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A study has been made of the influence of a superimposed mean shear stress on the capability 
of some multiaxial high cycle fatigue criteria to predicting fatigue behavior of 42CrMo4 and 34Cr4 
alloy steels. Five selected critical plane-based criteria, namely Matake (M), Susmel & Lazzarin (S&L), 
Findley (F), Carpinteri & Spagnoli (C&S) and Liu & Mahadevan (L&M), were applied to a number of 
published experimental fatigue resistance limit tests, involving synchronous sinusoidal in-phase and 
out-of-phase bending and torsion. Applying to the same loading conditions a mesoscopic scale-based 
criterion proposed by Papadopoulos (P), one could verify that predictive capability of such an approach 
is almost invariably superior to those associated with the M, S&L, F, C&S and L&M models. As the 
Papadopoulos criterion is independent of mean shear stress, it seems appropriate to conclude that the 
inclusion of such a stress as loading parameter in the critical plane-based models does, in fact, exert 
a negative influence on their predictive capability. Finally, it is worth mentioning that, except for the 
Matake, S&L and L&M criteria, the other critical plane-based criteria exhibit a dependence of the 
fatigue resistance in pure torsion with respect to a superimposed mean shear stress, in disagreement 
with well-established experimental observations.
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1. Introduction
Over many decades, a large number of multiaxial high 

cycle fatigue damage criteria have been introduced aiming 
at predicting fatigue failure of metallic materials under 
time-varying multiaxial stresses. These criteria can be 
divided into three groups: stress-based, strain-based and 
energy-based models1. For fatigue life extending over a very 
high number of cycles (theoretically infinite), the stresses 
acting on mechanical components, such as railroad wheels, 
crankshafts, axles and turbine blades, are kept within the 
elastic limit and hence stress-based models are popularly 
used in high cycle fatigue analysis. Considering the whole 
stress space to be divided into two parts, namely safe and 
unsafe, the safe part containing the origin is to be bounded 
by a closed surface and a given multiaxial fatigue criterion 
can thus be expressed in terms of an inequality, whose 
satisfaction signifies that the stress state, induced by the 
external cyclic loading, will remain within the safe part of 
the stress space.

Several reviews of some commonly used multiaxial 
high cycle fatigue damage criteria, including stress-based 
models, can be found in the literature2-6. As can be verified 
from these references, the stress-based approach englobes a 
large number of models that can be divided into four main 
groups based on: equivalent stress, stress invariants, average 
stress and critical plane stress. Models pertaining to the last 

group depend for their application on prior identification of 
the critical plane where fatigue damage can occur leading 
to crack initiation. With the critical plane already identified, 
one can calculate the stresses acting on it as a result of 
the applied cyclic loads. In addition, practical mechanical 
components, such as those mentioned above, may also 
experience superimposed mean (static) normal stress that 
can strongly affect the fatigue limit of metallic materials. 
More specifically, a tensile mean stress results in reducing 
the fatigue limit, whereas a compressive mean stress leads 
to a net increase3. For uniaxial normal loading, these effects 
can be taken into account, for example, by using Gerber’s 
parabola or Goodman’s diagram7. For multiaxial high cycle 
fatigue models belonging to the critical plane approach, mean 
normal stress effect is included through its contribution to 
the maximum normal stress acting on the critical plane6,8. In 
the case of superimposed mean shear stress, again its effect 
on multiaxial high cycle fatigue behavior is considered to be 
the result of a contribution to the maximum normal stress 
acting on the critical plane. A firmly established experimental 
observation, though, refers to the fact that a superimposed 
mean static torsion has no effect on the fatigue limit of metals 
subjected to cyclic torsion. That is, the amplitude of the 
shear stress that can be sustained by a specimen submitted 
to torsion for a very high number of cycles (theoretically 
infinite) is unique9. However, for lower fatigue lives (e.g. 
105, 104), a mean stress reduces the amplitude of the shear *e-mail: tiagocastrobl@gmail.com
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stress that can be sustained by the specimen through its 
finite fatigue life3. This is valid as far as the yielding of the 
specimen is not reached, that is the maximum shear stress 
during cyclic torsion does not exceed the yield limit in shear.

The present work was initiated with the purpose of 
evaluating the influence of mean shear stress on the capability 
of a number of critical plane-based criteria to predict high 
cycle fatigue behavior of metallic materials under combined 
bending and torsion. The loading conditions, to which the 
criteria were applied, were taken from published experimental 
fatigue resistance limit tests, involving synchronous sinusoidal 
in-phase and out-of-phase loadings.

