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The transmission of kala-azar, or visceral leishmania-
sis (VL), is strongly influenced by the available moisture, 
medium to high temperatures and high relative humidity 
(RH) because the sandfly, Phlebotomus argentipes, re-
quires damp surfaces and humid atmospheric conditions 
for prolonged survival, which is needed to transmit the 
infection (Bhunia et al. 2010a, Picado et al. 2010, WHO 
2010a). Few studies have demonstrated the usefulness of 
remote sensing data in mapping the environmental risk 
factors, including diurnal temperature variations, eco-
environments, vegetation health and land use practices, 
that control, in part, the distribution of tropical diseases, 
including leishmaniasis, schistosomiasis, trypanosomia-
sis and malaria (Robinson et al. 2002, Graves et al. 2009, 
Bhunia et al. 2012).

Using remote sensing to identify the biophysical 
and environmental variables that are adequate for the 
development of various infectious diseases (Beck et al. 
1994, Gillies & Carlson 1995, Kustas & Norman 1996, 
Gillies et al. 1997, Combie et al. 1999, Oscar & Ma-
lone 2001), allows for the determination of risk factors 
and the delimitation of areas at risk, thereby enabling a 
more rational allocation of resources for cost-effective 
control (Beck et al. 1997, 2000, Bhunia et al. 2010b). 

Such environmental features may be used to appraise 
favourable environments for the development of vec-
tors implicated in disease transmission (Werneck et al. 
2002, Lindgren et al. 2004).

The land surface temperature (LST) and the renor-
malised difference vegetation indices (RDVI) were the 
two parameters used in the present study of a kala-azar 
focus in Bihar, India (Fig. 1). Temperature affects ka-
la-azar transmission in two ways: either the minimum 
temperature may be so low that it prevents parasite 
and vector development or the temperature may be too 
high, resulting in the increased mortality of the vector. 
A monthly mean maximum temperature of < 37ºC and 
a monthly mean minimum temperature of > 7.2ºC are 
favourable ecologic factors for the transmission of kala-
azar (Napier 1926). Temperature is an important factor 
when determining the distribution of the sandfly, previ-
ous research showed that regions with temperatures that 
drop to 7ºC are rarely at risk for kala-azar epidemics and 
can be disregarded. Temperature can be measured at 
ground stations or using satellite instruments, that have 
the ability to measure the land surface temperature; such 
measurement ability is an important advantage when 
meteorological stations are non-existent. The products 
derived from the LANDSAT-5 Thematic Mapper (TM) 
of 2009 and 2010 were applied to calculate the available 
LST and RDVI for the peak and lean seasons of sand-
flies. These are considered to be environmental risk fac-
tors for infection with kala-azar in India. For example, 
in a previous study by Gebre-Michael et al. (2004) in 
East Africa, Advanced Very High Resolution Radiom-
eter (AVHRR) satellite data were used to map the oc-
currence of Phlebotomus orientalis and Phlebotomus 
(Synphlebotomus) martini, which were best predicted by 
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the wet and dry season models, respectively, based on 
remotely sensed variables, normalised differential veg-
etation indices (NDVI) and LST. That study, however, 
was limited by the coarse spatial resolution (1 km resolu-
tion at the nadir) of the AVHRR sensor.

The present study examines the usefulness of envi-
ronmental parameters, such as the LST and the RDVI, to 
assess the association with the abundance of the vector 
P. argentipes to develop local maps of risk and map the 
kala-azar transmission in endemic areas of the Indian 
sub-continent.

MATERIALS AND METHODS

Study area - The district of Muzaffarpur was select-
ed as a representative region of endemic focus in Bihar. 
It lies between north latitudes 25º54’00”-26º23’00” and 
east longitudes 84º53’00”-85º45’00”. The total popula-
tion of the district is 4,778,610 with a density of 1,506 
persons per km2; based on the 2011 census, the district 
had a decennial growth of 27.54% (census2011.co.in/cen-
sus/district-/68-muzaffarpur.html). All 14 public health 
centres within the district are affected by this disease 
(Fig. 1). The drainage system of the area originates from 
the Himalayas and converges into the major rivers of the 
district, which are primarily drained by the rivers Burhi 
Gandak, Baghmati and Baya, which generally flow in 
the south-easterly direction. The district experiences a 
severe winter followed by a very hot summer (44ºC) and 
then a heavy monsoon downpour. The district receives 
an average rainfall of 1,280 mm (muzaffarpur.bih.nic.
in/) and has an average elevation of 47 m. The soil of the 
entire district is highly fertile, well drained and sandy, 
white coloured and very soft. The annual recharge of 
ground water bodies constitutes a replenishable or dy-

namic resource (cgwb.gov.in/District_Profile/Bihar/
Muzaffarpur.pdf).

