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Understanding and predicting grain growth in Metallurgy is meaningful. Monte Carlo methods
have been used in computer simulations in many different fields of knowledge. Grain growth
simulation using this method is especially attractive as

• the statistical behavior of the atoms is properly reproduced;
• microstructural evolution depends only on the real topology of the grains and not on any kind

of geometric simplification.
Computer simulation has the advantage of allowing the user to visualize graphically the

procedures, even dynamically and in three dimensions.
Single-phase alloy grain growth simulation was carried out by calculating the free energy of

each atom in the lattice (with its present crystallographic orientation) and comparing this value to
another one calculated with a different random orientation. When the resulting free energy is lower
or equal to the initial value, the new orientation replaces the former. The measure of time is the
Monte Carlo Step (MCS), which involves a series of trials throughout the lattice. A very close
relationship between experimental and theoretical values for the grain growth exponent (n) was
observed.
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1. Introduction

Grain size is a very important characteristic for evalu-
ating the properties of the materials, especially when we
need to balance different ones. It is, in fact, one of the most
important issues in the control of microstructure1. As a
result, this phenomenon is exhaustively studied in Metal-
lurgy.

Usually this kind of study is made through careful
analysis and comparison of microstructures, often with the
help of image analysis software. Recently, as the process-
ing power of computers increased a new and promising
approach has been made possible: computer simulation of
grain growth.

Srolovitz et al.2,3 proposed the most widely known and
employed theory for computer modeling and simulation of
grain growth, using the Monte Carlo method. There is a
very interesting relationship between the conceptual basis
of the Monte Carlo method and the physical characteristics
of grain growth. As far as both rely very much on statistics
and randomness, the method seems to represent the phe-
nomenon very well.

2. Grain Boundary Migration
During grain growth the boundary equilibrium is

reached when the angles among them follow the equation:

γ 1 − 2

sin α1
 = 

γ 2 − 3

sin α2
 = 

γ 1 − 3

sin α3
(1)

where αn are the angles between boundaries and γn-m are
the specific surface energies. In a single-phase alloy,
considering a 2D simplified anisotropic structure, the
equilibrium angle is 120°.

Burke4 proposed that the rate of boundary migration
would be inversely proportional to the average curvature
radius:

R = k t n (2)

where R is the grain diameter, t is the time and k is a constant
that varies exponentially with temperature. The maximum
value of the exponent n (rarely observed experimentally) is
0.50.

Equation 2, however, describes only an average growth.
It cannot predict, for instance, different growth rates for the
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different grain size classes present in the microstructure. As
a result, we conclude that there are very important issues
that are simply not possible to evaluate without computer
simulation. As mentioned by Srolovitz et al.:

“While it is generally observed that large grains grow
and small grains shrink, instances where the opposite is true
can be found. This suggests that knowledge of the instan-
taneous absolute or normalized grain sizes is not sufficient
to predict the evolution, or even the direction of evolution,
of individual grains. [...] The results indicate the validity of
a random walk description of grain growth kinetics for
large grains, and curvature driven kinetics for small
grains.”3

Computer simulation of grain growth plays an impor-
tant role in understanding it. The goal is not simply to
confirm the conventional theory, but to investigate new
issues.

3. Description of the Method

The concept behind the Monte Carlo method in grain
growth simulation is both simple and fascinating: its only
basis is the thermodynamic of atomic interactions. There
are no other experimental or theoretical inferences, nor
mathematical approximations.

The first step is to represent the material as a 2D or 3D
matrix, in which each site corresponds to a surface or
volume element. The content of each element represents its
crystallographic orientation. Contiguous regions (contain-
ing the same “number”) represent the grains as shown in
Fig. 1. The grain boundaries are fictitious surfaces that
separate volumes with different orientations.