Another aspect to be dealt with in the study is to determine 
whether for a given model the fatigue resistance limit for 
a pure torsion loading would be affected by the presence 
of a superimposed mean shear stress. The inequalities 
representative of five selected models, namely Matake 
(M), Susmel & Lazzarin (S&L), Findley (F), Carpinteri & 
Spagnoli (C&S) and Liu & Mahadevan (L&M), are given 
respectively by Expressions 1 to 51,6,10-12
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where aC  and aN  are, respectively, the shear stress and 
normal stress amplitudes acting on the critical plane. mN  is 
the mean normal stress acting on the same plane and hence 

maxN  will be given by

.max a mN N N= +   (6)

The constants µ, 'k , k, f , η and λ  are material parameters 
which depend exclusively, as shown in Table 1, on the fatigue 
limits for fully reversed bending 1f−  and fully reversed 
torsion 1t− 1,6,10-12.

In addition to the five models presented above, a modified 
version13 of the C&S criterion is also considered in the present 
study. This modified version is simply obtained by replacing 

maxN  in Expression 4 by the parameter ,a eqN  given by

,
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  (7)

where uσ  is the material’s ultimate strength. Accordingly, 
the above equation takes into account the linear relationship 
(proposed by Goodman7) between normal stress amplitude 
and normal stress mean value13.

At this point one should mention that the cited criteria 
are all applicable to hard metallic materials whose ratio 
between the endurance limit under fully reversed torsion 
and that under fully reversed bending is in the range of 

/ /1 11 3 t f 1− −≤ ≤ 6. It is also important to point out that the 
left-hand side (LHS) of the inequalities, given by Expressions 
1 to 5, refers to the driving force for fatigue failure due to 
the stresses acting on the critical plane as a result of cyclic 
loading. The right-hand side (RHS), on the other hand, is 
related to the fatigue resistance of the material and therefore 
a comparison between the two sides could indicate whether 
fatigue failure is likely to take place.

Application of any of the criteria mentioned above, to a 
given loading condition, depends in the first place on identifying 
the critical plane. For the Matake and S&L criteria, the critical 
plane is defined as the plane on which the shear stress amplitude 

aC  attains its maximum. For the Findley criterion, the critical 
plane is determined by maximizing the linear combination of 
the shear stress amplitude aC  and the maximum value of the 
normal stress maxN . As to the C&S and L&M criteria, the critical 
plane determination is based on knowing the fracture plane 
as well as the angle between the two planes, δ . The fracture 
plane is defined as the plane on which the maximum principal 
stress maxN  achieves its greatest value in the course of cyclic 
loading1,6,13-15, and the angle δ  is given by Equations 8 and 9 
for the C&S and L&M criteria, respectively1,6
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Table 1. Definition of pertinent material constants.
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where δ in Expression 9 is given as a function of s and s 
refers to the ratio /1 1t f− − . In both expressions 8 and 9, δ  is 
nil for 1 1t f− −= , which is the case of extremely hard metals 
and is equal to / 4π  for / /1 1t f 1 3− − = , which is the border 
between hard and mild metals.

2. Literature Review: Critical Plane Stresses
Calculation of the stresses acting on the critical plane 

is summarized here for the case of synchronous sinusoidal 
biaxial normal and shear stress loading (Figure 1), defined 
by the parameters aσ , aτ , mσ , mτ  and β , where aσ  and aτ  are 
respectively the applied normal and shear stress amplitudes, 

mσ  and mτ  are the corresponding mean stresses and β  is 
the phase difference between the bend and torsion stress 
components.

Considering a general material plane ∆, the tip of the shear 
stress vector describes an elliptic path on the plane ∆ during 
a cycle of synchronous sinusoidal out-of-phase bending and 
torsion3,6. The radius of the minimum circumscribed circle 
to the ellipse is equal to the ellipse’s major semi axis, and 
this corresponds to the shear stress amplitude aC  given by 
Carpinteri and Spagnoli6
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22 2 2 2 2 2 2 2
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where f , g , p  and q  are auxiliary functions given by 
Carpinteri and Spagnoli6
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( ) ( ) ( )sin sin cosaq 2θ τ β ϕ= −   (14)

where θ  is the angle between the vector normal to the 
plane ∆ and the z-axis, and ϕ  is the angle between the line of 
intersection of the x-y plane with the plane ∆ and the y-axis.

