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1. Introduction
Composites are expected to reach a high degree of curing 

for adequate clinical performance1. When inadequately 
polymerized, composites can have their biological, physical 
and mechanical properties compromised2,3. As a result, 
marginal degradation and discoloration4, postoperative 
sensitivity and pulp irritation may occur1,5. The efficiency of 
polymerization depends on several factors, including those 
related to the material itself in terms of its composition1,6, 
and those related to the light-curing unit (LCU), such as 
light intensity, spectral distribution, thermal emission and 
exposure time7.

LED (Light Emitting Diode) LCUs are gradually replacing 
halogen LCUs because they have a longer lifetime, and 
the light flux is not compromised with time4,8. A suitable 
photoactivation process is of great importance to emit radiant 
energy at a specific wavelength9,10. The LEDs’ spectral range is 
narrow and light is emitted with a wavelength near 470nm3,8, 
matching the camphorquinone’s peak3,11,12. Compared to 
halogen LCUs, LEDs thermal emissions are minimal8. This 
is of great clinical importance since excessive heat can be 
hazardous to the pulp13.

One of the methods used to assess whether a composite 
is properly cured is a study of its hardness. Nanoindentation 
is one of the methods that can be used to determine not only 
the hardness but also the elastic modulus of the composite 
through curves of applied load and penetration on the 
specimen surface14,15,16. The efficiency of polymerization 
can also be evaluated by studying the degree of conversion 
(DC),4 which can be reached by Fourier Transform Infrared 
Spectroscopy (FTIR)3,4,17,18.

Several studies have been conducted focusing on the 
relationship between the energy density of LED LCUs and 
the degree of polymerization of composites17,19,20. However, 
there is little data about the performance of experimental 
LED LCUs with different wavelength peaks evaluated 
through DC, hardness and the elastic modulus of the cured 
composite. Moreover, authors found LED LCUs whose 
wavelength peak is below the optimum value for activation 
of camphorquinone21,22.

The aim of this study was to evaluate the effect of 
different peak wavelengths of experimental LED LCUs on 
the hardness, elastic modulus, degree of conversion and 
temperature rise of a composite. Our hypothesis is that 
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468nm peak wavelength will present the best values for the 
assessed properties.

2. Material and Methods
For this study, a Bis-GMA based microhybrid resin 

composite – Venus (Heraeus Kulzer, GmBH, Wehrheim, 
Germany), A3 colour (batch 010125) was used.

A cylindrical steel mould of 4 mm in diameter and 2 mm 
thick was placed on a polyester strip and a glass slide was 
used to prepare the specimens. The mould was filled with the 
composite, and another polyester strip followed by another 
glass slide were placed over the filled mould. This process 
ensured the specimens were of a constant thickness and a 
standard distance from the tip of the curing light.

Using experimental LED LCUs (MMOptics, São 
Carlos, SP, Brazil) specifically developed for this study, the 
composites were photopolymerized immediately after their 
insertion into the mould. The power density of these LED 
LCUs was 350mW/cm2 and the energy density applied was 
21 J/cm2. LED LCUs wavelength calibrations were obtained 
from a spectrophotometer (USB 4000, Ocean Optics) which 
showed 450nm (L450), 468nm (L468) and 490nm (L490).

After curing, the specimens were removed from the 
mould and marked on their top surface. The specimens 
were stored for 48 hours in a dark container, at relative 
humidity of 100% at 37 °C. Before hardness and DC tests, 
the specimens were polished metallographically using silicon 
carbide discs of decreasing abrasiveness (400, 600, 800, 
1200 grit). For the final polishing, special soft discs with 
diamond suspensions of decreasing grit size (6µm, 3µm, 
and 1µm) were used, combined with a diamond paste. The 
specimens were then washed in running water to remove 
any residual particles. Ten specimens were prepared for each 
experimental LED, i.e. five for nanoindentation and five for 
FTIR. Temperature variation measurements were performed 
on 30 of the specimens prepared for each experimental LED.

Nanoindentation was used to assess the hardness and elastic 
modulus of the top and bottom surfaces of the specimens. 
Twenty-five indentations were performed on each surface of 
each specimen using a diamond Berkovich geometry indenter 
on a Nanoindenter XP (MTS System Corporation, Oak Ridge, 
TN, USA). Each indentation comprised a full loading and 
unloading cycle, with a maximum applied load of 400 mN 
applied for 30 seconds. The hardness and elastic modulus 
were calculated from the load curves versus penetration by 
the Oliver and Pharr method23.

The DC of the specimens was measured by FTIR in 
reflectance mode, using an attenuated total reflectance accessory 

(ATR) on a spectrometer (Spectrum One B, Perkin-Elmer, 
Beaconsfield, Bacon, UK), using 32 scans with a resolution 
of 4 cm–1 in the range of 4000 to 400 cm–1. Following that, the 
band from 1570 to 1670 cm–1 was scanned again to achieve 
better resolution in the region of interest. Spectral analysis 
was performed using Spectrum One software (Perkin-Elmer, 
Beaconsfield, Bacon, UK). Spectra were acquired from the 
top and bottom surfaces of the specimens.

