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Advances in understanding immunity to Toxoplasma gondii
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Toxoplasma gondii is an important cause of clinical disease in fetuses, infants and immunocompromised patients. 
Since the discovery of T. gondii 100 years ago, this pathogen and the host’s immune response to toxoplasmosis 
have been studied intensely.  This has led to the development of a working model of immunity to T. gondii, and has 
also resulted in fundamental new insights into the role of various cytokines in resistance to infection. By examining 
this organism, researchers have identified many of the requirements for resistance to intracellular pathogens and 
characterized numerous regulatory factors, including interleukin-10 (IL-10) and IL-27, which control inflammatory 
processes. In the next 100 years of T. gondii immunobiology, researchers will have the opportunity to answer some 
of the long-standing questions in the field using new techniques and reagents. These future studies will be vital in 
building a more comprehensive model of immunity to this pathogen and in advancing our understanding of immuno-
regulation, particularly in humans. Ultimately, the challenge will be to use this information to develop new vaccines 
and therapies to manage disease in affected patients.

Key words:  Toxoplasma gondii immunology - cytokines - microscopy - protozoan vaccines

In 1907, at the Institut Pasteur in Tunis, while study-
ing the infectious diseases of the desert rodent, Cteno-
dactylus gundii, Charles Nicolle observed the presence 
of a crescent-shaped organism in the tissues of these 
animals (Nicolle 1907). In 1908, Nicolle and his collabo-
rator, Louis Manceaux, published the initial description 
of this discovery (Nicolle & Manceaux 1908). A year 
later, they provided a more complete report and named 
the organism Toxoplasma gondii, referencing the para-
site’s characteristic morphology and the source of the 
original isolate (Nicolle & Manceaux 1909). Concur-
rently, in Brazil, Alfonso Splendore (1908) identified the 
same microbe as a parasite of rabbits (Splendore 1908).  
At the time, the discovery of T. gondii perhaps seemed 
to be solely of academic interest; however, when Wolf 
et al. (1939) discovered the parasite in infants with en-
cephalomyelitis, T. gondii was recognized as a cause of 
congenital disease. 

Since T. gondii’s discovery, its clinical importance 
has influenced the research groups investigating the 
immunobiology of toxoplasmosis. Today, T. gondii is 
recognized as an important opportunistic pathogen of 
fetuses, newborns and patients with a variety of primary 
genetic and acquired immunodeficiencies (Petersen & 
Dubey 2001). The majority of immunocompromised pa-
tients that develop clinical disease have defects in T cell 
function, highlighting the importance of lymphocytes in 
controlling this persistent infection.  Consequently, there 
has been a focus on understanding how T cells provide 
protection against disease and how cytokines modulate 
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T cell responses (Lieberman & Hunter 2002). This re-
view will provide an overview of these events, consider 
how the study of T. gondii has had a significant impact 
on the field of immunology and discuss future studies 
that may provide new insights into the mechanisms nec-
essary for the control of this pathogen.

The first 100 years: T. gondii immunobiology

T. gondii is one of the world’s most prevalent and 
successful parasites. Its biology is complex and numer-
ous researchers worked throughout the 1960s and 1970s 
to elucidate the life cycle and means of transmission 
(Ajioka & Soldati 2007). This body of work is summa-
rized elsewhere in this issue and here we focus on the 
immune responses that lead to the control of the asexual 
tachyzoite and bradyzoite forms.