As to the normal stresses acting on ∆,  and aN  are 
expressed as Carpinteri and Spagnoli6

( ) ( ) ( )sin sin sin  2 2
m m mN 2θ σ ϕ τ ϕ = +    (15)

2 2
aN a b= +   (16)

with

( ) ( ) ( ) ( )sin sin cos sin2 2
a aa 2θ σ ϕ τ β ϕ = +    (17)

( ) ( ) ( )sin sin sin .2
ab 2θ τ β ϕ= −      (18)

In regard to the dependence of mN  and aN  on θ , it is 
clear that they attain their maximum levels for / 2θ π=  
and consequently for the plane stress loading conditions 
considered here, the critical plane, where fatigue damage 
can occur leading to crack initiation, is to be perpendicular 
to the x-y plane.

Figure 2 shows a general plane which is perpendicular 
to the x-y plane, with its orientation uniquely defined by the 
angle ϕ, or equivalently by its complementary angle ψ . mN  
and aN  acting on this plane will thus be given in terms of ϕ  as

( ) ( )sin sin .2
m m mN 2σ ϕ τ ϕ= +   (19)

Figure 1. Plane stress loading conditions applied to the 42CrMo4 
and 34Cr4 alloy steels.

Figure 2. General material plane normal to the x-y plane with 
its orientation defined by the angle ϕ or by its complementary ψ.
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,2 2
aN a b= +   (20)

with

( ) ( ) ( )sin cos sin2
a aa 2σ ϕ τ β ϕ= +   (21)

( ) ( )sin sin .ab 2τ β ϕ= −   (22)

With the angle θ  equivalent to / 2π , the two auxiliary functions 
f  and g  are nil and the shear stress amplitude will be given by

2 2
aC p q= +   (23)

where

( ) ( ) ( )sin cos cosa a
1p 2 2
2
σ ϕ τ β ϕ= +   (24)

( ) ( )sin cosaq 2τ β ϕ= −   (25)

Maximizing aC  with respect to the angle ϕ , which can 
be achieved by varying ϕ  according to a given increment, 
one can determine the critical plane orientation cϕ  as well 
as the corresponding aC , aN  and mN  values. Both the Matake 
and S&L criteria can thus be applied by substituting the 
values obtained for a given loading condition in the LHS 
of Expressions 1 and 2. It is to be noted that, according to 
Equation 19, mN  depends on mτ  and hence the Matake and 
S&L criteria are influenced by the presence of a mean shear 
stress component. This same procedure is also valid for 
applying the Findley criterion, except for the fact that, instead 
of maximizing aC , the LHS of the inequality representative 
of the criterion is to be maximized with respect to ϕ  and 
the maximum value thus obtained is to be compared with 
the RHS. As maxN  is related to mN  by Equation 6 and as 

 depends on mτ  (Equation 19), the Findley criterion is 
likewise influenced by mτ .

The fracture plane orientation, fϕ , depicted in Figure 3, 
is determined by maximizing maxN  with respect to ϕ  and 
therefore the critical plane orientation cϕ  for both C&S 
and L&M criteria will be given, as shown in the figure, by

c fϕ ϕ δ= −   (26)

or equivalently by

c fψ ψ δ= +   (27)

where ϕ  and ψ  are complementary. As cϕ  depends on mτ , the 
stresses aN , mN  and aC  acting on the critical plane will do 
likewise and both the C&S and L&M criteria are expected 
to be influenced by the presence of a mean shear stress 
component.

3. Calculation Procedures

3.1 Pure torsion loading
As mentioned earlier, it is experimentally well established 

that a superimposed mean static torsion stress mτ  has no 
effect on the fatigue resistance limit of metals subjected to 
cyclic torsion9. That is, the amplitude of the shear stress in 
a pure torsion loading associated with a very high number 
of cycles should be unique and equal to 1t− 3,9. This is seen 

to be the case for the Matake and S&L criteria where the 
critical plane orientation for pure torsion loading is given 
by /c 2ϕ π= , leading to the fact that maxN  will be nil and 

aC  will be given by aτ , which for “infinite” fatigue life 
corresponds to 1t− , in accordance with the conclusion drawn 
by Papadopoulos et al.3.