Sandfly collection - Adult sandflies were collected 
between September 2009-February 2010 within the 
study area. The identification of houses for the sandfly 
collection was performed in two steps. First, 51 villages 
were randomly selected within the districts based on 
high cases incidence data (an average incidence rate of 
more than 10/10,000 population in the last three consec-
utive years (2006-2009) and in each village, 10 house-
holds were selected randomly at the centre of the village, 
for the sandfly collection (Fig. 1). The sandfly collection 
was performed separately in each season for the same 
villages and at similar collection sites. To determine the 
sandfly density, flies were collected for 10 min from two 
indoor (i.e., living room and cattle shed) resting places; 
this collection was performed by trained field workers, 
using the hand-held aspirator technique with three-celled 
torches (Kumar et al. 2009, WHO 2010b). The sandfly 
collection was performed at dawn and dusk. The col-
lected sandflies were stored in 70% ethanol in vials that 
were labelled with the area, village name and number 
of sandflies caught. All species were mounted on mi-
cro slides using Canada balsam, as a measuring media 
(Remaudière 1992). Lewis (1978) was followed for spe-
cies identification. However, sandfly density [man-hour 
density (MHD)] was calculated using the total number of 
sandflies collected per man per hour (Kumar et al. 2009, 
Mishra et al. 2012).

Image pre-processing - Landsat-5 TM images (path/
row: 141/42) dated 22 October 2009 and 11 February 
2010 were used in this study. The data acquisition dates 
had very clear atmospheric conditions and the images 
were acquired through the �����������������������������United States Geological Sur-
vey’s (USGS) for Earth Resource Observation Systems 
Data Centre. The Landsat images were further rectified 
to a Universal Transverse Mercator projection system 
and World Geodetic System (WGS) 84 datum based on 
1:50,000 scale topographic maps and were resampled us-
ing the nearest neighbour algorithm with a pixel size of 
30 m by 30 m for all bands, including the thermal band. 
The resultant root mean square error was found to be 
less than 0.5 m/pixel.

Retrieval of LST - The LST was derived from the 
corrected TM thermal band (10.40-12.50 µm). Satellite 
thermal infrared (TIR) sensors measure the top of the 
atmosphere radiances, from which the brightness tem-
peratures (also known as the blackbody temperatures) 
were derived using Planck’s law (Dash et al. 2002). 
The following equation was used to convert the digital 
number of Landsat TM TIR band into spectral radiance 
(Lλ), following Jensen (2005):
                             Lλ = (K*BVijk) + Lmin                                          (1)
where K = radiance per bit of sensor count rate = (Lmax - 
Lmin)/Cmax, BVijk = brightness value of pixel, Cmax = maxi-
mum value on the colour correlated temperatures (e.g. 
8-bit = 255), Lmax = radiance measured at detector satura-
tion (Wm-2sr-1µm-1) and Lmin = lowest radiance measured 
by a detector (Wm-2sr-1µm-1).Fig. 1: location map of the district of Muzaffarpur, Bihar, India.
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The next step was to convert the Lλ to the at-satellite 
brightness temperature [i.e., the black body temperature 
(Tb)] using an inversion formula (Singh et al. 1998, LPSO 
2002) of Planck’s function. The conversion formula is:
                                             K2
                               Tb = In( 1 + K1 )                             (2)
                                                    Lλ

where Tb is the effective at-satellite temperature in Kel-
vin, Lλ is the Lλ in Wm-2sr-1µm-1 and K1 and K2 are the 
pre-launched calibration constants. For Landsat-5 TM, 
K1 = 607.76 and K2 = 1260.56 Wm-2sr-1µm-1.