After choosing the kind of matrix and filling it with an
initial random content, the simulation itself begins. These
are the four main steps of the algorithm:

a) Calculation of the free energy of an element of the
matrix (Gi) with its present crystallographic orientation
(Qi) based on its neighborhood.

b) Random choice of a new crystallographic orientation
for that element (Qf).

c) New calculation of the free energy of the same
element (Gf), but with the new crystallographic orientation
(Qf).

d) Comparison of the two values (Gf-Gi). The orienta-
tion that minimizes the energy is chosen.

These four steps are repeated millions of times in ran-
dom positions of the matrix. The overall result is a micro-
scopic simulation of the free energy decay in the system,
which is actually the main impelling force for grain growth.
Figures 2 and 3 show schematically the four main steps
applied to one element of the matrix. Figure 4 shows an
example of energy calculation at a stable triple point where
any reorientation attempt would lead to the same free
energy value.

The Hamiltonian that describes the interaction among
the closest neighbors, which represents the grain boundary
energy, is:

H = − J ∑ 
nn

(δ Si Sj − 1) (3)

where Si is one of the Q possible orientations in the i
element of the matrix and δab is the Kronecker-delta, which
is 1 when the two elements are equal and 0 otherwise. As
a result, neighbors with a different orientation contribute J
to the system energy and 0 when equal. The transition
probability W is:

134 Blikstein & Tschiptschin Materials Research

Figure 1. The grain structure represented by a 2D square matrix.

Figure 2. Calculation of the free energy of an element of the matrix (Qi

= 2). In this example, Gi = 5 (five different neighbors).



           exp (− ∆G
k b T

) → ∆G > 0

     1 → ∆G ≤ 0 (4)

where ∆G is the change in free energy due to the orientation
alteration, kb is the Boltzman constant and T is the
temperature. Thus the speed of the moving segment is given
by:

vi = C [1 − exp (− ∆Gi

k b T
)] (5)

where C is the boundary mobility.

4. Evolutions of the Classical Method
At first sight, the algorithm describes accurately the

physical phenomena. Nevertheless, some authors noticed
problems: nucleation of an “artificial” grain inside others

(which does not occur experimentally) and values of n
below 0.50 (the theoretical value of the grain growth expo-
nent). Radhakrishnan e Zacharia6 proposed a new algo-
rithm that would at one time eliminate artificial nucleation,
raise the value of n and decrease significantly the comput-
ing time required for the simulation.

The new algorithm proposes that the new orientation to
be “evaluated” in each matrix element would no more be
chosen among all the possible ones (Q-1), but only among
those that surround each element. In other words, if an
element has in its surroundings grains with orientations 3,
6, 13 and 15, the new one will be chosen only among these
four values.

This was the algorithm used in our experiments, also
called “cellular automata”.

5. Experimental
The software was developed using a C++ compiler. The

program was executed in a Pentium-Pro 233 MHz machine
with 128 MB of RAM. The machine showed up to be very
satisfactory in terms of speed and reliability for 2D simu-
lations.

The visualization of the matrix was carried out through
conventional image processing software. The 3D visuali-
zation (which is still being improved) was done in a Silicon
Graphics workstation running the AVS visualization pack-
age.

6. Results in a 2D Square Lattice
The experiments took place in a 200 x 200 matrix. The

dimensional evolution of the grains was measured by
evaluating the total amount of interface in the system. In
Fig. 5 we can observe the microstructure after some simu-
lation steps.

The first important issue to be analyzed is the geometry
(square or triangular) of the matrix to be used. Srolovitz et
al.1 analyzed this problem and reached the conclusion that
the results were equivalent, provided higher temperatures
were used in the simulations with square matrix. This is due
to the fact that in this kind of discretization, a perfect 120°
angle between boundaries in not possible. In the triangular
lattice, the temperature can be set to T = 0 as its geometric
nature can represent with more accuracy the triple points
and grain boundaries. Temperature, in all these Monte
Carlo simulations, is not directly related to “real” tempera-
ture. It is just a correction factor for the different charac-
teristics of the lattices. Some authors introduced “real”
temperature gradients in the simulation model by changing
boundary mobility along the matrix7.