In applying the Findley criterion, the LHS of Expression 
3 has to be maximized with respect to the angle ϕ  (Figure 2). 
For pure torsion loading, the stresses acting on a general 
material plane, whose orientation is given by angle ϕ, are 
given by

( )cosa aC 2τ ϕ=   (28)

( ) ( )sinmax a mN 2τ τ ϕ= +   (29)

and accordingly, the critical plane orientation, as defined by 
cϕ , can be expressed as
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τ τ
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τ
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and the Findley criterion for this type of loading reduces to

( ) .22 2
a a mk fτ τ τ+ + ≤   (31)

At the torsion fatigue limit, aτ  is replaced by 1t− , thus yielding
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This means that the Findley criterion predicts a dependence 
of the fatigue limit in pure torsion loading on a superimposed 
mean torsion stress, mτ . For m 0τ = , 1t−  will be given by

 
1 2

ft
1 k

− =
+

  (33)

Figure 3. Critical plane orientation ϕc and its relation to fracture 
plane orientation ϕf in the C&S and L&M criteria.
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Substituting for f  and k  (see Table 1), the RHS of the 
above equation yields 1t− .

The fracture plane orientation in pure torsion cyclic 
loading, fϕ , is equivalent to / 4π  and hence the critical plane 
orientation in the C&S model will be given by

c 4
πϕ δ= −   (34)

where δ , the angle between the two planes, is given by 
Equation 8.

The stresses aC , aN  and mN  acting on the critical plane 
can thus be expressed in terms of δ  as follows

( )sina aC 2τ δ=   (35)

( )cosa aN 2τ δ=   (36)

( )cos .m mN 2τ δ=   (37)

Substituting aC  and maxN  in the LHS of Expression 4, 
and replacing aτ  by 1t−  for the fatigue limit state, one obtains

( ) ( ) ( )cos2 2 2 2
1 m 1 1t 2 f sin 2 fτ δ δ− − −+ + =   (38)

which finally yields

1 1 mt f τ− −= −   (39)

meaning that the C&S criterion predicts a dependence of 
1t−  on a superimposed mean torsion stress mτ .

Considering the modified C&S criterion, maxN  is to be 
replaced by ,a eqN  given by Equation 7. Accordingly, at the 
fatigue resistance limit for pure torsion loading, the modified 
C&S criterion yields the following relation
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indicating that, here again, the modified C&S criterion 
predicts a dependence of 1t−  on mτ .

As to the L&M criterion, it can also be applied for pure 
torsion loading by substituting the stresses aC , aN  and mN , 
given respectively by Equations 35, 36 and 37, in Expression 5. 
Here the angle δ  is calculated using Equation 9. As a result 
of this substitution, one obtains the following relation:
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Again, for the fatigue limit state in pure torsion, aτ  is 
replaced by 1t−  and one eventually gets the following expression

( ) cos
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that is

( )  cos
 

1

m

2 f2δ
ητ

−= −
  (45)

or

( )cos .2 0δ =   (46)

The first solution has to be discarded, considering the 
fact that ( )cos 2δ  cannot be infinite for m 0τ = . The other 
solution implies in that s in Equation 9 has to be equivalent 
to /1 3, meaning that the fatigue resistance limit in pure 
torsion 1t−  is a fixed fraction of the fatigue limit in normal 
stress loading 1f− .

The variation of the fatigue resistance limit in pure 
torsion loading 1t−  with the mean shear stress mτ  is presented 
in Figure 4, for the Findley, C&S and modified C&S models. 
The curves shown in this figure were all obtained for a hard 
steel, where 1f− , 1t−  and uσ  are given, respectively, by .313 19, 

.196 2 and .  704 1MPa.
Specifically, with regard to the Findley criterion, Figure 4 

indicates that 1t−  starts to decrease at a slow rate and as mτ  
assumes higher levels, the reduction in 1t−  turns out to be 
more significant.

3.2 Combined bend and torsion loading
In an effort to evaluate the influence of mτ  on the 

applicability of the selected models, a number of experimental 
constant amplitude cyclic loading conditions encountered in 
the literature16 were considered. They involve synchronous 
sinusoidal in-phase and out-of-phase bending and torsion 
applied to two alloy steels, namely 42CrMo4 and 34Cr416, 
and they correspond to the fatigue limit state above which 
fatigue failure occurs and below which fatigue-life extends 
over a very high number of cycles (theoretically infinite 
life). As presented in Tables 2 and 3, the loading parameters 
include both stress amplitudes and mean shear stress, 
together with the phase difference between the normal and 
shear stress components. The ultimate tensile strength and 
fatigue resistance limits ( 1f−  and 1t− ) are also listed in the 
same tables.

