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The testing procedure in order to determine the precise mechanical testing results in Marshall 
design is very time consuming. Also, the physical properties of the asphalt samples are obtained by 
further calculations. Therefore if the researchers can obtain the stability and flow values of a standard 
mixture with the help of mechanical testing, the rest of the calculations will just be mathematical 
manipulations. Determination of mechanical testing parameters such as strain accumulation, creep 
stiffness, stability, flow and Marshall Quotient of dense bituminous mixtures by utilising artificial 
neural networks is important in the sense that, cumbersome testing procedures can be avoided with 
the help of the closed form solutions provided in this study. Marshall specimens, prepared by utilising 
polypropylene fibers, were tested by universal testing machine carrying out static creep tests to 
investigate the rutting potential of these mixtures. On the very well trained data basis, artificial neural 
network analyses were carried out to propose five separate models for mechanical testing properties. 
The explicit formulation of these five main mechanical testing properties by closed form solutions 
are presented for further use for researches.

Keywords: Marshall design, static creep test, bitumen modification, polypropylene fibers,  
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1.	 Introduction
The creep test (conducted in an unconfined or confined 

manner), has been used to estimate the rutting potential 
of dense bituminous mixtures. This test is conducted by 
applying a static or a repeated load to an asphalt specimen 
and measuring the resulting permanent deformation. 
Extensive studies using the unconfined creep test (also 
known as simple creep test or uniaxial creep test) as a basis 
of predicting permanent deformation in dense bituminous 
mixtures has been conducted up to date. Research of 
permanent deformation in flexible pavements began in the 
early 1970’s1-7. The loss of pavement serviceability is a 
common result from rutting. A typical serviceability loss 
occurs when the formation of ruts forces the pavement to 
crack, which can lead to rapid deterioration of the pavement 
due to the accumulation of water on the pavement surface. 
Under normal service conditions, deformations within 
the bituminous materials occur more frequently during 
late spring, summer and early fall because of elevated 
temperature conditions.

To solve this rutting problem in flexible pavements 
(and other problems such as fatigue and low temperature 
cracking), scientists have developed some techniques and 
methodologies called “asphalt (bitumen) modification”. 
The most popular bitumen modification technique is 
polymer modification. To this end, novel binders with 

improved rheological characteristics are continuously being 
developed8-12. The best known form of this bituminous 
binder improvement is by means of polymer modification, 
traditionally used to improve the temperature susceptibility 
of bitumen by increasing binder stiffness at high service 
temperatures and reducing the stiffness at low service 
temperatures13.

It has been found that the creep test must be performed 
at relatively low stress levels (cannot usually exceed 30 psi 
(206.9 kPa) and low temperature (cannot usually exceed 
104 °F (40 °C)), otherwise the sample fails prematurely3,14,15. 
The test conditions consist of a static axial stress, σ, of 
100 kPa being applied to a specimen for a period of 1 hour 
at a temperature of 40 °C. These test conditions were 
standardized following a seminar in Zurich16. This test is 
inexpensive and easy to conduct but the ability of the test 
to predict performance is extremely questionable17. In place 
asphalt mixtures are sometimes prone to truck tire pressures 
of more than 828 kPa (120 psi) and temperatures higher 
than 60 °C (140 °F)18. Therefore, the conditions of static 
creep test do not closely simulate in-place conditions. The 
outlet of this part of the study was this major drawback of 
the static creep tests that have been carried out worldwide 
up to date19. In order to fulfil this aim, multifilament 3 mm 
(M-03) type polypropylene fibers has been utilised to 
modify the bituminous binder in a wet basis, and Marshall 
specimens prepared with optimum bitumen content were 
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used to determine the optimal fiber addition amount with the 
aid of static creep tests undertaken in a completely different 
fashion than the previous ones. In this manner, the rutting 
potential of dense bituminous mixtures can be explored in 
a more complete manner.

The first part of the study reviews available literature 
published in the last four years on the application of 
polypropylene fibers in asphalt modification. Then short 
information on static creep testing of dense bituminous 
mixtures is presented spanning in the last two decades about 
the actual loading simulation efforts being undertaken in the 
laboratory environment. Next, published literature about 
artificial neural networks in pavement engineering especially 
after the year 2005 up to date has been introduced. At this 
point, strain accumulation and creep stiffness determination 
of Marshall specimens tested by universal testing machine 
is being analysed. Then, the application of artificial neural 
network techniques to propose two separate models for 
strain accumulation and creep stiffness by utilising the 
physical properties of standard Marshall specimens such 
as polypropylene fiber addition amount, specimen height 
(only for strain accumulation proposal), unit weight, voids 
filled with asphalt, voids in mineral aggregate, air voids 
and test loading period (for static creep testing) is being put 
forward. Furthermore, a general overview about the Marshall 
design is presented in the next section. Then neural network 
applications related specifically to the Marshall design in 
the last decade have been presented. Finally, three other 
neural network models are being presented which uses the 
physical properties of standard Marshall specimens such 
as polypropylene fiber addition amount, specimen height, 
unit weight, voids filled with asphalt, voids in mineral 
aggregate and air voids in order to predict the Marshall 
stability, flow and Marshall Quotient values obtained at 
the end of mechanical tests. The explicit formulation of 
these mechanical properties based on the proposed neural 
network model is obtained and presented for further use 
for researchers who are working with the same kind of or 
different bitumen modifiers, needless to say, for similar 
and specific type of aggregate sources, bitumen, aggregate 
gradation, mix proportioning, modification technique and 
laboratory conditions.

2.	 Available Literature Published in the 
Last Four Years on the Application 
of Polypropylene Fibers in Asphalt 
Modification
Until 2008, many valuable studies have been published 

about fiber modification of dense bituminous mixtures which 
can be found in a detailed manner in the relevant literature20. 
Tapkın21 has found that the addition of polypropylene fibers 
into the asphalt concrete on a dry basis alters the behaviour 
of the mixture in such a way that, Marshall stability values 
increase, flow values decrease and the fatigue life increases 
significantly. Tapkın  et  al.20,22-24 have also worked on the 
addition of polypropylene fibers to the asphalt concrete on 
a wet basis, and have shown that the most favourable and 
suitable polypropylene type was multifilament, 3 mm long 
(M-03 type) which increased the Marshall stability values by 

20% as well as the stiffness of the asphalt concrete. Repeated 
load creep tests under different loading patterns have also 
shown that the time to failure of fiber modified asphalt 
specimens under repeated creep loading at different loading 
patterns increased by 5-12 times versus reference specimens, 
which is a very significant improvement. In another 
accompanying study, it was found that polypropylene 
modification of bituminous binders developed the physical 
and mechanical properties of the mixture and substantially 
improved its resistance to permanent deformation. 
Polypropylene modification also resulted in a saving of 
30% in the amount of bitumen, resulting in considerable 
cost savings19. There are also a number of other studies in 
the literature on different applications of polypropylene fiber 
modification of asphalt concrete in the last decade which 
deserve attention25-33.

3.	 Static Creep Testing of Dense Bituminous 
Mixtures Spanning in the Last Two 
Decades About the Actual Loading 
Simulation Efforts
The main outcome of this study was the major 

drawback of the static creep tests and those that have been 
carried out worldwide up to date19. Therefore, a completely 
different loading pattern and testing temperature was 
adopted. In this study, first of all, the test temperature was 
chosen as 50 °C, again just like in repeated creep testing 
regime to simulate actual in-situ conditions24. A static axial 
stress, σ, of 100 kPa was applied to the specimens as a 
preloading for 10 minutes and after, 500 kPa of loading 
was applied to the specimens for 1 hour to simulate 
in‑place conditions in a realistic manner19. Also it has to be 
mentioned that, in today’s modern pavement engineering 
practices, there are also other bitumen modifying agents 
other than polypropylene fibers which need to be tested in 
actual stress levels (like 100 kPa of preloading and 500 kPa 
loading level in repeated creep test, not 10 kPa preloading 
and 100 kPa loading level like the older practices) in order 
to show the very positive contribution of these modifiers 
to the genuine mechanical behaviour of modified dense 
bituminous mixtures.

