors that strong influence the
formation of beaded fibers*'.

In order to understand how the solution characteristics influence
the electrospinning process and the resulting fibers, the solution
viscosity, the weight of precipitates in the solution and the current
during the electrospinning process were evaluated.

Figure 3 shows that the relative viscosity decreases, following
an exponential behavior, as the concentration of carbon particles
increases. If the solution viscosity is decreasing as the carbon con-
centration increases, it can be assumed that the concentration of PAN
in the solution is decreasing. These results are in accordance with
those obtained from the analysis of the weight of the precipitates as
a function of the carbon concentration, as shown in Figure 4.

Examining the results presented in Figures 3 and Figure 4, one
has to consider that the carbon particles used to prepare the precursor
solutions are very small and have charge on the surface to avoid the
precipitation and to maintain the colloidal structure. Also, the PAN
molecules have dipoles due the presence of nitrile groups. Therefore,
a charge imbalance appears into the solution as a consequence of the
electrostatic forces between the charged carbon particle and the PAN
molecules, leading these particles to agglomerate. If the solution
is left resting during some hours, a precipitation is observed. As a
consequence of the precipitation and because the polymer molecules
are being removed from the solution by the carbon particles, there
is less PAN molecules dissolved in a same volume of solvent, so the
hydrodynamic volume occupied by PAN molecules decreases result-
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Figure 1. Electrospinning setup.

Materials Research

ing in a lower viscosity. As a result, the fibers diameters decrease as
a function of the carbon concentration as show in Figure 5.

Curled fibers with the presence of beads, as those observed in
the Figure 2c, can be related to a low solution viscosity in accord-
ance with the results in the Figure 3. Also, this phenomenum can be
attributed to the fact that the applied voltage is too high for the used
solution viscosity®.
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Figure 2. SEM pictures illustrating the behavior of the fibers as a function of
the concentration of carbon particles in the blend.
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In order to investigate how the involved electrical charges are
influencing the electrospinning process, the current was measured
during the process for the different solutions prepared. The current
value increases as a function of the carbon concentration for an
applied voltage of 15 kV, as shown in Figure 6. An increase in the
current value means an increase in the mass flow rate from the tip
to the grounded target, considering all the other process parameters
constant’. This increase in the mass flow rate can be explained con-
sidering that adding more conductive particles more charge is being
generated, facilitating the electrospinning process.

The presence of carbon particles inside the fibers is confirmed
by FTIRS and Raman analysis. In the FTIRS analyses, shown in
Figure 7, a band in 1580 cm™ is observed, which can be attributed
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Figure 3. Relative viscosity as a function of the concentration of carbon
particles.
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Figure 5. Fiber diameter as a function of the carbon concentration.
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to C=C bonds. The carbon particles have a C=C double bond that is
not observed in the PAN monomer.

Figure 8 shows the Raman spectra, in a range of 1000 to
3000 cm™, considering fibers electrospun from blends with 0%, 1%
and 10% of carbon. The spectrum obtained from the continuous layer
of carbon and DMF is shown only for comparison. In these spectra
there are two broad peaks centered on 1360 and 1590 cm™!, which
are the D and G peaks which are characteristic of disordered carbon
and graphite, respectively, and are attributed to sp>-bonding. In the
spectra obtained from the fibers electrospun from solutions with 1 and
10% of carbon two overlapping broad bands can be observed, which
can be attributed to the G and D carbon peaks. These peaks are well
aligned with the peaks obtained using a carbon film. As no band can
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Figure 4. Precipitate percentage as a function of the concentration of carbon
particles.

35

20 i

15 7 !

Current (mA)

10 7 /

C concentration (%)

Figure 6. Current as a function of the carbon concentration for a fixed ap-
plied voltage of 15 kV.
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Figure 7. FTIRS spectra obtained from the fibers with 0% and 1% w/w of
carbon particles added to the precursor solution.

be observed in the spectrum taken from the fibers electrospun with-
out carbon, it can be concluded that the carbon particles are really
incorporated into the fibers.

Thus, the analysis of the precursor solutions reveals that due to the
variation in the viscosity and the precipitate formation, the solutions
prepared with more than 1% of carbon particles are not suitable for
the electrospinning process. Also, the fibers electrospun from these
solutions have beads and diameter variations that may affect the
electrical behavior of these fibers.

4. Conclusion

The feasibility of incorporating carbon microparticles in fibers
deposited using electrospinning is reported. The influence of the
preparation method of the precursor solution was also discussed. A
precipitation is observed as a function of the concentration of carbon
added to the solution. As a consequence, the viscosity of the solution
decreases because the PAN molecules are removed from the solution
by the carbon particles, forming precipitates. For carbon concentra-
tions higher than 15% the solution becomes not appropriate to perform
electrospinning. The fibers with incorporated carbon show an irregu-
lar shape, as observed by SEM, and the variations in the diameter
of their smooth sections decrease with the increase of the carbon
concentration in the blend. The incorporation of carbon particles in
the fibers was confirmed by FTIRS and Raman spectroscopy.
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