The DC was determined by comparing the relative 
amount of aliphatic carbon double bonds (1638 cm–1) to 
the aromatic double bonds (1609 cm–1) of the polymerized 
and non-polymerized phases. The DC was calculated by the 
following Equation 1:
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Temperature variation was recorded from a thermistor 
connected to a multimeter. Temperature measurements started 
immediately after the resin composite (20 ± 0.5 °C) was 
inserted in a teflon mould, and thereafter it was obtained every 
2.5 seconds until it was polymerized for 60 seconds when 
the final temperature was recorded. The initial temperature 
was deducted from the final temperature in order to obtain 
the temperature variation (ΔT). All measurements were taken 
in controlled temperature environment (20±1 °C).

The mean values ​​of hardness and elastic modulus of the 
top and bottom surfaces were subjected to two-way ANOVA, 
full factorial design, and Games-Howell parametric testing 
for multiple comparisons, considering the heterogeneous 
variances. The level of significance was 5%. Statistical 
analysis was performed using SPSS 18.0 for Windows (SPSS 
Inc, Chicago, IL, USA).

The mean DC values of the top and bottom surfaces were 
subjected to two-way ANOVA, full factorial design, and Tukey 
HSD parametric testing for multiple comparisons, considering 
homogeneous variances. The level of significance was 5%.

The temperature variation data was submitted to one-
way ANOVA criterion. The level of significance was 5%.

3. Results
The mean values of hardness, elastic modulus and hardness 

of the ratio between the bottom and top (B/T) surfaces of 
the light-cured resin composite with different LED LCUs 
are shown in Table 1. The top surface presented higher 
values for the hardness and elastic modulus compared to 

Table 1. Mean values (standard deviation) of hardness (GPa), elastic modulus (GPa) and hardness of ratio between the bottom and top 
(B/T) of evaluated resin composites.

LED Top Bottom B/T (%)
Hardness 450 nm 0.73 (0.03) aA 0.44 (0.02) aB 61 (0.03) a

468 nm 0.76 (0.04) bA 0.71 (0.01) cB 94 (0.06) c
490 nm 0.76 (0.02) bA 0.50 (0.03) bB 66 (0.04) b

Elastic Modulus 450 nm 13.09 (0.37) aA 9.25 (0.39) aB
468 nm 13.87 (0.58) bA 13.04 (0.42) cB
490 nm 13.70 (0.44) bA 10.78 (0.49) bB

Mean values followed by different lowercase in column and different uppercase in line exhibit significant differences, with a significance level of 5%.
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the bottom surface (p <0.001). When only top surfaces were 
considered, L450 provided the lowest values ​​for the hardness 
and elastic modulus (p <0.001). There was no significant 
difference between L468 and L490 on both the hardness 
(p = 0.87) and elastic modulus (p = 0.10). Considering the 
bottom surfaces, L468 generated the highest hardness and 
elastic modulus. Regarding B/T’s hardness, L468 provided 
the highest value, followed by L490 and L450.

The mean values ​​and standard deviation of DC are 
shown in Table 2. DC was significantly higher on the top 
surface compared to the bottom surface (p <0.001), for all 
LED LCU. There were no significant differences among all 
LED LCUs tested on the top and bottom surfaces (p= 0.51).

Regarding temperature variation, there was no significant 
difference among the LEDs LCU tested (p= 0.06) (Table 3).

4. Discussion
The effectiveness of composite restorative procedures 

is directly dependent upon its polymerization. As curing 
equipments are fundamental in achieving this goal, several 
studies have focused on the irradiance of LEDs LCUs17,19,20. 
However, other variables such as the wavelength emitted 
by LED LCUs and temperature variation are also relevant 
in determining the efficiency of polymerization of resin 
composites.

In this study, different wavelength peaks influenced 
the polymerization of a resin composite differently. The 
lowest hardness and elastic modulus values were found on 
composite’s bottom surface. Previous studies had also found 
similar results12,21,24,25. During photopolymerization, there 
is a considerable reduction of irradiance in deeper regions 
through the bulk of the composite, due to absorption and 
scattering of light by the resin matrix and particles filler25. 
This decrease in light results in reduced photons emission, 
interfering in the material’s curing, and resulting in lower 
values ​​for the mechanical properties tested.