Intermediate hosts become infected with T. gondii 
after ingesting oocysts in the environment or tissue cysts 
from infected animals. Parasite replication in the intes-
tine eventually leads to host cell lysis and parasite egress 
and tachyzoites disseminate throughout the host (Peter-
sen & Dubey 2001). This process is poorly understood, 
but recent work suggests that CD11c+ dendritic cells 
(DC) may act as Trojan horses to spread the infection 
(Courret et al. 2006, Lambert et al. 2006). In immuno-
deficient hosts or during primary infection with highly 
virulent strains, the immune system cannot control para-
site replication and clinical disease results (Fuentes et 
al. 2001). In most healthy hosts, the immune response 
controls replication, disease is limited, and physiological 
stress on the parasite causes tachyzoites, primarily in the 
brain and muscle tissue, to differentiate into bradyzoite 
cysts that persist throughout the host’s life. Tissue cysts 
undergo periodic reactivation, but these events are con-
trolled by an intact immune system. However, in chroni-
cally infected hosts that lose T cell function, reactivation 
may lead to disease (Petersen & Dubey 2001).
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The study of T. gondii immunobiology began in the 
1940s, with Sabin and Feldman’s (1948) description of 
complement-fixing antibodies to T. gondii in immune 
serum that led to the development of the Sabin-Feldman 
dye-test for sero-diagnosis. Subsequently, during the late 
1960s, two vital components of the host immune response 
to T. gondii were uncovered. In 1968, Brownlee, Reming-
ton and others provided the first reports that T. gondii in-
fection led to interferon production (Freshman et al. 1966, 
Remington & Merigan 1968, Rytel & Jones 1968).  In 1967, 
Frenkel described the role of cell-mediated immunity in 
protection against this pathogen in the Golden hamster 
(Frenkel 1967) and, in 1972, Remington et al. established 
the importance of macrophages in controlling replication 
of T. gondii. These studies laid the groundwork for the 
next 40 years of work in the field, in which researchers 
focused on the cytokine and cell-mediated components of 
immunity required for resistance to this organism.  

During the 1970s and 1980s, the population of im-
munocompromised hosts grew dramatically and the 
incidence of opportunistic infections increased. Trans-
plant and cancer patients on newly-developed immuno-
suppressive drugs, and patients with immunosuppressive 
cancers, had an increased incidence of toxoplasmosis 
caused by parasite reactivation in the latently infected 
host (Remington 1974). In the early 1980s, with the emer-
gence of the human immunodeficiency virus (HIV) and 
acquired immune deficiency syndrome (AIDS), a new 
cohort of immunosuppressed patients deficient in CD4+ 
T cells was identified. These patients were susceptible to 
a variety of intracellular pathogens, including T. gondii, 
and presented with symptoms of toxoplasmic encepha-
litis (TE) following parasite reactivation (Horowitz et 
al. 1983, Pitchenik et al. 1983, Luft et al. 1984, Levy 
et al. 1988, Jones et al. 1996). These clinical observa-
tions were corroborated experimentally in studies in the 
mouse model, in which depletion of CD4+ or CD8+ T 
cells during chronic infection resulted in TE (Vollmer 
et al. 1987, Suzuki & Remington 1988, Gazzinelli et al. 
1991, 1992b, Parker et al. 1991). Together, these clinical 
observations and laboratory studies provided evidence 
for the vital role for CD4+ and CD8+ T cells in the long-
term control of T. gondii.

Following the initial reports in the late 1960s that de-
scribed interferon production in response to T. gondii, 
cellular immunity and cytokine production were linked 
in 1983 when Rubin et al. reported that interferon-γ 
(IFN-γ) produced by T lymphocytes activated mac-
rophages to produce reactive oxygen intermediates 
(ROI) and kill T. gondii (Nathan et al. 1983). By the late 
1980s, IFN-γ produced by CD4+ and CD8+ T cells was 
identified as the major mediator of protection against 
T. gondii (Suzuki et al. 1988, 1989) and there were sug-
gestions that accessory cell products were responsible 
for inducing IFN-γ production from T lymphocytes and 
natural killer (NK) cells (Kelly et al. 1989). At the same 
time, Trinchieri and colleagues had identified the het-
erodimeric cytokine interleukin-12 (IL-12) as a “power-
ful immunopotentiating agent” (Kobayashi et al. 1989, 
Chan et al. 1991) that stimulated IFN-γ production from 
human and murine T lymphocytes and NK cells. The 