The second important issue is the maximum number of
possible orientations (Q). The first experiments by
Srolovitz et al.2 employed values from 4 to 64, while
Radhakrishnan6 proposed N2, where N is the dimension of
the matrix (in a 200 x 200 matrix, Q = 2002 = 40,000), as

W = {
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Figure 3. After an attempt of reorientation To Qf = 1, the free energy is
reduced to Gf = 3. hence the NEW orientation should be maintained.

Figure 4. Stability of a triple point, with three 120° angles. A reorientation
attempt to Q = 3 would lead to the same free energy value (G = 5). An
attempt to Q = 2 would result in a greater value (G = 6), not favorable.
Hence this configuration is stable, unless for statistical fluctuations.



to avoid artificial grain coalescence. We ran nine series of
simulations, with values of Q from 8 to 30,000. The results
are shown in Fig. 6. It is clearly noticeable that the value of
Q alters the kinetics of grain growth. For the lowest value
(8) the grain growth exponent is the highest (0.54), prob-
ably due to artificial grain coalescence. However, much
higher Q values (256, 512, 1024, 30000) did not improve
significantly the results, which were very similar to those
obtained in the simulations with Q = 64 or Q = 128.
Srolovitz et al.2 performed a similar experiment and con-
cluded that for Q > 30 the simulation becomes Q-inde-
pendent. Based on these results a Q value of 128 was chosen
for the subsequent experiments.

After these initial experiments, we proceeded to grain
growth investigation itself. The conventional algorithm
proposes that the new orientation should be chosen at
random among all possible orientations (Q-1). Experiments
obtained with this algorithm2,3,6 reached values for the
grain growth exponent n still far from the theoretical value

(0.50). Radhakrishnan demonstrated that the kinetics of the
conventional method would lead to a significantly slower
microstructural evolution, and proposed a new one, which
is widely employed nowadays.

To investigate this issue, we ran two series of simula-
tions, with the old and new algorithm. Fig. 7 shows the
results. There was a clear difference between the two
simulations, both in the growth kinetics and the final mi-
crostructure. Using the old algorithm, we reached values
for n within the 0.35 - 0.39 range. Employing the new
algorithm, the values were in the 0.48 - 0.51 range, much
closer to the theoretical 0.50.

After averaging a series of simulations with the new
algorithm, in a square matrix of 200 x 200, the value of
0.509 was reached. We also proceeded a careful statistical
analysis of the local slopes of the grain growth curve. As
expected, the histogram shown in Fig. 8 revealed that most
of the local slopes were within the 0.40 - 0.60 range. As the
simulations relies very much on random numbers, it is not
surprising that there are negative slopes (-0.60) as well as
much higher ones (+1.60). The average, however, was very
close to what was expected (0.50).

In the log x log scale of the graph in Fig. 9 it is possible
to notice the linear behavior of the average curve. In very
long simulations (> 50,000 MCS) we noticed that the
system reaches stability, with a very small number of
grains. Reaching a sufficiently large size, their growth
slows down, as most of the boundaries become flat (in a
square matrix). The values of n found in the simulation are
in very good agreement with the experiments of various
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Figure 5. The microstructure after editing in image processing software.

Figure 6. Grain growth behavior for increasing q values.

Figure 7. Grain growth behavior with the conventional and modified

methods. while n values found for the old method were around 0.35, values
of 0.49 were reached for the new algorithm.



authors, as Srolovitz et al.2,3, Zacaria6 and Mehnert8,9. That
demonstrates the validity of the software elaborated for the
simulation and the model adopted.

The method discussed in this paper can be used in
Metallurgy to study real-world problems, as the micro-
structure evolution during the welding process10 and grain
growth pinning in advanced materials.

7. Conclusion

The computational simulation demonstrated that the
grain growth phenomenon, although complex, could be
modeled in a very elementary way. The correct value of n,
found in our experiments, indicate that there is a very close
relationship between the model and the theoretical descrip-
tion of grain growth.
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Figure 8. Histogram of the local slopes.

Figure 9. Grain size vs. time (5000 mcs).