Matthews and Monismith34 have performed unconfined 
creep tests at temperatures 25 °C, 38 °C and 49 °C which 
is a main departure from the published literature up to 
date in the testing temperature manner and deserves 
attention. In another study by Mallick et al.35, in order to 
simulate the average pavement temperature throughout the 
United States, 60 °C of testing temperature was utilised. 
Ramsamooj and Ramadan36 had carried out creep tests at 
four stress levels under constant stresses of 150, 400, 650 
and 900 kPa. This was again an important deviation from 
the accustomed practices of creep testing that deserves 
attention. Tashman et al.37 had carried out triaxial confined 
static creep test in determining the model parameters related 
to their studies. This is again a significant departure from 
the routine testing protocol of 40 °C temperature16. A static 
constant load had been applied until “tertiary flow” occurred. 
The test had been stopped at the initiation of the tertiary 
creep zone in order to avoid damaging the linear variable 
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differential transformer (LVDT); thus the experimental 
tertiary creep pattern could not have been recorded naturally. 
Chen et al.38 had investigated the mechanical responses and 
modelling of rutting in flexible pavements. In a recent study, 
Chen et al.39 investigated the utilization of recycled brick 
powder as alternative filler in asphalt mixture. They had 
carried out static and dynamic creep tests using Universal 
Testing Machine (UTM) to apply constant stress to asphalt 
specimens. Their specimens were 100 mm in diameter and 
100 mm in height. These specimens were tested at 60 °C 
with a constant stress of 100 kPa for 3600 seconds and 
unloaded for the recovery of deformations for 5400 seconds. 
Also in some studies, in the last five years that was utilising 
the “standard” procedure depicted in Zurich16, the testing 
temperature had been chosen as 30 °C which was again a 
departure from this technique40-42.

4.	 Published Literature About Artificial 
Neural Network Applications in 
Pavement Engineering Especially After 
Year 2005 Up to Date
Detailed knowledge about the applications of artificial 

neural networks in transportation engineering and pavement 
engineering up to year 2005 can be found in the relevant 
literature20,43.

Tarefder et al.44 constructed and applied a four-layer 
feed-forward neural network to determine a mapping 
associating mix design and testing factors of asphalt 
concrete samples with their performance in conductance 
to flow or permeability. Another study used the artificial 
neural network methodology to develop time-dependent 
roughness prediction models for three types of pavements: 
Portland cement concrete pavement, asphalt overlay over 
concrete pavement, and asphalt pavement45. Tarefder et al.46 

constructed a four-layer neural network and applied this to 
determine the mapping associating factors in the design 
and testing of asphalt samples with their performance 
in repetitive rutting tests. In another study, the concept 
of a novel neural network-based asphalt compaction 
analyser capable of predicting the density continuously, 
in real time, during the construction of the pavement 
was presented. Preliminary field studies demonstrated 
the capability of the analyser in predicting the density 
of an asphalt pavement during construction47. Efforts in 
another study had been made to backcalculate the in situ 
elastic moduli of asphalt pavement from synthetically 
derived falling weight deflectometer (FWD) deflections 
at seven equidistant points48. Lacroix et al.49 proposed the 
population of a database of measured dynamic moduli 
with the corresponding predicted resilient moduli to train 
an artificial neural network. The study by Xiao  et  al.50 

explored the utilization of an artificial neural network in 
predicting the fatigue life of rubberized asphalt concrete 
mixtures containing reclaimed asphalt pavement. Xiao and 
Amirkhanian51 in another look explored the utilization of 
the artificial neural networks in predicting the stiffness 
behaviour of rubberized asphalt concrete mixtures with 
reclaimed asphalt pavement. A paper by Far  et  al.52 
presented outcomes from a research effort to develop 

models for estimating the dynamic modulus (|E*|) of hot-
mix asphalt layers on long‑term pavement performance 
test sections. Tapkın et  al.20 presented an application of 
neural networks for the prediction of repeated creep test 
results for polypropylene modified asphalt mixtures. 
Marshall specimens, fabricated with multifilament 3 mm 
type polypropylene fibers at optimum bitumen content 
(reference and 3‰ polypropylene fiber modified by weight 
of aggregate which was not the optimal addition amount 
according to later studies carried by the lead author19,24) 
were tested using universal testing machine in order to 
determine their mechanical behaviour under repeated 
creep testing. Different stress values (namely 100, 207 and 
500 kPa) and loading patterns (load periods were chosen as 
500 ms for all of the specimens and the rest periods were 
500, 1000, 1500 and 2000 ms, respectively) have been 
applied to the previously prepared specimens at 50 °C. It 
has been shown that the addition of polypropylene fibers 
results in improved Marshall stabilities and decrease in 
the flow values, providing the increase of the service 
life of samples under repeated creep testing (5-12 times 
when compared to reference specimens). The proposed 
neural network model uses the physical properties of 
standard Marshall specimens such as polypropylene type, 
specimen height, unit weight, voids in mineral aggregate, 
voids filled with asphalt, air voids and repeated creep test 
properties such as rest period and pulse counts in order to 
predict the strain accumulation values obtained at the end 
of mechanical tests. Moreover parametric analyses have 
been carried out. The results of parametric analyses were 
used to evaluate the strain accumulation of the Marshall 
specimens subjected to repeated load creep tests in a quite 
well manner. Zhang et al.31 studied polypropylene/waste 
ground rubber tire powder composites with respect to 
the effect of bitumen and maleic anhydride‑grafted 
styrene–ethylene–butylene‑styrene content by using 
the design of experiments approach, whereby the effect 
of the four polymers content on the final mechanical 
properties were predicted. Zhang et al.32, this time, studied 
waste polypropylene/waste ground rubber tire powder 
blends with respect to the effect of bitumen and maleic 
anhydride‑grafted styrene–ethylene–butylene–styrene 
content by using the design of experiments approach, 
whereby the effect of the four polymer content on the final 
mechanical properties were predicted. Gopalakrishnan 
and Manik53 used the falling weight deflectometer data to 
determine the in situ mechanical properties (elastic moduli) 
of the pavement layers through inverse analysis, a process 
commonly referred to as backcalculation. Tsai  et  al.54 
calibrated mechanistic‑based models to field data to 
produce a design process for predicting reflection cracks. 
Sakhaeifar  et  al.55 presented a set of dynamic modulus 
(|E*|) predictive models to estimate the |E*| of hot-mix 
asphalt layers in long-term pavement performance (LTPP) 
test sections. Tapkın et al.23 presented another application 
of neural networks for the prediction of Marshall test 
results for polypropylene modified asphalt mixtures. 
Marshall stability and flow tests were carried out on 
specimens fabricated with none (reference) and different 
type of polypropylene fibers (for multifilament 3 mm type 

2012; 15(6) 867



Tapkın et al.

fibers, fiber contents of 3‰, 4.5‰ and 6‰ by weight of 
aggregate were utilised and for multifilament 9 mm type 
and waste fibers only 3‰ fiber content by aggregate weight 
was utilized which were not the optimal addition amounts 
according to later studies carried by the lead author19,24) at 
bitumen contents varying from 3.5% to 7% (changing by 
0.5% increments for 3 specimens at each percentage). It has 
been shown that the addition of polypropylene fibers results 
in the improved Marshall stabilities and Marshall Quotient 
values, which is a kind of pseudo stiffness. The proposed 
neural network model uses the physical properties of 
standard Marshall specimens such as polypropylene type, 
polypropylene percentage, bitumen percentage, specimen 
height, unit weight, voids in mineral aggregate, voids filled 
with asphalt and air voids in order to predict the Marshall 
stability, flow and Marshall Quotient values obtained at 
the end of mechanical tests. The explicit formulation of 
stability, flow and Marshall Quotient based on the proposed 
neural model is also obtained and presented for further use 
by researchers. Moreover parametric analyses have been 
carried out. The results of parametric analyses were used to 
evaluate mechanical properties of the Marshall specimens 
in a quite well manner. Kargah-Ostadi et al.56 used in a 
network-level pavement management system (PMS) to 
predict future performance of a pavement section and 
identify the maintenance and rehabilitation needs. There 
are also various similar studies in the literature in the way 
of utilising neural networks and parametric studies in 
various civil engineering applications57-59.

5.	 Experimental Analysis Carried Out

5.1.	 Preparation of the asphalt specimens

Marshall specimens were fabricated by utilising 
50  blows on each face (medium traffic conditions). 
50/70 penetration bitumen was modified in the laboratory 
with M-03 type polypropylene fibers. A total of “93” 
Marshall specimens were fabricated and Universal Testing 
Machine had been utilised to carry out, this time, to put 
forward another approach to the rutting prediction of 
Marshall specimens with carrying out static creep tests on 
them (the lead author has carried out repeated creep testing 
with a completely different set of data on another leg of the 
ongoing studies beforehand20). When compared with the 
amount of tests undertaken in the similar studies available in 
the literature, testing of 93 specimens is really an extensive 
way of carrying out analyses19,24.

5.2.	 Material properties

Gradation limits for wearing course Type 2 set by 
Highway Technical Specifications of General Directorate 
of Turkish Highways had been utilised all throughout the 
studies60. 50/70 penetration bitumen was utilised for the 
preparation of the Marshall specimens. The aggregate that 
had been used throughout the experiments was calcareous 
type crushed stone. Physical properties of the bitumen 
samples are given in Table 1. The physical properties of 
coarse and fine aggregates are given in Tables 2 and 3. The 
apparent specific gravity of filler is 2785 kg.m–3. 

Aggregate gradation had been selected as wearing 
course type 2 given by General Directorate of Highways of 
Turkey60. The mixture gradation is given in Table 4.