Sher, Kasper and Remington laboratories established 
that IFN-γ production in response to T. gondii was large-
ly IL-12-dependent in both immunodeficient and immu-
nocompetent mice, with important roles for IL-2 and tu-
mor necrosis factor-α (TNF-α) as co-factors (Gazzinelli 
et al. 1993, 1994a, b, Hunter et al. 1994, 1995, Khan et al. 
1994).  Macrophages (Gazzinelli et al. 1993), DC (Reis e 
Sousa et al. 1997, Liu et al. 2006) and neutrophils (Bliss 
et al. 1999) were all identified as sources of IL-12 dur-
ing toxoplasmosis, although DC, including conventional 
CD8+ (Reis e Sousa et al. 1997) and plasmacytoid DC 
(Pepper et al. 2008), now appear to be the major contrib-
utors (Liu et al. 2006). These different cell types become 
activated and produce IL-12 following the engagement 
of either chemokine (C-C motif) receptor 5 (CCR5)  
(Aliberti et al. 2000) or Toll-like receptors (TLR), includ-
ing TLR 2 (Mun et al. 2003) and TLR 11 (Yarovinsky et 
al. 2005) by parasite-derived molecules.  

In recent years, the study of IFN-γ-dependent effec-
tor mechanisms that limit parasite replication have un-
derlined the importance of the IL-12/IFN-γ axis. IFN-γ 
signals through signal transducer and activator of tran-
scription 1 (STAT1) to activate a variety of antimicro-
bial effector mechanisms, including the upregulation of 
inducible nitric oxide synthase (iNOS). ROI produced 
by iNOS were initially thought to be the host’s primary 
means of controlling parasite replication, as illustrated 
by the increased susceptibility of iNOS knockout mice. 
However, unlike IFN-γ knockout mice, iNOS knockout 
mice survive the acute phase of infection and do not suc-
cumb until the chronic phase. These data indicated the 
presence of IFN-γ-dependent, iNOS-independent path-
ways to inhibit parasite growth (Scharton-Kersten et 
al. 1997). One such pathway includes the activation of 
the family of p47 guanosine triphosphatases (GTPases), 
which are upregulated in response to IFN-γ (Taylor et 
al. 2000, Collazo et al. 2001). Studies utilizing specific 
p47 GTPase knockout animals have provided evidence 
that these proteins degrade the parasitophorous vacuole 
in T. gondii-infected cells and are involved in the process 
of autophagy (Martens et al. 2005). Ultimately, though 
mice deficient in STAT1 (Gavrilescu et al. 2004, Lieber-
man et al. 2004), iNOS (Scharton-Kersten et al. 1997) 
and members of the 47 kD GTPase family (Taylor et al. 
2000, Collazo et al. 2001) all show increased susceptibil-
ity to T. gondii infection, we still do not fully understand 
the mechanisms by which IFN-γ mediates protection. 
Ongoing studies seek to better characterize IFN-γ-
dependent anti-parasitic effector mechanisms.

Taken together, the studies reviewed here, and oth-
ers, have led to the development of a model of immunity 
to T. gondii, summarized in the Figure. Accessory cells, 
notably DC, recognize that the host is infected with T. 
gondii, likely through pattern recognition receptors. 
These cells become activated and produce IL-12, which 
promotes NK cell production of IFN-γ. IL-12 derived 
from antigen presenting cells (APC), in the context of 
antigen presentation, also drives CD4+ and CD8+ T cell 
activation and IFN-γ production. In addition, activated 
CD4+ T cells produce IL-2, an important T cell mitogen. 
Together, these events result in the convergence of large 
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numbers of parasite-specific CD4+ and CD8+ T cells that 
produce IFN-γ at sites of parasite invasion. IFN-γ signal-
ing, in a STAT1-dependent pathway, leads to the genera-
tion of anti-parasitic effector mechanisms, including the 
production of ROI and the activation of the p47 GTPases.

Immunoregulation during T. gondii infection

The study of the immune response to parasites has 
consistently provided new insights into the importance 
of cell-mediated immunity and the role of cytokines in 
the control of intracellular pathogens. For example, the 
study of the interactions between T. gondii and the host 
has provided a better understanding of how an immune 
response is initiated, expanded, and contracted to limit 
pathogen growth and replication while controlling im-
munopathology. Many mechanisms have been identified 
that modulate infection-induced pathology, including 
the activity of lipoxins, IL-10 and IL-27 (Lieberman & 
Hunter 2002, Aliberti 2005). Two of the most important 
anti-inflammatory cytokines, IL-10 and IL-27, have 
been studied extensively during toxoplasmosis and this 
work has contributed to the basic understanding of the 
function of these factors.