The temperature values obtained above are refer-
enced to a blackbody. Corrections for spectral emissivity 
(ε) therefore become necessary according to the nature 
of land cover. We used a formula proposed by Van de 
Griend and Owe (1993) to calculate the ε using visible 
and near-infrared (NIR/RED)spectral reflectance. In 
previous studies, Artis and Carnahan (1982) and Sobrino 
et al. (2004) developed a model that used spectral surface 
ε and NDVI values of the particular scene. To calculate 
the LST we used the following equation developed by 
Artis and Carnahan (1982):
                           

LST =
             Tb                                 (3)                                      1 + (λ * Tb/ρ)Inε

where λ = wavelength of emitted radiance [for which 
the peak response and the average of the limiting wave-
lengths (λ = 11.5 µm) (Markham & Barker 1985) was 
used], ρ = h x c/σ (1.438 x 10-2 mK), σ = Boltzmann con-
stant (1.38 x 10-23 j/k), h = Planck’s constant (6.626 x 10-34 
Js) and c = velocity of light (2.998 x 108 m/s).

Derivation of RDVI - Amongst the classic and more 
recent vegetation indices based on the NIR/RED slope, 
only the RDVI index showed a comparable correlation 
with biophysical parameters, primarily with the leaf area 
index (LAI) (Vincini et al. 2007). RDVI is a hybrid index 
(Roujean & Breon 1995) between different vegetation 
indices (= NIR-RED) (Tucker 1979) and NDVI (Rouse et 
al. 1974) and should combine the advantages of low and 
high vegetation coverage. RDVI obtained greater field 
segmentation than NDVI indices that saturate a low LAI 
(Zarco-Tejeda et al. 2005). To calculate the RDVI, we 
used the following equation:
                            RDVI = √NDVI * DVI                       (4)

The RDVI values were obtained for a 500 m diam-
eter buffer zone on the 51 survey points. The relationship 
between the sandfly density and the minimum, maxi-
mum and mean RDVI values were obtained through cor-
relation analyses.

Environmental information extraction for model 
development - The RDVI and LST values for the peak 
(September) and lean (February) seasons were extracted 
from a circular 500 m buffer area around a survey site 
(51 sampling sites). For each buffer zone, the minimum, 
maximum and mean values for LST and RDVI were ex-
tracted. Analysis using a scatter diagram made by plot-
ting the extracted mean values against the sampling sites 

allowed for the definition of a range of minimum, maxi-
mum and mean LST and RDVI values.

Statistical analysis - Data were analysed using statis-
tical software Stata version 10 (stata.com/). The month 
variable was transformed into “season” as an ordinal vari-
able, considering the lowest vector density in winter (lean 
season) and the highest during and September and Octo-
ber (peak season). We explored the relationships between 
the seven explanatory variables (i.e. minimum RDVI, 
maximum RDVI, mean RDVI, minimum LST, maximum 
LST, mean LST and season) and the independent variable 
(P. argentipes density) by computing the Pearson’s cor-
relation coefficient in the ‘r’ environment. Student’s t test 
(2-tailed) was used to assess the significance. However, in 
our analysis, only the density of female P. argentipes was 
considered because it was the proven vector of Indian kala-
azar. Because of the correlations and interactions among 
the explanatory variables, the correlation coefficient may 
reveal only part of the relationship between P. argenti-
pes density and the explanatory variables. Therefore, we 
also applied a multivariate linear regression analysis to 
identify variables that explain the density in combination 
with the other variables. Furthermore, multivariate linear 
regression analysis provided the percentage of variability 
in P. argentipes density explained by the chosen explana-
tory variables. We applied a backward selection method 
to eliminate the variables that added little to the overall 
explanation of P. argentipes density. The results were 
considered to be significant if p < 0.05.

RESULTS

Sandfly collection and density estimation - A total of 
1,481 sandflies belonging to three species of the genus 
Phlebotomus and Sergentomyia were collected. Amongst 
the total collected flies, P. argentipes was found to be the 
most abundant species, accounting for 70.49% of sand-
flies (Table I), while Sergentomyia comprised 27.84% 
of the flies that were identified within the districts. By 
contrast, Phlebotomus papatasi was very rare (4.62%) in 
the Muzaffarpur. During the study period, the aggregate 
population of sandflies was found to be lowest during the 
lean season (26.74%) whereas, during the peak season, the 
relative abundance of the sandfly density was 73.26%.

Fig. 2 shows the MHD of the lean and peak seasons 
for all of the collection sites. As observed in Fig. 2, the 
MHD of the P. argentipes was relatively low (average 
MHD 2.13) during the lean season (December-Febru-
ary) and relatively high (average MHD - 5.60) during 
the peak season (September-November). During the 
peak season, the maximum MHD was collected from 
the village of Chapra Bahar (10.90 MHD) of Mushari, 
whereas in the lean season the maximum MHD was col-
lected from the village of Bajidpur Manjhauli (5.5 MHD) 
of Bochaha. The MHD of P. argentipes during the lean 
season ranged from 0.12-5.50 [standard deviation (SD) ± 
1.18], while in the peak season the MHD varied between 
1.2-10.90 (SD ± 2.61).