Physical properties of the polypropylene fibers used 
in the experimental program are given in the relevant 
literature24.

Table 1. Physical properties of the reference bitumen.

Property Test Value Standard

Penetration at 25 °C, 1/10 mm 68.35 ASTM D 5-97

Penetration Index –0.26 -

Ductility at 25 °C, cm +150 ASTM D 113-99

Specific gravity at 25 °C,  
kg.m–3 1028 ASTM D 70-76

Softening point, °C 50.67 ASTM D 36-95

Table 2. Physical properties of coarse aggregates.

Property
Test 

Value
Standard

Bulk specific gravity, kg.m–3 2705
ASTM C 
127-04

Saturated surface dry specific 
gravity, kg.m–3 2714

ASTM C 
127-04

Apparent specific gravity, kg.m–3 2729
ASTM C 
127-04

Water absorption, (%) 0.322
ASTM C 
127-04

Los Angeles abrasion coefficient (%) 30 ASTM C-131

Table 3. Physical properties of fine aggregates.

Property
Test 

Value
Standard

Bulk specific gravity, kg.m–3 2685
ASTM C 
128-04

Saturated surface dry specific 
gravity, kg.m–3 2717

ASTM C 
128-04

Apparent specific gravity, kg.m–3 2776
ASTM C 
128-04

Water absorption (%) 1.236
ASTM C 
128-04

Table 4. Type 2 wearing course gradation60.

Sieve size 
(mm)

Gradation limits 
(%)

Passing 
(%)

Retained  
(%)

12.7 100 100 0

9.52 80-100 90 10

4.76 55-72 63.5 26.5

2.00 36-53 44.5 19.0

0.42 16-28 22 22.5

0.177 8-16 12 10.0

0.074 4-10 7 5

Pan - - 7
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5.3.	 Polypropylene modification of bitumen

50/70 penetration bitumen was modified by M-03 
type polypropylene fibers. The fibers were premixed with 
bitumen using a standard mixer at 500 rpm for at least two 
hours. Mixing temperature was around 165-170 °C61. Only 
M-03 type fibers had been utilised to modify the bitumen 
samples according to the workability criteria22,24. Starting 
with 0.5‰ M-03 type, and increasing by 0.5‰ up to 7‰, 
polypropylene fibers had been premixed with bitumen and 
were used for preparation of Marshall specimens18. Physical 
properties of the polypropylene fiber based bitumen samples 
with 1 to 7‰ fiber content are given in Table 5.

Performance characteristics, such as specific gravity, 
ductility, softening point, penetration and penetration 
index of the polypropylene fiber modified bitumen samples 
were greatly improved as compared to control specimens 
which can be seen in Table 5. The specific gravity values 
have decreased by 1.94% when the maximum amount of 
polypropylene is added to the bitumen samples. Ductility 
values have dropped to 5.0 cm when 7‰ modification has 
been carried out. The increase in softening point values is 
106.03 °C when compared to control specimens. This is a 
very remarkable increase from the pavement engineering 
point of view which is showing the clear decrease in the 
temperature susceptibility of the bituminous binders with 
polypropylene fiber modification (tests were carried out 
in glycerine after 3‰ fiber addition). Penetration values 
have dropped to 9.38 dmm for 7‰ modification. These 
above figures  altogether show the very positive effect 
of polypropylene modification to the physico-chemical 
properties of control specimens according to the temperature 
susceptibility criteria19.

5.4.	 The proportioning of the bituminous 
mixtures

To find the optimum bitumen content of reference 
asphalt specimens, Marshall stability and flow tests were 
utilised. In order to do this, bitumen contents corresponding 
to the mixtures with maximal stability and unit weight, 4% 
air voids and 70% voids filled with asphalt, were found 
and averaged according to the limits given by the General 
Directorate of Highways of Turkey60. Two different Marshall 
designs were carried out. In the first design, the optimum 
bitumen content was found as 5%. Second design was ended 
with an optimum bitumen content of 4.96%. These two 

results are very near to each other therefore the optimum 
bitumen content of the reference specimens has been taken 
as 5.0%.

6.	 Experiments Performed to Determine 
Optimal Polypropylene Addition to the 
Mixture and Artificial Neural Network 
Applications by Universal Testing 
Machine

6.1.	 Static creep tests undertaken

In this study, first of all, the test temperature has been 
chosen as 50 °C to resemble the in-situ conditions. The 
height of asphalt specimens was approximately the same for 
all of the specimens. Prior to testing, the specimens had been 
placed in an environmental chamber for 24 hours to maintain 
uniform temperature distribution. Then, the static axial stress, 
σ, of 100 kPa was applied to the specimens as a preloading 
for 10 minutes and after on , 500 kPa of loading was applied 
to the specimens for 1 hour to resemble in-place conditions 
in a realistic manner. In order to validate this preloading 
time of 10 minutes, preloading times of 0 to 10 minutes, 
increasing one minute by one minute, has been applied to 
standard Marshall specimens prepared at optimum bitumen 
content of 5%. A total of 11 specimens had been fabricated 
and subjected to the same loading pressure of 500 kPa for 
1 hour. At the end of these tests, it has been found out that 
10 minutes of preloading can be accepted as the optimal 
preloading time for the further studies that will be carried out 
with no doubt19. Starting with control specimens (a total of 
9 specimens), Marshall specimens have been prepared at the 
optimum bitumen content of 5% with changing polypropylene 
contents of 0.5‰ to 7.0‰ by aggregate weight with 0.5‰ 
increments. For each polypropylene content, a total of 
6 specimens have been fabricated. Therefore, in the end, a 
total of 84 modified specimens have been tested under the 
static creep test conditions stated above. The mechanical 
properties of Marshall specimens at the end of static creep 
tests undertaken by universal testing machine are given in 
Table 6. These are the average end of test values (preloading 
[for initial creep stiffness] and actual loading [strain 
accumulation and final creep stiffness]) obtained for each set 
of specimens prepared by utilising different polypropylene 
fiber modification amount. In Figures 1, 2 and 3 these values 

Table 5.  The physical properties of control and various percentages of polypropylene modified samples.

Polypropylene amount 
(‰ of aggregate)

Specific gravity  
(kg.m–3)

Ductility  
(cm)

Softening point 
(ºC) 

Penetration (dmm)
Penetration Index, 

PI (unitless)

0.0 1028 +150 50.67 68.35 –0.262

1.0 1026 69.7 54.33 42.42 –0.549

2.0 1021 57.0 53.65 34.98 –1.103

3.0 1018 56.1 69.30 32.02 1.639

4.0 1017 11.6 105.10 31.68 5.998

5.0 1014 11.1 152.18 28.69 9.130

6.0 1010 5.5 156.57 14.15 8.008

7.0 1008 5.0 156.70 9.38 7.310
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are given once more in order to draw the attention to the 
“optimal” addition of fiber addition. In these three figures, 
the reader can easily notice the value of 5.5‰ polypropylene 
fiber addition as the “optimal” addition amount of modifier 
in a mechanical testing manner.

One can easily notice form Table 6 and Figures 1, 2 and 
3 that the addition of polypropylene enhances the mixture 
properties in a very favourable manner. For example, the 
control specimens have a final strain accumulation value 
of 7433.89 με. On the other hand, the 6‰ polypropylene 
modified specimens have a final strain accumulation value of 
2964.50 με. This corresponds to a decrease of approximately 
60% and deserves attention. On the other hand, the initial 

and final stiffness (creep stiffness) values are 83.46 and 
67.99  MPa respectively. When the 6‰ polypropylene 
modified specimens are investigated, these values are 191.65 
and 169.15 MPa respectively. These values correspond to an 
increase of 129% in the initial and 149% in the final creep 
stiffness values and must be highlighted19.

In order to give samples for the strain accumulation 
versus time graphs of the specimens subjected to creep 
loading, reference, 3.0‰, 5.5‰ and 7.0‰ modified 
specimens’ curves (with various air void values) are given 
below in Figures 4 to 7.

6.2.	 Background on artificial neural networks

The operation of the neuron is a complicated and not 
fully understood process, although the basic details are 
relatively clear. The neuron accepts many inputs, which 
are all added up in some manner. If enough active inputs 
are received at once, then the neuron will be activated and 
transmit a signal; otherwise the neuron will remain in its 
inactive quiet state. The influence of the synapses, coupled 
with the incoming signal into the soma (cell body), can 
be modelled by a linear combination of the inputs to the 
processing unit. The more influential the synapse, the larger 
the signal, the less influential the synapse, the smaller the 
signal.This basic model, which is analogous to a biological 
neuron, is shown in Figure 8.

This model, which is called a perceptron simply 
performs a weighted sum of inputs (a linear combination), 
compares this to a threshold value in the processing unit 
and turns on if this value is exceeded, otherwise it stays 
off. Since the inputs are passed through the model neuron 
to produce the output once, the system is known as a feed 
forward one43.