The effectiveness of polymerization cannot only be 
measured by the hardness of the composite’s top surface. 
Hardness of the bottom is mostly affected by light intensity, 

and is therefore considered a more accurate parameter for 
evaluating the effectiveness of curing24, and consequently 
the performance of the LCUs. Considering only the bottom 
surface, L468 generated the highest results for hardness and 
elastic modulus. Since the energy density was kept constant 
for the three LED LCUs, we could suggest the influence 
of the light’s wavelength on the results. Previous studies 
report that not only the irradiance but also the wavelength 
of the emitted light has a direct effect on the degree of 
polymerization of resin composites12,21. According to 
Nomoto11, the polymerization of composites is affected by 
light wavelength, 470 nm being the most efficient because it 
maximizes the camphorquinone activation1,10,19, which is the 
most commonly present photoinitiator in the composition of 
composites26. If the composite photoinitiator does not absorb 
enough photons at an appropriate wavelength, polymerization 
may be impaired11. In this study, the blue light in different parts 
of the absorption spectrum of the camphorquinone produced 
different levels of curing efficiency. The wavelength closer 
to the absorption peak was more effective in polymerization, 
reflected by a higher hardness and elastic modulus. These 
same results were found in earlier studies27,28. Comparing 
different photoinitiators, Price et al.12 also reached the same 
conclusions. The LEDs LCU with a wavelength peak near 
470 nm polymerized the composite more efficiently when 
the photoinitiator was camphorquinone.

The B/T ratio of L468 demonstrates that the wavelength 
peak coinciding with the maximum spectral absorption of 
camphorquinone meant that there was a better composite 
depth of curing29 . To considerer a composite’s depth of 
cure to be adequate, the B/T ratio should be greater than 
80%30. On the other hand, Torno et al.21 do not consider 
that the B/T ratio alone is a good method to evaluate 
the polymerization effectiveness21. That is because if the 
composite is not properly cured but has a bottom hardness 
value similar to the top hardness value, the B/T ratio can be 
greater than 80%, and as such the deficient polymerization 
will be considered suitable.

Despite the low irradiance of experimental LEDs, the 
DC at the top of the composite was within the acceptable 
pattern, that is between 55 and 75%31. Emami et al.32, 
Peutzfeldt & Asmussen17 and Gritsch et al.22 showed that 
lower power densities can be compensated for by increasing 
the photopolymerization time, which increases the energy 
density, and thus induces a higher degree of polymerization. 
They justify this finding by the kinetics of polymerization, 
i.e. lower power densities and longer periods of time slow 
down the formation of a rigid polymer chain, which allows 
for more efficient polymerization. Continuous exposure to 
light helps maintain the activation of the camphorquinone 
molecules near to the surface24, increasing the material’s 
degree of polymerization on top surface33. On the other hand, 
studies demonstrate that very high power densities applied 
in a shorter time do not increase the DC of composites32,34. 
The DC on the bottom surface of the composite was lower, 
which is consistent with other studies19,31,32. The DC was not 
influenced by the light wavelengths, either on the top or on 
the bottom of the resin composite.

This study did not find any association between hardness 
and DC. Although some studies have reported an association 

Table 2. Mean values (standard deviation) of DC (%) of evaluated 
resin composite.

LED Top Bottom
450 nm 69.40 (6.06) aA 28.91 (0.36) bB
468 nm 64.40 (6.18) aA 27.04 (3.67) bB
490 nm 63.33 (2.92) aA 26.96 (1.06) bB

Mean values followed by different lowercase in column and different uppercase 
in line exhibit significant differences, with a significance level of 5%.

Table 3. Mean increase (standard deviation) of temperature (degree 
Celsius) of each LED tested.

LED Temperature variation (°C)
450 nm 1.89 (0.27) a
468 nm 1.71 (0.36) a
490 nm 1.87 (0.36) a

Mean values followed by same lowercase do not exhibit significance 
differences, with a significance level of 5%.
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between hardness and DC35,36, others do not agree with this 
association20,37. Ferracane36 and Obici et al.37 justify this 
result based on the fact that the mechanical properties of 
a resin composite are much more dependent on crosslinks 
density and on the quality of the polymer chain formed during 
polymerization reaction than in the DC itself. Increasing the 
exposure time of the composite to light can result in longer 
polymer chains with fewer crosslinks, thus not reducing the 
DC but only affecting its mechanical properties. Ferracane36 
also adds that an absolute value for DC cannot predict an 
absolute value of hardness for all composites. Obici et 
al.37 conclude their study by pointing out that we should 
be cautious when hardness is considered as an indicator 
of DC. In some instances, composites with similar DC can 
present crosslinkings with different densities, which in turn 
can affect hardness.

The temperature variation generated by LED LCUs was 
low. The low power density of experimental LED LCUs 
can explain this finding, in agreement with results of other 
studies2,13,27,38. Studies show that the higher the irradiance, 

the greater the heat generated by LCUs38,39,40. The authors 
also argue that LED LCUs have a narrow light spectrum 
and this causes the lower heat emission13,38. Not only are 
the emitted light spectrum and irradiance involved with 
a temperature increase, but also the exposure time, cavity 
depth40 and chemical composition of resin composites21.

5. Conclusions
Hardness and elastic modulus were affected by the LED 

LCUs’ wavelength, with the highest values ​​for 468nm. 
However, both DC and temperature variations were not 
affected by the LED LCUs’ wavelengths evaluated.
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