LST and its relation to the P. argentipes density - 
Fig. 3 shows the spatial distribution of the surface tem-
peratures during the lean and peak seasons derived from 
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Landsat-5 TM. The LST ranged from 23.07-39.27ºC 
(mean ± SD 31.01ºC ± 5.05) for the peak season and 
18.34ºC-31.05ºC (mean ± SD 25.50 ± 4.76) during other 
times. The image indicated that the central part of the 
region exhibited a high temperature primarily due to the 
presence of waste land, bare soil and fallow land. Some 
other parts of the image also showed high temperatures 
i.e., in the south and south-west, primarily due to waste 
and fallow land.

The linear association between the minimum, maxi-
mum and mean LST with sandfly density was examined. 
The results showed that there is a strong and positive rela-
tionship between sandfly density and the maximum and 
mean LST values (r = 0.57, p < 0.035; r = 0.63, p < 0.002, 
respectively). The smallest correlation was found with the 
minimum LST (r = 0.31) during lean season. The stron-
gest positive correlation also existed between sandfly 
density and the minimum LST (r = 0.65, p < 0.026), fol-
lowed by the mean LST values (r = 0.64, p < 0.016) during 
the peak season. In the peak season, the maximum LST 
exhibited a moderately significant relationship.

Overlaying the LST map on the spatial distribution of 
P. argentipes density demonstrated that areas with LST 
values of 20-24ºC, generally coincided with areas with 
high numbers of MHD (Fig. 3) during the lean season. 
Alternatively, during the peak season, the maximum 
MHD of the female P. argentipes density was recorded 
with LST values of 29-32ºC.

RDVI and its relation to P. argentipes density - The 
spatial distributions of RDVI for the peak and lean sea-
sons derived from the Landsat image were mapped (Fig. 
4). The RDVI values were estimated in the range of 0.08-
1.18 (mean ± SD 0.63 ± 0.32) for the peak season and 0.08-
1.85 (mean ± SD 0.96 ± 0.51) for lean season. A lower 
RDVI value (blue colour) corresponded to a high density 
of water bodies and built-up areas within the study site. A 
lower value of RDVI indicated less vegetation associated 
with a saturation deficit, whereas high RDVI values in-
dicated the highly dense and healthy vegetation cover in 
the study area. Higher RDVI values (green colour) were 
observed in the central and southern part of the image 

due to land covered with mango and lychee plantations. 
Medium RDVI values (light green areas) were observed 
over agricultural croplands, in the central, northern and 
south-eastern parts of the image. This result indicated 
not only distinct computation procedures for deriving the 
vegetation density, but also that the area covered by less 
vegetation has a saturation deficit.

The Pearson’s correlation coefficient between RDVI 
values and P. argentipes density was calculated. The re-
sults of our analysis showed that the minimum and mean 
RDVI values of both seasons (i.e., lean and peak) tended 
to be negatively correlated with the sandfly density. The 
highest negative correlation was found with the mean 
RDVI (r = -0.66, p < 0.002) and the maximum RDVI 
(r = -0.55, p < 0.020) during the peak season, followed 
by the minimum RDVI (r = -0.53, p < 0.045) during 
the lean season. The smallest correlation was observed 
with maximum the RDVI (r = 0.13, p < 0.238) during 
the lean season. RDVI indicators for both the lean and 
peak seasons showed a strong, negative correlation with 
the female P. argentipes density; thus a higher sandfly 
abundance may be associated with a lower RDVI value 
or less dense vegetation cover.