The artificial neuron consists of three main components 
namely as weights, bias, and an activation function 
(Figure 8). Each neuron receives inputs x

1
, x

2
, ...x

n
, attached 

with a weight w
i
 which shows the connection strength for 

Figure 2. Initial creep stiffness versus polypropylene amount in 
static creep tests undertaken.

Figure  3. Final creep stiffness versus polypropylene amount in 
static creep tests undertaken.

Table 6. Mechanical properties of Marshall specimens at the end of 
static creep tests undertaken by universal testing machine.

Polypropylene (‰)
(by weight of 

aggregate)

Accumulated 
Strain

(µε)

Initial creep 
stiffness
(MPa)

Final creep 
stiffness
(MPa)

0 7433.89 83.46 67.99

0.5 5944.00 103.44 84.05

1 5321.33 115.53 95.09

1.5 4888.00 117.48 101.45

2 4594.67 133.37 110.16

2.5 4434.00 134.4 112.18

3 4210.33 135.17 118.2

3.5 4026.83 149.95 124.6

4 3818.83 156.97 132.43

4.5 3547.67 169.8 141.15

5 3171.33 184.72 159.75

5.5 3055.17 209.17 168.98

6 2964.50 191.65 169.15

6.5 3636.50 161.43 137.75

7 3609.83 174.18 139.72

Figure  1. Strain accumulation versus polypropylene amount in 
static creep tests undertaken.
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that input for each connection. Each input is then multiplied 
by the corresponding weight of the neuron connection. A 
bias b

i
 can be defined as a type of connection weight with a 

constant nonzero value added to the summation of inputs.

1

H
i ij j i

j
u w x b

=
= +∑

	
(1)

The summation u
i
 is transformed using a scalar-to‑scalar 

function called an “activation or transfer function”, F(u
i
) 

yielding a value called the unit’s “activation”, given in 
Equation 2.

( )i iY f u= 	 (2)

Activation functions serve to introduce nonlinearity into 
neural networks which makes artificial neural networks so 
powerful. The activation function is also referred to as a 
squashing function.

Neural networks are commonly classified by their 
network topology, (i.e. feedback, feedforward) and learning 

Figure 4. Strain accumulation versus time graphs of the specimens subjected to creep loading of reference specimens’.

Figure 5. Strain accumulation versus time graphs of the specimens subjected to creep loading of 3.0‰ modified specimens’.
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or training algorithms (i.e., supervised, unsupervised). For 
example a multilayer feed forward neural network with back 
propagation indicates the architecture and learning algorithm 
of the neural network. Backpropagation algorithm is used in 
this study which is the most widely used supervised training 
method for training multilayer neural networks due to its 
simplicity and applicability. It is based on the generalized 
delta rule and was popularized by Rumelhart et al.62.

The performance of an artificial neural network model 
mainly depends on the network architecture and parameter 
settings. One of the most difficult tasks in artificial neural 
network studies is to find this optimal network architecture 
which is based on determination of numbers of optimal 
layers and neurons in the hidden layers by trial and error 
approach. The assignment of initial weights and other related 
parameters may also influence the performance of the neural 
network in a great extent. However there is no well defined 

Figure 6. Strain accumulation versus time graphs of the specimens subjected to creep loading of 5.5‰ modified specimens’.

Figure 7. Strain accumulation versus time graphs of the specimens subjected to creep loading of 7.0‰ modified specimens’.
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rule or procedure to have optimal network architecture and 
parameter settings where trial and error method still remains 
valid. This process is very time consuming.

Various back propagation training algorithms which 
are used in this part of the study is given in Table  7. 
MATLAB Neural Network Toolbox63 randomly assigns the 
initial weights for each run each time which considerably 

changes the performance of the trained neural network 
even all parameters and neural network architecture 
are kept constant. This leads to extra difficulties in the 
selection of optimal network architecture and parameter 
settings. To overcome this difficulty a program has been 
developed in MATLAB which handles the trial and error 
process automatically. The program tries various number 
of layers and neurons in the hidden layers both for first and 
second hidden layers for a constant epoch for several times 
and selects the best neural network architecture with the 
minimum MAPE (Mean Absolute % Error) or RMSE (Root 
Mean Squared Error) of the testing set, as the training of the 
testing set is more critical. For instance a neural network 
architecture with 1 hidden layer with 7 nodes is tested 
10 times and the best neural network is stored where in the 
second cycle the number of hidden nodes is increased up to 
8 and the process is repeated. The best neural network for 
cycle 8 is compared with cycle 7 and the best one is stored as 
best neural network. This process is repeated n times where 
n denotes the number of hidden nodes for the first hidden 
layer. This whole process is repeated for changing number 
of nodes in the second hidden layer. Moreover this selection 
process is performed for different back propagation training 
algorithms such as trainlm, trainscg and trainbfg given in 
Table 7. The program begins with simplest neural network 
architecture i.e. neural network with 1 hidden node for the 
first and second hidden layers and ends up with optimal 
neural network architecture. The flowchart  of the whole 
process can be found in relevant literature64.

6.3.	 Numerical application

Throughout this part of the study, artificial neural 
networks had been utilised in order to predict the strain 
accumulation and creep stiffness of asphalt concrete 
specimens obtained from a series of Marshall designs based 
on experimental results described above. The ranges for 
these test results are shown respectively in Tables 8 and 9. 
The data set is properly divided into 80% training and 20% 
testing sets for neural network training process and these sets 

Table 7. Back propagation training algorithms used in neural 
network training.

MATLAB 
function 

name 
Algorithm 

trainbfg BFGS quasi-Newton back propagation 

traincgf
Fletcher-Powell conjugate gradient back 
propagation 

traincgp 
Polak-Ribiere conjugate gradient back 
propagation 

traingd Gradient descent back propagation 

traingda 
Gradient descent with adaptive linear back 
propagation 

traingdx 
Gradient descent w/momentum & adaptive linear 
back propagation 

trainlm Levenberg-Marquardt back propagation 

trainoss One step secant back propagation 

trainrp Resilient back propagation (Rprop) 

trainscg Scaled conjugate gradient back propagation 

Table 8. Ranges of experimental database for strain accumulation analyses.

PP(‰)
SpecimenHeight 

(mm)

Unit 
Weight 
(kg.m–3)

Vf (%)
V.M.A. 

(%)
Va (%)

Loading 
time  

(seconds)

Accumulated 
Strain

(µε)

Maximum 7.00 60.80 2465.29 76.89 17.76 6.40 3600.00 8670.00

Minimum 0 57.90 2380.7 62.03 14.84 3.07 0 0

Mean 3.39 59.31 2427.59 69.79 16.14 4.55 1804.57 4208.10

Std. Dev. 2.21 0.62 22.51 3.98 0.78 0.89 1040.47 1327.87

Table 9. Ranges of experimental database for creep stiffness analyses.

PP(‰)
Unit Weight

(kg.m–3)
Vf (%) V.M.A. (%) Va (%)

Loading 
time  

(seconds)

Stiffness
(MPa)

Maximum 7.00 2465.29 76.88 16.72 5.21 3596.00 197.20

Minimum 0 2410.78 66.72 14.84 3.07 20.00 57.76

Mean 1.75 2448.71 73.62 15.42 3.72 1835.27 96.62

Std. Dev. 2.61 15.09 2.83 0.52 0.59 1046.68 33.42

Figure 8. The basic neural network model which is analogous to 
a biological neuron.
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are randomly selected from the experimental database. The 
optimal neural network architectures for strain accumulation 
and creep stiffness were found to be 7-9-1 (9  hidden 
neurons) and 6-8-1 (8 hidden neurons). The optimum 
training algorithm was found to be Levenberg‑Marquardt 
back propagation. Logarithmic sigmoid (log) and hyperbolic 
tangent sigmoid (tanh) transfer functions were utilised for 
the hidden layer and output layer respectively (on a log-log, 
log-tanh, tanh-log & tanh-tanh basis). It had been clearly 
seen and proven that there were very minute differences 
when these four combinations were utilised therefore 
logarithmic sigmoid transfer function had been used in all 
throughout the analyses that had been carried out through 
the study. Statistical parameters of training and testing sets 
and overall results of neural network models are represented 
respectively in Tables 10 and 11. As can be visualised from 
these tables, the obtained neural network results are observed 
to be markedly close to actual test results. This is a perfect 
indication of the well training of the data set.