IL-10 limits infection-induced immune pathology - In 
1989, a new cytokine, initially called cytokine synthesis 
inhibitory factor, and later designated as IL-10, was iden-
tified based on its ability to antagonize T helper 1 (Th1) 
responses (Fiorentino et al. 1989). Today, IL-10 is con-
sidered to be an inhibitor of Th1, Th2 and Th17 immune 
responses (Moore et al. 2001, Lieberman & Hunter 2002, 
O’Garra & Vieira 2007). It is produced by macrophages, 
monocytes, DC, B cells, and CD4+ and CD8+ T cells, and 
acts broadly on accessory cells to downregulate proin-
flammatory cytokine production and major histocom-

patibility complex (MHC) and costimulatory molecule 
expression. Thus, T cell priming and activation are damp-
ened primarily through IL-10’s effects on accessory cells, 
although there are reports that IL-10 may also directly 
suppress CD4+ T cell proliferation and cytokine produc-
tion (Couper et al. 2008).

In 1992, the Sher laboratory reported, consistent with 
IL-10’s inhibitory effects on macrophages, that IL-10 an-
tagonized the ability of IFN-γ-primed macrophages to 
kill intracellular T. gondii (Gazzinelli et al. 1992a). Also 
at this time, IL-10 was identified as a factor induced by T. 
gondii infection (Gazzinelli et al. 1992a, 1994a, Hunter 
et al. 1993, Burke et al. 1994) that contributed to the sup-
pression of T cell function (Candolfi et al. 1995, Khan et 
al. 1995). These findings contributed to a model in which 
T. gondii induces IL-10 production to limit the host im-
mune response and favor parasite replication.  Unexpect-
edly, IL-10-/- mice infected with T. gondii succumbed to 
systemic inflammatory disease (Gazzinelli et al. 1996, 
Neyer et al. 1997) mediated by CD4+ T cells (Gazzinelli 
et al. 1996, Suzuki et al. 2000, Wilson et al. 2005) and 
dependent on CD40-CD40L and CD28-CD80/CD86 in-
teractions (Villegas et al. 2000, Wille et al. 2002). Thus, 
IL-10 was established as a vital player in the control of 
immunopathology during toxoplasmosis.  

Given the importance of IL-10 in preventing and 
limiting inflammation, identifying the source of this cy-
tokine has become an important issue. In 2007, Sher et 
al. identified CD4+Tbet+Foxp3- Th1 cells that produced 
large amounts of IFN-γ and were also potent sources of 
protective IL-10 (Jankovic et al. 2007). These cells do 
not appear to be regulatory T cells, but rather effectors 
that also possess the capacity to produce IL-10 and limit 
immune pathology. This study, and others that found 
similar results in different systems, indicates that auto-
regulatory mechanisms that promote effector CD4+ T 
cell production of IL-10 have a key role in maintaining 
balanced, yet efficacious, immune responses to T. gondii 
and other pathogens (O’Garra & Vieira 2007). 

Though the importance of IL-10 in T. gondii infection 
is clear, questions remain regarding how IL-10 integrates 
with other immunoregulatory pathways. Though CD4+ T 
cells are an important source of IL-10 during toxoplas-
mosis, there are other cellular sources of IL-10 during 
acute and chronic infection and their relative contribution 
to the control of immune-mediated pathology is unclear. 
Additionally, how these cytokine-producing cells migrate 
and behave in secondary lymphoid organs versus sites 
of tissue inflammation is unknown. In order to address 
these questions, new approaches and reagents are being 
developed, including intravital imaging and IL-10 report-
er mice and these advances will provide opportunities to 
better understand this regulatory cytokine.