TABLE I
Season wise collection of sandfly in district of Muzaffarpur, Bihar, India (September 2009-February 2010)

Season

Vector species
(n)

Total
n (%)

Phlebotomus argentipes Sergentomyia Phlebotomus papatasi

Male Female Male Female Male Female

Lean 98 127 90 72 7 2 396 (26.74)
Peak 316 503 139 112 8 7 1,085 (73.26)

Total 414 630 229 184 15 9 1,481 (100)

Relative abundance (%) 70.49 27.89 1.62 -

Fig. 2: spatial distribution of Phlebotomus argentipes density (man-
hour density) in 51 villages during lean and peak season.
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As shown in Fig. 4, the spatial distribution of P. ar-
gentipes density and RDVI composites during the lean 
season illustrated that areas with medium RDVI values 
generally corresponded to areas with the highest P. ar-
gentipes MHD. The analysis also demonstrated a similar 
pattern of P. argentipes abundance during the peak sea-
son; e.g., the maximum MHD was recorded in the areas 
with medium to low RDVI values. This suggests that P. 
argentipes has a preference for areas that are relatively 
wet and have lower vegetation density.

A statistical model for delaminating the associa-
tion between environmental variables and P. argenti-
pes abundance - Multivariate regression analysis was 
performed to determine the significant environmen-
tal variables that affect P. argentipes density. After 
removing the non-significant variables from the full 
regression model, the following explanatory variables 
remained: mean RDVI, mean LST, minimum LST and 
season (lean and peak). The regression coefficients 
and significance levels are shown in Table II. The fi-
nal model used to assess sandfly density was the fol- 
lowing equation:

Y = -15.69 + (-2.19 x mean RDVI) + (0.57 x mean LST) +  
         (0.50 x minimum LST) + (-2.88 x season)          (5)

  

where Y (MHD) is the estimated sandfly density.

Fig. 4: distribution of the renormalized differential vegetation indices 
(RDVI) and vector density in 51 villages during lean season (A) and 
distribution of the RDVI and vector density in the same villages dur-
ing the peak season (B).

Fig. 3: distribution of the land surface temperature (LST) and vector 
density in 51 villages during lean season (A) and distribution of the LST 
and vector density in the same villages during the peak season (B).

TABLE II
Significant environmental variables  

for mapping of sandfly habitat suitability

Environmental
variables

Coefficients (βs)
(95% CI) SE 

T  
statistic p

Intercept -15.69 (-22.55, -8.83) 3.46 -4.54 0.000
Mean RDVI -2.19 (-4.76, 0.38) 1.29 -1.09 0.009
Mean LST 0.57 (0.33,0.81) 0.12 4.74 0.000
Minimum LST 0.50 (0.33,0.81) 0.17 2.98 0.004
Season -2.87 (-4.61, -1.15) 0.87 -3.30 0.001

CI: confidence interval; LST: land surface temperature; RDVI: 
renormalized differential vegetation indices; SE: standard error.
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The final model was highly significant (F = 68.66, p 
< 0.0001), which meant that these four variables, when 
considered together, were significantly associated with 
P. argentipes abundance. The adjusted R2 = 0.74 indi-
cated that nearly 74% of the variance of P. argentipes 
density could be explained by these four significant en-
vironmental variables. The results indicated that sandfly 
density increases with (i) decreasing mean RDVI, (ii) in-
creasing mean LST, (iii) increasing minimum LST and 
(iv) peak season or lean season (i.e., lean season consid-
ered as a referent category).

DISCUSSION

Like many other diseases, kala-azar is a communica-
ble and infectious disease and its distribution, incidence 
and prevalence are greatly influenced by environmental 
factors. Our primary aim was to use satellite-derived en-
vironmental variables (e.g., LST and RDVI), as proxies 
for air temperature and vegetation conditions for P. ar-
gentipes habitat suitability. In the present study, medium 
resolution satellite data were used to reflect different as-
pects of the natural environment of P. argentipes in the 
study area during the peak and lean seasons. Previously, 
researchers have used different approaches to study the 
risk of leishmaniasis transmission in different parts of 
the world (Thomson et al. 1999, Gebre-Michael et al. 
2004, Valderrama-Ardila et al. 2010, Barón et al. 2011, 
Ölgen et al. 2012). However, these studies were not based 
on variables measured using medium or high-resolution 
spatial data and the studies were conducted in different 
vector species. Thus, this study is the first attempt to 
identify the suitable habitat for P. argentipes abundance 
using these environmental variables in the Indian sub-
continent. In previous studies, the density of the vec-
tor P. argentipes started increasing in the pre-monsoon 
and post-monsoon season, when the mean temperature 
ranged from 27.5-31ºC and the RH ranged from 73-93% 
(Sharma & Singh 2008, Bhunia et al. 2010b). These stud-
ies were based on ground observations and data derived 
from the Indian Meteorological Department (IMD) sta-
tion; satellite data were not used to estimate the surface 
temperature. During the warmer months, the density is 
minimal (Napier 1926, Smith 1959, Ranjan et al. 2005) 
and the temperature in the area ranges between 40-46ºC; 
the species also disappeared during the winter months, 
i.e., the lean season (Smith 1959, ICMR 2010). This con-
trasts with results obtained from remote sensing data 
and the percentage surface area occupied by the LST 
and the RDVI may be used to estimate the abundance 
of female P. argentipes on the Indian sub-continent. The 
analysis can identify the probable areas of P. argentipes 
abundance such that areas mapped as transmission and 
non-transmission zones appear to accurately fit the real 
situation. Such a study will help control kala-azar cases 
vis-à-vis the vector on the Indian sub-continent.