Artificial neural network applications are treated as 
black-box applications in general. However this study opens 
this black box and introduces the neural network application 
in a closed form solution65. This part of the study aims to 
present the closed form solutions of proposed neural network 
models for strain accumulation and creep stiffness based on 
the trained artificial neural network parameters (weights 
and biases) as a function of physical properties of standard 
Marshall specimens such as fiber addition amount, specimen 
height (only for strain accumulation analysis), unit weight, 
voids filled with asphalt (V

f
), voids in mineral aggregate 

(V.M.A.), air voids (V
a
) and test loading period (for static 

creep testing).
Using weights and biases of the trained neural network 

model, closed form of strain accumulation can be given as 
follows:

STRAIN ACCUMULATION (µε) = (sigmoid (–5.12679 × 
HL_0 + 3.53406 × HL_1 + 0.618816 × HL_2 + 1.37854 × 
HL_3 + 2.78113 × HL_4 – 9.66212 × HL_5 – 1.96141 × 
HL_6 + 0.790685 × HL_7 + 2.24663 × HL_8 + 6.73615) 
– 0.1)/9.22722e-05)	 (3)

where;
•	 HL_0 = sigmoid (–0.84116 × IN_0 – 0.708825 × IN_1 

+ 0.278111 × IN_2 – 1.35109 × IN_3 – 0.220246 
× IN_4 – 0.398603 × IN_5 – 15.4466 × IN_6 + 
0.434251);

•	 HL_1 = sigmoid (–5.45661 × IN_0 + 3.2241 × IN_1 – 
5.73856 × IN_2 – 5.08163 × IN_3 + 2.09586 × IN_4 
+ 2.7223 × IN_5 + 0.26963 × IN_6 – 3.72559);

•	 HL_2 = sigmoid (6.5444 × IN_0 + 6.03502 × IN_1 
+ 3.91636 × IN_2 + 4.05 × IN_3 – 7.78236 × IN_4 
– 8.08599 × IN_5 – 0.327217 × IN_6 – 3.99581);

•	 HL_3 = sigmoid (–7.44745 × IN_0 + 5.08814 × IN_1 
– 2.5396 × IN_2 – 4.04074 × IN_3 + 2.40696 × IN_4 
+ 2.72665 × IN_5 + 0.312135 × IN_6 + 0.369007);

•	 HL_4 = sigmoid (7.21775 × IN_0 – 1.15178 × IN_1 – 
2.82139 × IN_2 – 3.10945 × IN_3 – 0.970166 × IN_4 
– 0.370003 × IN_5 – 0.134513 × IN_6 – 3.96387);

•	 HL_5 = sigmoid (35.5367 × IN_0 + 5.41185 × IN_1 
– 0.561274 × IN_2 – 0.0351946 × IN_3 – 1.79171 
× IN_4 – 1.35406 × IN_5 – 0.571007 × IN_6 – 
1.58336);

•	 HL_6 = sigmoid (4.59725 × IN_0 + 2.80553 × IN_1 
+ 0.474659 × IN_2 + 0.888513 × IN_3 – 3.97172 
× IN_4 – 3.97018 × IN_5 – 0.748713 × IN_6 – 
3.54919);

•	 HL_7 = sigmoid (–9.17083 × IN_0 – 3.3053 × IN_1 
+ 0.857393 × IN_2 + 0.12739 × IN_3 + 0.809459 
× IN_4 + 0.852527 × IN_5 + 0.342881 × IN_6 + 
2.51807);

•	 HL_8 = sigmoid (–1.23761 × IN_0 – 2.54284 × IN_1 
+ 4.15965 × IN_2 + 3.59557 × IN_3 – 1.44468 × IN_4 
– 1.36997 × IN_5 – 0.0352614 × IN_6 + 2.89333)

and;
•	 IN_0 = PP(‰) × 0.114286 + 0.1;
•	 IN_1 = Specimen Height (mm) × 0.275862 – 15.8724;
•	 IN_2 = Unit Weight (kg.m–3) × 0.00945682 – 22.4138;
•	 IN_3 = Vf (%) × 0.0538577 – 3.24079;
•	 IN_4 = V.M.A.(%) ×0.273786 – 3.96271;
•	 IN_5 = Va (%) × 0.240545 – 0.638713;
•	 IN_6 = Loading time (seconds) × 0.000222222 + 0.1

and;

( ) 1 
1 xsigmoid x

e−=
+

On the other hand, using weights and biases of the 
trained neural network model, closed form of creep stiffness 
can be given as follows:

CREEP STIFFNESS (MPa) = (sigmoid (–0.610361 × HL_0 
+ 0.313557 × HL_1 + 2.94854 × HL_2 – 1.16768 × HL_3 
+ 2.92609 × HL_4 + 5.50622 × HL_5 – 2.74787 × HL_6 – 
4.74226 × HL_7 –0.130341) + 0.231383)/0.00573723 	(4)

where;
•	 HL_0 = sigmoid (–0.112266 × IN_0 – 0.774179 × 

IN_1 – 1.06802 × IN_2 – 0.143327 × IN_3 – 0.272591 
× IN_4 – 0.403391 × IN_5 – 0.926482);

•	 HL_1 = sigmoid (–0.75386 × IN_0 + 0.213694 × IN_1 
– 0.0189454 × IN_2 – 1.69661 × IN_3 – 0.834712 × 
IN_4 – 1.88374 × IN_5 – 0.604095);

•	 HL_2 = sigmoid (0.635743 × IN_0 + 2.37817 × IN_1 
+ 2.38668 × IN_2 – 2.17432 × IN_3 – 2.14612 × 
IN_4 – 1.26599 × IN_5 – 0.312843);

Table 10. Statistical parameters for strain accumulation analyses.

Training set Testing set Total set

MSE 139747.8 155948.3 152975.9

MAPE 6.830271 7.152989 7.104738

R2 0.917602 0.911942 0.912798

Mean 0.99689 0.99637 0.99615

COV 0.09208 0.101209 0.099558

Table 11. Statistical parameters for creep stiffness analyses.

Training set Testing set Total set

MSE 30.30005 41.73852 39.45083

MAPE 5.072501 5.361045 5.303336

R2 0.968983 0.964309 0.964818

Mean 0.986983 0.986989 0.986988

COV 0.071388 0.076834 0.075647
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•	 HL_3 = sigmoid (–0.430883 × IN_0 – 1.3352 × IN_1 
– 0.572735 × IN_2 + 0.190007 × IN_3 + 0.315196 × 
IN_4 – 0.625573 × IN_5 – 0.712933);

•	 HL_4 = sigmoid (–0.605011 × IN_0 + 4.58219 × 
IN_1 + 5.42914 × IN_2 – 7.95264 × IN_3 – 8.17845 
× IN_4 + 0.175617 × IN_5 – 3.58115);

•	 HL_5 = sigmoid (–0.903958 × IN_0 – 0.634469 
× IN_1 – 0.684313 × IN_2 – 0.180382 × IN_3 + 
0.639131 × IN_4 – 11.8783 × N_5 – 0.199066);

•	 HL_6 = sigmoid (–5.91826 × IN_0 + 3.64127 × IN_1 
+ 3.65701 × IN_2 – 6.15733 × IN_3 – 6.15846 × IN_4 
+ 0.210041 × IN_5 – 2.95975);

•	 HL_7 = sigmoid (–6.67541 × IN_0 + 3.1271 × IN_1 
+ 4.26139 × IN_2 – 3.91875 × IN_3 – 3.61073 × 
IN_4 – 0.589359 × IN_5 – 0.283938);

and;
•	 IN_0 = PP (‰) × 0.114286 + 0.1;
•	 IN_1 = Unit Weight(kg.m–3) × 0.0146754 – 35.2791;
•	 IN_2 = Vf (%) × 0.0786884 – 5.14988;
•	 IN_3 = V.M.A. (%) × 0.424891 – 6.20496;
•	 IN_4 = Va (%) × 0.373303 – 1.04641;
•	 I N _ 5   =   L o a d i n g  t i m e  ( s e c o n d s )  × 

0.000223714 + 0.0955257;
and;

( ) 1 
1 xsigmoid x

e−=
+

7.	 Experiments Performed to Determine 
Optimal Polypropylene Addition to the 
Mixture and Artificial Neural Network 
Applications by Utilising Marshall Design

7.1.	 General overview about Marshall design

The very basic fundamentals for carrying out Marshall 
design were developed by Bruce Marshall, who was a 
pavement engineer working for the Mississippi State 
Highway Department, in the time spanning the period 
just before the onset of the Second World War in attempt 
to standardise a testing procedure that would encompass 
the available laboratory equipment in order to evaluate 
the bitumen content of asphalt concrete mixtures66,67. In 
1948, The U.S. Corps of Engineers, after carrying out 
elaborate testing practices, improved and built up the 
certain milestones to Marshall’s test procedure and set 
the very basic criteria for this very well known hot mix 
asphalt concrete design method66. Since this time, Marshall 
design has been adopted by organisations and government 
departments in nearly all of the countries worldwide with 
very minute modifications either to the procedure or to 
the interpretations of the results. The very basic efforts 
and the later developments that were carried out in order 
to standardise this very well known testing procedure and 
further knowledge can be found in the relevant literature67.