Figure 4. Variation of the fatigue resistance limit in pure torsion, 
1t− , with the mean shear stress, mτ
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As pointed out earlier, the criteria in question are to 
be applied by substituting aN , mN  and aC  acting on their 
respective critical planes in their respective inequalities. 
The error index I , which refers to the relative difference 
between the two sides of the inequality, can be estimated as

.LHS RHSI 100
RHS
−

= ×   (47)

An error index-based comparison between the models in 
question can thus be made in terms of conventional fatigue 
limit state under multiaxial loading. With the error index I  
tending to zero, a given criterion is considered to be in good 
agreement with the experiment carried out for a set of cyclic 
bend and torsion loading. Positive I  values, on the one hand, 
are indicative of fatigue failure in a situation where failure 
is not observed and hence the criterion is considered to be 
conservative. Negative I  values, on the other hand, indicate 
that an adopted criterion is non-conservative, as it may permit 
an increase in the applied cyclic loads thus leading to higher 
risk of fatigue failure17.

4. Results and Discussion
The fracture and critical plane orientations defined by 

the angles fψ  and cψ  are presented in Figures 5 and 6, for 
the combined bend and torsion loadings (Tables 2 and 3) 
applied, respectively, to the 42CrMo4 and 34Cr4 steels. 
Whereas the fracture plane orientation corresponding to 
a given loading condition is unique for all the models in 
question, the critical plane orientation as expected does vary 
from one model to another.

The values of the error index I  obtained upon applying 
the Matake, Findley, S&L, C&S, modified C&S and L&M 
criteria to the loading conditions in question are presented 
in Figures 7 and 8. These figures also exhibit the I  values 
associated with applying, to the same loading coditions, a 
mesoscopic scale-based model developed by Papadopoulos et al.3 
and Papadopoulos18,19. The inequality representative of the 
Papadopoulos criterion is expressed in terms of the applied 
stress amplitudes and mean normal stress as given by

2
2a a m
a 1t

3 3
σ σ στ α −
  + + + ≤       

  (48)

where

 1

1

3t 3
f

α −

−

 
= − 
 

  (49)

Table 2. Loading Conditions applied 42CrMo4.

[ ] 1f 398 MPa− = [ ] 1t 260 MPa− = [ ] u 1025 MPaσ =

Loading Condition [ ]a MPaσ [ ]m MPaσ [ ]a MPaτ [ ]m MPaτ [ ] β °

1 266 0 128 128 0
2 283 0 136 136 90
3 333 0 160 160 180

Table 3. Loading conditions 34Cr4.

[ ] 1f 410 MPa− = [ ] 1t 256 MPa− = [ ] u 795 MPaσ =

Loading Condition [ ]a MPaσ [ ]m MPaσ [ ]a MPaτ [ ]m MPaτ [ ] β °

1 316 0 158 158 0
2 314 0 157 157 60
3 315 0 158 158 90
4 355 0 89 178 0

Figure 5. Fracture plane and critical plane orientations, fψ  and 
cψ , obtained on applying the criteria in question to the 42CrMo4 

loading conditions.

Figure 6. Fracture plane and critical plane orientations, fψ  and 
cψ , obtained on applying the criteria in question to the 34Cr4 

loading conditions.
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An important feature of the Papadopoulos criterion 
refers to the fact that it is not influenced by the presence of 
a superimposed mean shear stress and that it is applied by 
simply substituting aσ , aτ  and mσ , corresponding to a given 
loading condition, in Expression 48. However, its validity is 
limited to metals for which the inequality / / .1 11 3 t f 0 8− −≤ ≤  
is satisfied3.

4.1 Discussing the error index
The application of the Matake criterion to the seven 

loading conditions in question is associated with I  values 
ranging from %9−  to %22  (Figures 7 and 8). This range is much 
wider than the range of %6−  to %8 , normally encountered for 
combined fully reversed bend and torsion loading where no 
mean shear stress is applied3. One may thus conclude that 
the presence of a mean shear stress component could have 
a negative effect on the predictive capability of the Matake 
criterion. An important observation, though, refers to the 
fact that for five of the loading conditions, the corresponding 
I  values are situated in the %10−  to %10  range, signaling 
fair predictive capability of the criterion in the presence of 
mean shear stress.