The intricacies of LST determination may be rele-
vant to epidemiologists when used as a proxy index in 
a kala-azar risk model to delineate the favourable areas 
for vector abundance. Determination of the spatial and 
temporal variabilities in LST, for example, may be used 
as correlative index of vector abundance (Malone et al. 

1994, Rogers et al. 1996). The LST is computed from a 
combination of spectral thermal channels of the Landsat 
TM (channel6). For each single measurement covering 
an area, LST integrates to the temperature at the surface 
of that area, e.g., the soil and top of the canopy tempera-
tures. A vector abundance vis-à-vis case was lower and 
negligible when the temperature increased and/or de-
creased. However, in our study, we found that the mean 
and minimum LST values were significantly associated 
with P. argentipes abundance. However, the maximum 
MHD during the peak season (i.e., October) was re-
corded, with LST values ranging from 29-32ºC. Thus, 
we suggest that the utility of LST in disease monitoring 
may be significantly enhanced in epidemiological re-
search, especially for kala-azar transmission. For a more 
accurate result, LST data collected monthly would be 
required for input into the kala-azar risk model to build 
a better average representative reading of the studied 
year’s LST through multi-temporal analysis.

In epidemiology and more generally, vegetation type 
may be most relevant, in that it reflects and modifies land 
surface processes such as energy or materials exchange 
modelling. For example, there are trends towards the de-
emphasis of species composition and an increased focus 
on rate-limiting factors associated with nutrient avail-
ability, resource scaling and carbon allocation (Maguire 
et al. 1996, Goetz & Prince 1999, Carneiro et al. 2004, 
Bavia et al. 2005). In this circumstance, an indirect link 
is established between the vegetation index and P. argen-
tipes density, such that the vegetation index may be used 
as a secondary variable for prediction. In our findings, 
relationships between the RDVI and the saturation defi-
cit and vector density, which have been shown to be nega-
tively associated, are likely to be non-linear, which are 
negatively associated with saturation deficit and vector 
density, when they do occur, are likely to be non-linear. 
Mean RDVI values are extremely valuable and effective 
for analysing the conditions of P. argentipes abundance. 
In this study, we produced a detailed map of RDVI (Fig. 
4) that was calculated for a 500 m distance from the cen-
tre of the sampling sites and analysed for relationships 
with the abundance of a sandfly species. In this event, 
our results prompted the hypothesis that the green bio-
mass would have responded to the same environmental 
triggers as sandflies at that location. Similarly, there 
are frequently robust associations of disease and vector 
abundance with the amount and density, rather than the 
species composition of vegetation cover (Rejmankova et 
al. 1991, Hay et al. 1998, Thompson et al. 2002).

Our study suggests that these two factors (i.e., LST 
and RDVI) are important for the successful determi-
nation of P. argentipes abundance on the Indian sub-
continent. The findings from this study also support the 
hypothesis that the extent to which remotely sensed data 
have been useful for analysing the local environmental 
conditions where VL cases as well as vectors have and 
have not been observed, depends on LST and RDVI. 
However, an important limitation of our study was the 
sampling of sandflies once during each season for only 
10 min. This limited collection might have led to high 
variability in the data and bias in the associations be-
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tween the analysed factors and the P. argentipes abun-
dance. However, our results are of interest and to add 
to the obtainable knowledge in the field by elucidating 
possible relationships between P. argentipes density 
and environmental variables; our results further provide 
opportunities for investigation. The information from 
this study improves our understanding of the effects of 
on-going ecologic processes that affect P. argentipes 
abundance and might be useful for developing new input 
in kala-azar risk models for effective VL control pro-
grammes on the Indian sub-continent by providing valu-
able information on the preferred periods and sites for 
applying insecticides.
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