Aggregate selection basically depends on the gradation 
specifications of the proposed country and available 
materials in the nearby quarries. Maximum size of aggregate 
is generally controlled by the layer thickness. Bitumen grade 
selection is also a very important factor in the overall design 

procedure and is again controlled by the requirements of 
the project66.

Marshall test consists of the manufacture of cylindrical 
specimens 102 mm in diameter and 63.5 mm high by the use 
of a standard compaction hammer and a cylindrical mould 
(further correction factors will be applied to Marshall stability 
values with different height values). Marshall specimens are 
compacted using the compactive effort applicable to the 
loading conditions. These compactive efforts are mainly 
35 blows per each face for light traffic, 50 blows for medium 
and 75 blows for heavy traffic conditions66. A 4.535 kg 
hammer is being dropped from 45.72  cm height. After 
passing of 24 hours from the demoulding of the asphalt 
specimens, these specimens are tested for their resistance to 
deformation at 60 °C at a constant rate of 50.8 mm/min in a 
test rig. The jaws of the loading rig confine the majority but 
not the entire circumference of the specimen. The top and 
the bottom of the cylinder are unconfined. Because of this 
fact, the stress distribution in the specimen during testing 
is extremely complex68.

Basically, two mechanical properties are determined 
from the asphalt specimens from the standard Marshall 
test. These are:

a) The maximum load the specimen will carry before 
failure, which is known as the Marshall stability, b) The 
amount of deformation of the specimen before failure 
occurred, which is known as the Marshall flow.

The ratio of stability to flow is known as the Marshall 
quotient. Marshall quotient is a sort of pseudo stiffness 
which is a measure of the material’s resistance to permanent 
deformation. More scientifically speaking, Marshall quotient 
is a sort of measure for the creep stiffness of asphalt 
specimens69.

By carrying out Marshall design procedure, the main 
goal is to obtain the optimum bitumen content. In order to 
find the optimum bitumen content, the designer has to find 
the below mentioned values from the test property curves.

From these data curves, bitumen contents are determined 
which yields the following:

a) Maximum stability, b) Maximum unit weight, c) The 
median of limits for per cent air voids, d) The median of 
limits for voids filled with asphalt.

The testing procedure in order to determine the optimum 
bitumen contents is very time consuming and needs skilled 
workmanship. On the other hand, at the end of the Marshall 
test only stability and flow values of the specimens can be 
obtained physically. The unit weight of mixture, theoretical 
unit weight, voids in mineral aggregate (V.M.A.), voids filled 
with asphalt (V

f
) and air voids (V

a
) are obtained by carrying 

out extra calculations. Therefore if the researchers can obtain 
the stability and flow values of a standard asphalt mix with 
the help of other means, the rest of the calculations will just 
be mathematical manipulations. Artificial neural networks 
can be a very convenient way to obtain the stability, flow 
and Marshall quotient values obtained at the end of the 
Marshall test procedure. Obtaining the explicit formulation 
of these mechanical properties based on the proposed 
neural network model and presenting them for the use of 
further researchers who are working with the same kind of 
or different bitumen modifiers will be another very useful 
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tool to help them in their pursuits of finding the “optimal” 
modifier addition amount.

The theory behind the stability, flow and Marshall 
Quotient values obtained from Marshall testing have been 
investigated by many scientists up to date in many respects67. 
As this study is dealing with preparing an asphalt mixture 
which has an aggregate gradation of a type 2 wearing 
course60, at this point, some more “technical” information 
about the actual meaning of stability and flow should be 
given. In pavement engineering, the “stability” of a flexible 
pavement structure is one of the most remarkable properties. 
Basically, if the “surface course” is being analysed, the 
ability of the pavement structure to withstand the distress 
parameter of rutting is extremely important. The measure 
of “stability” is not an easy concept on site therefore the 
laboratory measured value of “stability” gives a good 
indication of the concept in a qualitative manner. There 
are minimum values stated for stability values in all of the 
design guides throughout the world60,66 but there is not any 
“maximum” value stated in these guides. If a bituminous 
mixture is lacking stability, this causes the flow and 
unravelling of the surface courses of the road infrastructure. 
Flow is the ability of a bituminous pavement structure to 
adjust itself to the gradual settlements and movements of the 
underlying subgrade. It can be accounted for as the reverse 
of the stability values. Asphalt concrete is a viscoelastic, 
thermoplastic and viscoplastic material which has “elastic” 
therefore “reversible” behaviour reserved inside its structure. 
The Marshall Quotient, another important outcome of the 
Marshall design procedure, is actually stability divided 
by flow. Therefore it represents a value of the load to 
deformation under the specified testing conditions that can 
be utilised as the measure of the asphalt concrete’s resistance 
to permanent deformation under service conditions70.

7.2.	 Neural network applications related 
specifically to Marshall design in the five 
years

There are not so many studies in the literature related 
specifically to neural network applications in Marshall 
design. Study by Hejazi  et  al.27 introduced two simple 
models for predicting fiber-reinforced asphalt concrete 
(FRAC) behaviour during longitudinal loads. In this study, 
an artificial neural network architecture was selected to 
identify the effect of fiber parameters (as input neurons) on 
the FRAC properties (specific gravity, stability, and flow as 
output neurons). MATLAB software was used to implement 
the algorithm63. Alavi et al.71 derived a high-precision model 
to predict the flow number of dense asphalt mixtures using 
a novel hybrid method coupling genetic programming and 
simulated annealing, called GP/SA. Mirzahosseini et al.72 

presented two branches of soft computing techniques, 
namely multi expression programming (MEP) and 
multilayer perceptron (MLP) of artificial neural networks for 
the evaluation of rutting potential of dense asphalt-aggregate 
mixtures. Gandomi  et  al.73, in another study, utilised a 
promising variant of genetic programming, namely, gene 
expression programming (GEP), to predict the flow number 
of dense asphalt-aggregate mixtures.

7.3.	 Experimental analysis carried out

Marshall specimens (at the optimum bitumen content 
of 5%) were fabricated by utilising 50 blows on each 
face (medium traffic conditions). 50/70 penetration 
bitumen was modified in the laboratory with M-03 type 
polypropylene fibers. A total of “90” Marshall specimens 
were fabricated and tested to obtain the relevant stability 
and flow properties of them. When compared with the 
amount of tests undertaken in the similar studies available 
in the literature, first of all testing of 90 specimens is really 
an extensive way of carrying out analyses. Second, in this 
study, all of the specimens had been prepared by utilising 
optimum bitumen content therefore a search for “optimal” 
polypropylene addition amount is undertaken19. Finally, this 
time, another way of analysing the Marshall specimens is 
carried out by knowing the best type of modifier is 3 mm 
multifilament polypropylene fibers therefore the picture is 
clearer when compared to the previous studies of the lead 
author22,23. Average physical and mechanical properties of 
six replicate Marshall specimens can be found in Table 12 
and Figures 9 to 15.

When Table 12 and Figures 9 to 15 are examined, it can 
be visualized that the average stability values of the control 
specimens increase up to 70% when 7‰ polypropylene 
modification is carried out. This is a dramatic increase 
when viewed from the pavement engineering point of 
view. The unit weight values drop by 2.9% until 5.5‰ 
polypropylene amount is reached and after this point on, 
tends to increase again. The air voids increase by 80% until 

Figure 9. Unit weight versus polypropylene amount in Marshall 
testing.

Figure 10. Air voids versus polypropylene amount in Marshall 
testing.
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decrease). Finally, Marshall Quotient values increase by 
92% which is an indication of pseudo stiffness. At the end 
of the Marshall stability and flow tests, the physical and 
mechanical properties of the 15 sets of specimens show 
the optimal polypropylene addition of 5.5‰ in a perfect 
manner with no doubt19.

7.4.	 Numerical application

In this part of the study, artificial neural networks had 
been utilised in order to predict the stability, flow and 
Marshall Quotient of asphalt concrete specimens obtained 
from a series of Marshall designs based on experimental 
results described above. The ranges for these test results 
are shown respectively in Tables 13 to 15. The data set is 
properly divided into 80% training and 20% testing sets 
for neural network training process and these sets are 
randomly selected from the experimental database. The 
optimal neural network architectures for stability, flow and 
Marshall Quotient found to be 6-8-1 (8 hidden neurons), 
6-3-1 (3 hidden neurons) and 6-10-1 (10 hidden neurons) 
respectively. The optimum training algorithm was found to 
be Levenberg-Marquardt back propagation. Logarithmic 
sigmoid (log) and hyperbolic tangent sigmoid (tanh) transfer 
functions were utilised for the hidden layer and output layer 
respectively (on a log-log, log-tanh, tanh-log & tanh-tanh 
basis). It had been clearly seen and proven that there were 
very minute differences when these four combinations were 
utilised therefore logarithmic sigmoid transfer function had 
been used in all throughout the analyses that had been carried 
out through the study. Statistical parameters of training and 
testing sets and overall results of neural network models 
are represented respectively in Tables 16 to 18. As can be 
visualised from these tables, the obtained neural network 
results are observed to be markedly close to actual test 
results. This is a perfect indication of the well training of 
the data set.