With I  values varying from %0  to %17  (Figures 7 and 8), 
the S&L criterion is shown to be conservative. For four 
of the loading conditions, the corresponding error indices 
belong to the range %10± , indicating fairly good capability 
for the criterion.

As to the Findley criterion, its application to the 
seven loading conditions in question leads, as depicted in 

Figures 7 and 8, to an error index that varies between %7−  
and %19 . Again, this is a range which is wider compared to 
that of %1−  to %11  reported for fully reversed bending and 
torsion3, indicating negative influence of mean shear stress on 
the predictive capability of the Findley criterion. However, as 
the error indices corresponding to five of the seven loading 
conditions are situated within the %10±  range, the criterion 
can be considered to possess fairly good capability.

As to C&S, modified C&S and L&M criteria, they 
invariably result in negative I  values that can be as low 
as %38−  and as high as %1−  (Figures 7 and 8). For fully 
reversed bend and torsion loading, the corresponding I  
values are limited to the range between %2−  and %9 3,17. 
Accordingly, one may conclude that the presence of mean 
shear stress has a highly negative effect on the efficacy of 
these criteria to predicting high cycle fatigue behavior of 
metallic materials. Figures 7 and 8 also indicate that, with 
the exception of only four individual I  values, the remaining 
17 are significantly situated below the %10−  limit, meaning 
fairly poor predictive capability for the three criteria in 
the presence of mean shear stress. Comparing the L&M 
and C&S criteria, it is seen that the index predicted by the 
former is considerably more negative than that obtained by 
applying the latter to the same loading conditions. The use 
of the modified C&S criterion results in approximating the 
two indices to one another.

In regard to the Papadopoulos criterion, the I  values 
resulting from its application to the loading conditions 
in question were found to vary between %15−  and %6  
(Figures 7 and 8), indicating predictive capability that is 
far more superior to that associated with applying the C&S 
and L&M models. Compared to Matake, Findley and S&L 
criteria, Papadopoulos’ continues to be considerably superior 
for the case of the 34Cr4 alloy steel, where the I  values 
resulting from applying the criterion are close to nil except 
for one loading condition, where the error index amounts to 
approximately %6− . Only for one loading condition applied 
to the 42CrMo4 steel does the Papadopoulos criterion result 
in an error index of about %15−  which is lower than those 
obtained with the Matake, Findley and C&S criteria (Figure 7).

Finally, it is important to point out that the predominance 
of highly negative I  values signifies that the use of C&S and 
L&M criteria in the presence of mean shear stress leads to 
non-conservative assessment of the cyclic loading conditions 
and this may permit an increase in the applied loads and 
hence higher risk of fatigue failure.

5. Conclusions
In view of the study carried out in the present work, the 

following conclusions can be drawn:
1. Except for the Matake, S&L and L&M criteria, the 

critical plane-based models proposed by Findley 
and C&S, incorrectly predict a fatigue resistance 
limit in pure torsion that depends on the mean shear 
stress. However, according to L&M the fatigue 
limits in torsion and bending are at a constant ratio 
of /1 3 for all metals. This is in disagreement with 
experimental observations which indicate a /1 1t f− −  
ratio that varies from .0 5 for mild metals to 1 for 
brittle metals.

Figure 7. Error Index values associated with applying the criteria 
to the 42CrMo4 loading conditions.

Figure 8. Error Index values associated with applying the criteria 
to the 34Cr4 loading conditions.
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2. For combined bending and torsion, the mean shear 
stress is one of the loading parameters that define 
the maximum normal stress acting on the critical 
plane and this in turn influences the capability of 
the models to predict fatigue behavior.

3. The Papadopoulos criterion, which does not depend 
on mean shear stress, possesses predictive capability 
that is far more superior to those associated with 
applying the C&S and L&M models, in the presence 
of mean shear stress.

4. Compared to the Matake, S&L and Findley criteria, 
Papadopoulos’ is considered to be more precise 
in predicting high cycle fatigue behavior under 
combined bend and torsion loading, in the presence 
of mean shear stress.

5. Finally, it seems appropriate to propose that, in the 
presence of mean shear stress, multiaxial high cycle 
fatigue behavior can be more safely evaluated by 
adopting mesoscopic scale-based approach rather 
than the critical plane-based criteria considered in 
the present study.
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