This part of the study aims to present the closed form 
solutions of proposed neural network models for stability, 
flow and Marshall Quotient (MQ) based on the trained 
artificial neural network parameters (weights and biases) as 
a function of the physical properties of standard Marshall 
specimens such as fiber addition amount, specimen height, 
unit weight, voids filled with asphalt (V

f
), voids in mineral 

aggregate (V.M.A.), and air voids (V
a
).

Using weights and biases of the trained neural network 
model, closed form of stability can be given as follows:

Figure 12. Voids in mineral aggregate versus polypropylene amount 
in Marshall testing.

Figure  13. Stability versus polypropylene amount in Marshall 
testing.

Figure 14. Flow versus polypropylene amount in Marshall testing.

Figure 11. Voids filled with asphalt versus polypropylene amount 
in Marshall testing.

5.5‰ polypropylene amount, and start to decrease from 
thereon. Voids filled with asphalt values show a similar trend 
(16.5% decrease) up to 5.5‰ polypropylene addition. The 
voids in mineral aggregate values increase by 16.4% up to 
5.5‰ addition of polypropylene and start to decrease from 
this point on. The tendency of flow values is similar (23% 

Figure  15. Marshall Quotient versus polypropylene amount in 
Marshall testing.
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Table 12. Average physical and mechanical properties of six replicate Marshall specimens19.

Polypropylene ‰ (by 
weight of aggregate) 

Unit Weight
(kg.m–3)

Air Voids
(%)

Vf 
(%)

V.M.A 
(%)

Stability
(kg)

Flow
(mm)

Marshall
Quotient
(kg.mm–1)

0.0 2465 3.443 76.990 14.919 1294.355 3.463 376.899

0.5 2462 3.569 76.337 15.029 1355.712 3.416 400.559

1.0 2459 3.665 75.828 15.114 1378.510 3.408 405.166

1.5 2452 3.949 74.449 15.365 1391.292 3.388 411.593

2.0 2446 4.195 73.148 15.581 1453.083 3.233 463.103

2.5 2437 4.526 71.555 15.873 1500.593 3.081 490.412

3.0 2432 4.707 70.710 16.033 1542.140 2.982 523.329

3.5 2430 4.818 70.188 16.131 1626.905 2.826 588.954

4.0 2419 5.237 68.340 16.500 1703.500 2.788 618.161

4.5 2406 5.761 66.112 16.961 1837.763 2.748 680.879

5.0 2402 5.895 65.546 17.080 1971.715 2.628 755.850

5.5 2394 6.214 64.261 17.360 1917.643 2.678 724.647

6.0 2414 5.443 67.429 16.681 1989.972 2.984 682.360

6.5 2416 5.359 68.804 16.607 2113.038 3.169 678.393

7.0 2421 5.138 68.760 16.412 2186.930 3.211 683.755

Table 13. Ranges of experimental database for stability analyses.

PP(‰)
Specimen 

Height (mm)
Unit Weight 

(kg.m–3)
Vf (%) V.M.A.(%) Va(%) Stability (kg)

Maximum 7.00 62.40 2462.98 87.76 18.64 12.89 2091.04

Minimum 2.50 58.70 2308.04 29.96 15.23 2.18 658.36

Mean 4.75 60.05 2401.60 63.30 16.89 6.27 1297.54

Std.Dev. 1.46 0.80 43.84 19.35 0.90 3.47 355.99

Table 14. Ranges of experimental database for flow analyses.

PP (‰)
Specimen 

Height (mm)
Unit Weight 

(kg.m–3)
Vf (%) V.M.A. (%) Va (%) Flow (mm)

Maximum 7.00 62.40 2462.98 87.76 18.64 12.89 7.50

Minimum 2.50 58.70 2308.04 29.96 15.23 2.18 1.35

Mean 4.75 60.05 2401.60 63.30 16.89 6.27 3.65

Std.Dev. 1.46 0.80 43.84 19.35 0.90 3.47 1.49

Table 15. Ranges of experimental database for Marshall Quotient analyses.

PP (‰) Specimen 
Height (mm)

UnitWeight 
(kg.m–3)

Vf (%) V.M.A. (%) Va (%) MQ  
(kg.mm–1)

Maximum 7.00 62.40 2462.98 87.76 18.64 12.89 1011.23

Minimum 2.50 58.70 2308.04 29.96 15.23 2.18 89.977

Mean 4.75 60.05 2401.60 63.30 16.89 6.27 427.6827

Std.Dev. 1.46 0.80 43.84 19.35 0.90 3.47 204.68

STABILITY (kg) = (sigmoid (–2.85312 × HL_0 + 3.50241 
× HL_1 + 0.693694 × HL_2 – 2.3612 × HL_3 – 5.96018 × 
HL_4 – 2.94366 × HL_5 – 1.77347 × HL_6 + 0.955348 × 
HL_7 + 0.963915) + 0.267624) / 0.000558394	  (5)

where;

•	 HL_0  =  sigmoid (– 3.82665 × IN_0  +  3.69328 × 
IN_1 – 1.77243 × IN_2 – 3.60365 × IN_3 – 0.15278 
× IN_4 + 3.85342 × IN_5 + 1.47133);

•	 HL_1 = sigmoid (– 6.68906 × IN_0 – 0.714414 × 
IN_1 + 1.02567 × IN_2 – 4.02245 × IN_3 – 3.24574 
× IN_4 + 10.759 × IN_5 + 7.1388);
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•	 HL_2  =  sigmoid (– 0.442648 × IN_0 – 0.463069  
× IN_1 – 0.674572 × IN_2 – 0.857841 × IN_3 – 
0.944217 × IN_4 – 0.645257 × IN_5 – 0.685148);

•	 HL_3 = sigmoid (– 0.875356 × IN_0 + 2.37839 × 
IN_1  – 2.09752 × IN_2 – 1.38374 × IN_3 + 0.502376 
× IN_4 – 0.029264 × IN_5 – 1.6171);

•	 HL_4 = sigmoid (4.73341 × IN_0 + 1.16066 × IN_1   
– 0.536602 × IN_2 + 3.55452 × IN_3 + 0.399726 × 
IN_4 – 9.92582 × IN_5 – 7.38222);

•	 HL_5  =  sigmoid (– 0.325236 × IN_0  +  2.5358 × 
IN_1 + 4.53548 × IN_2 + 3.10884 × IN_3 – 8.67336 
× IN_4 – 3.47159 × IN_5 – 0.823053);

•	 HL_6  =  sigmoid (–5.81405 × IN_0 – 7.87192 × 
IN_1 + 5.54268 × IN_2 – 4.68907 × IN_3 – 8.83667 
× IN_4 + 6.6447 × IN_5 + 6.39212);

•	 HL_7 = sigmoid (– 0.86131 × IN_0 – 0.509798 × 
IN_1  –0.731354 × IN_2 – 0.335346 × IN_3 – 1.20513 
× IN_4 – 0.810519 × IN_5 – 0.292189);

and;
•	 IN_0 = PP(‰) × 0.177778 – 0.344444;
•	 IN_1 = Specimen Height (mm) × 0.216216 – 12.5919;
•	 IN_2 = UnitWeight (kg.m–3) × 0.00516334 – 11.8172;
•	 IN_3 = Vf (%)  × 0.0138402 – 0.314645;
•	 IN_4 = V.M.A. (%) × 0.234585 – 3.47267;
•	 IN_5 = Va (%) × 0.0747037 – 0.0625922;
and;

( ) 1 
1 xsigmoid x

e−=
+

Using weights and biases of the trained neural network 
model, closed form of flow can be given as follows:

FLOW (mm) = (sigmoid (1.40605 × HL_0 – 1.8657 × HL_1 
– 5.88613 × HL_2 + 5.42616) + 0.0761301)/0.130081	 (6)

where;
•	 HL_0 = sigmoid (0.661376 × IN_0 + 1.35691 × IN_1 

– 1.24361 × IN_2 + 0.379872 × IN_3 – 0.166156 × 
IN_4 – 2.30716 × IN_5 – 2.34366);

•	 HL_1 = sigmoid (–2.1095 × IN_0 + 1.19362 × IN_1 
– 0.174053 × IN_2 – 1.19404 × IN_3 – 2.29043 × 
IN_4 + 1.35705 × IN_5 + 0.269718);

•	 HL_2  =  sigmoid (–5.04182 × IN_0 – 1.366 × 
IN_1 + 0.264156 × IN_2 – 3.26263 × IN_3 + 0.793789 
× IN_4 + 9.26902 × IN_5 + 7.13485);

and;
•	 IN_0 = PP(‰) × 0.177778 – 0.344444;
•	 IN_1 =Specimen Height (mm) × 0.216216 – 12.5919;
•	 IN_2 = Unit Weight (kg.m–3) × 0.00516334 – 11.8172;
•	 IN_3 = Vf (%) × 0.0138402 – 0.314645;
•	 IN_4 = V.M.A. (%) × 0.234585 – 3.47267;
•	 IN_5 = Va (%) × 0.0747037 – 0.0625922

and;

( ) 1 
1 xsigmoid x

e−=
+

Using weights and biases of the trained neural network 
model, closed form of Marshall Quotient can be given as 
follows:

MARSHALL QUOTIENT (kg.mm–1) = (sigmoid (–4.39067 
× HL_0 – 0.506972 × HL_1 + 1.60212 × HL_2 + 3.77559 
× HL_3 – 2.64216 × HL_4 – 1.52329 × HL_5 – 0.619627 
× HL_6 – 1.14162HL_7 – 1.35756 × _HL_8+0.122526 × 
HL_9+0.512638) – 0.0218674)/0.000868384	 (7)

where;
•	 HL_0  =  sigmoid (4.63124 × IN_0  +  0.383709 × 

IN_1 + 0.0675933 × IN_2 + 3.08201 × IN_3 + 0.61449 
× IN_4 – 8.07108 × IN_5  –5.6658);

•	 HL_1 = sigmoid (– 0.6536 × IN_0 + 0.316093 × IN_1 
– 0.18555 × IN_2 – 0.524093 × IN_3 – 0.853896 × 
IN_4 – 0.167481 × IN_5 – 1.48732);

•	 HL_2 = sigmoid (0.854237 × IN_0 – 1.70666 × IN_1 
– 0.139871 × IN_2 + 1.46185 × IN_3 + 0.158078 × 
IN_4 – 1.55945 × IN_5 – 0.543224);

•	 HL_3  =  sigmoid (– 4.13557 × IN_0  +  3.21316 × 
IN_1 – 5.64472 × IN_2 – 4.26587 × IN_3 + 1.2735 
× IN_4 + 1.64707 × IN_5 – 3.90052);

•	 HL_4  =  sigmoid (– 1.54034 × IN_0 – 3.58559 × 
IN_1 – 2.55409 × IN_2 – 2.17112 × IN_3 + 1.28119 
× IN_4 + 1.91876 × IN_5 – 0.863922);

•	 HL_5  =  sigmoid (– 0.229126 × IN_0 – 1.2162 × 
IN_1 + 3.01671 × IN_2 + 0.694795 × IN_3 – 4.71187 
× IN_4 – 1.01355 × IN_5 – 0.0618821);

•	 HL_6 = sigmoid (– 0.521105 × IN_0 + 0.51452 × 
IN_1 – 0.526448 × IN_2 – 0.437312 × IN_3 – 1.26558 
× IN_4 – 0.335999 × IN_5 – 1.11954);

•	 HL_7 = sigmoid (– 1.10727 × IN_0 – 0.803725 × 
IN_1 – 1.79471 × IN_2 – 1.46323 × IN_3 + 0.612343 
× IN_4 + 0.633158 × IN_5 – 1.04172);

Table 16. Statistical parameters for stability analyses.

Training 
set

Testing Set Total set

MSE 9012.055 16590.17805 15074.55

MAPE 5.740424 7.770717044 7.364658

R2 0.933433 0.87581671 0.876589

Mean 0.981275 0.982957961 0.982621

COV 0.077611 0.095206125 0.091563

Table 17. Statistical parameters for flow analyses.

Training set Testing Set Total set

MSE 0.224571 0.21911665 0.22348

MAPE 11.29454 12.3539274 11.50642

R2 0.896754 0.86018833 0.892615

Mean 1.01807 1.02010665 1.018477

COV 0.133298 0.16433526 0.139065

Table 18. Statistical parameters for Marshall Quotient analyses.

Training set Testing Set Total set

MSE 3598.054082 10427.29406 4963.90208

MAPE 11.89680203 14.33756427 12.3849545

R2 0.901771645 0.756157896 0.86973649

Mean 0.985490699 0.974365805 0.98326572

COV 0.150629837 0.181938004 0.15624346
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•	 HL_8  =  sigmoid (– 1.0431 × IN_0  +  1.65191 × 
IN_1 + 0.558663 × IN_2 – 0.40391 × IN_3 – 2.4571 
× IN_4 – 0.651791 × IN_5 – 0.689734);

•	 HL_9 = sigmoid (– 0.743853 × IN_0 – 0.347985 × 
IN_1 – 0.350831 × IN_2 – 0.26865 × IN_3 – 0.52416 
× IN_4 – 0.951561 × IN_5 – 1.1319);

and;
•	 IN_0 = PP(‰) × 0.177778 – 0.344444;
•	 IN_1 = Specimen Height (mm) × 0.216216 – 12.5919;
•	 IN_2 = Unit Weight (kg.m–3) × 0.00516334 – 11.8172;
•	 IN_3 = Vf (%) × 0.0138402 – 0.314645;
•	 IN_4 = V.M.A. (%) × 0.234585– 3.47267;
•	 IN_5 = Va(%)  × 0.0747037 – 0.0625922;

and;

( ) 1 
1 xsigmoid x

e−=
+

It has to be mentioned that the fluctuations in the 
flow values (therefore in Marshall Quotient values which 
are actually stability values divided by flow values) are 
actually causing the difference between R2 values of the 
training and testing sets of Marshall Quotient analyses 
(Table  18). This is expectable  in a clear manner. But to 
avoid such underperformances, in the prospective studies, 
the database can be divided into three subsets i.e. train, 
valid and test though this is not a must (at this point, in the 
further researches that will be carried out with especially 
different type of bitumen modifiers, extensive laboratory 
testing should have to be carried out to arrive at optimal 
addition amounts of the modifiers of course).

For further recommendations to other researchers 
studying in the field, static creep tests can be carried out on 
the polypropylene fiber modified specimens at temperatures 
above or below 50 °C and with different loading patterns. 
Another prospective study may focus on the behaviour of 
the polypropylene modified asphalt specimens at lower 
temperatures below zero. Different compaction techniques 
like gyratory compaction might be utilised for the better 
simulation of site conditions in laboratory environment. 
Finally, other intelligent predictive tools such as genetic 
programming74,75 and neuro-fuzzy techniques might be 
utilised to give a deeper insight to the proposed problem of 
determination of the optimal modifier amount in the dense 
bituminous mixtures.

8.	 Conclusions
The addition of the polypropylene fibers into the asphalt 

mixture enhances the mixture properties in a very favourable 

manner. The decrease of the strain accumulation at the end 
of the static creep tests correspond to approximately 60%. 
The initial and final creep stiffness values have increased 
by 129% and 149% correspondingly. The average stability 
values of the control specimens increase up to 70% when 7‰ 
polypropylene modification is carried out. This is a dramatic 
increase when viewed from the pavement engineering point 
of view. The unit weight values drop by 2.9% until 5.5‰ 
polypropylene amount is reached and after this point on, 
tends to increase again. The air voids increase by 80% until 
5.5‰ polypropylene amount, and start to decrease from 
thereon. Voids filled with asphalt values show a similar trend 
(16.5% decrease) up to 5.5‰ polypropylene addition. The 
voids in mineral aggregate values increase by 16.4% up to 
5.5‰ addition of polypropylene and start to decrease from 
this point on. The tendency of flow values is similar (23% 
decrease). Finally, Marshall Quotient values increase by 
92% which is an indication of pseudo stiffness.

Therefore the 5.5‰ M-03 type polypropylene fiber 
addition is the optimal addition amount for this type of wet 
modification. Furthermore, in this study, a novel approach 
to enable the prediction of mechanical properties such as 
strain accumulation, creep stiffness, stability, flow and 
Marshall Quotient without carrying out real destructive 
tests, obtained from Marshall designs, have been presented 
utilising artificial neural networks. Backpropagation 
neural networks have been utilised for the neural network 
training process. The proposed neural network models for 
five of these mechanical properties have shown very good 
agreement with experimental results. But it has to be born 
in mind that this neural network model is valid for the 
ranges of the experimental database used for neural network 
modelling. Therefore, the rutting potential can be explored 
by this means in a perfect manner. As a consequence, the 
proposed neural network model and formulation of the 
available stability, flow and Marshall Quotient of asphalt 
samples is quite accurate, fast and practical for use by other 
researchers studying in this field. The explicit formulation 
of strain accumulation, creep stiffness, stability, flow and 
Marshall Quotient by closed form solution, as a most 
general panoramic picture, based on the proposed neural 
network model is obtained and presented for further use 
for researchers who are working with the same kind of or 
different bitumen modifiers, needless to say, for similar 
and specific type of aggregate sources, bitumen, aggregate 
gradation, mix proportioning, modification technique and 
laboratory conditions to determine the optimal modifier 
addition amount to the asphalt concrete mixtures.
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