IL-27: a new anti-inflammatory cytokine - In 2002, re-
searchers at DNAX described a heterodimeric cytokine, 
IL-27, composed of the p28 and Epstein Barr virus-induced 
gene 3 (EBI3) subunits. The p28 subunit was identified in 
a computational screen designed to identify homologs of 
the IL-6/IL-12 family of cytokines, and EBI3 was identi-
fied as a p28 binding partner in immunoprecipitation and 

Immunity to Toxoplasma. Antigen presenting cells (APC) recognize 
T. gondii infection and become activated. IL-12 produced by activated 
APC (or neutrophils) induces production of IFN-γ from natural killer 
(NK) cells. In conjunction with antigen presentation, IL-12 also acti-
vates CD4+ T cells to produce IL-2, a T cell mitogen, and CD4+ and 
CD8+ T cells to produce IFN-γ. IFN-γ signaling promotes the develop-
ment of a number of activator of transcription 1 (STAT1)-dependent 
anti-parasitic effector mechanisms, including reactive oxygen inter-
mediates (ROI) production and p47 GTPase upregulation. The cell 
mediated immune response that results limits parasite replication.
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secretion studies (Pflanz et al. 2002). Initial findings indi-
cated that IL-27 was produced by APC, and acted on naïve 
T cells to induce proliferation and Th1 polarization (Pflanz 
et al. 2002). These effects were mediated by IL-27 bind-
ing its receptor, composed of IL-27 receptor α (WSX-1)  
and glycoprotein 130, and signaling through STAT1 to in-
duce expression of T-bet and IL-12 receptor β2 (Hibbert 
et al. 2003, Lucas et al. 2003, Takeda et al. 2003, Villarino 
et al. 2003, Pflanz et al. 2004).

Although the initial characterization suggested that 
IL-27 had proinflammatory properties, when WSX-1 
deficient mice were challenged with T. gondii, they suc-
cumbed to infection and had unexpectedly low parasite 
burdens and significant immunopathology.  These mice 
had high levels of Th1 cytokines, increased T cell activa-
tion and proliferation, and cellular infiltrates and tissue 
destruction in the liver and lungs. The immune pathol-
ogy noted was dependent upon the presence of CD4+ 
T cells, demonstrating a phenotype similar to that ob-
served in IL-10 deficient animals; however, overall IL-
10 levels were not decreased in acutely infected WSX-1 
deficient animals. In vitro studies indicated that IL-27 
was only proinflammatory in conditions in which IL-
12 was limiting, whereas in conditions where IL-12 was 
abundant (as in toxoplasmosis), IL-27 actually played a 
suppressive role (Villarino et al. 2003). Subsequent stud-
ies in other models of infectious and autoimmune dis-
ease have confirmed an anti-inflammatory role for IL-
27 in Th1 (Rosas et al. 2006, Wirtz et al. 2006, Sonoda 
et al. 2007), Th2 (Artis et al. 2004, Miyazaki et al. 2005, 
Shimizu et al. 2005) and Th17 responses (Batten et al. 
2006, Stumhofer et al. 2006, Fitzgerald et al. 2007), and 
it can directly induce IL-10 production (Awasthi et al. 
2007, Fitzgerald et al. 2007, Stumhofer et al. 2007).

The study of IL-27’s role during toxoplasmosis has 
yielded important insights into its biological activities, 
as well as emphasizing the importance of immunoregu-
lation during infection. However, the function and regu-
lation of IL-27 during T. gondii infection is still poorly 
understood. The cellular sources of IL-27, it’s role dur-
ing chronic versus acute infection, the contributions of 
the p28 and EBI3 subunits, and how it intersects with 
other cytokine signaling networks, including the impor-
tance of the EBI3 subunit in IL-35 signaling (Collison et 
al. 2007), are open questions. As has been the case for 
IL-10, the study of IL-27 during toxoplasmosis promises 
to further our understanding of T. gondii immunobiol-
ogy and the function of IL-27.

The next 100 years:  new challenges in T. gondii im-
munobiology 

In the 100 years since the discovery of T. gondii, we 
have developed a complex picture of the events vital for 
controlling toxoplasmosis. This area of study has consis-
tently been at the forefront of immunology and research-
ers are taking advantage of new culture techniques, 
immunological assays and animal models, including 
knockout and transgenic mice, to better understand how 
the host is able to recognize and control this pathogen.  
While there has been enormous progress in this field, 
many questions remain. Particularly, the capacity of cy-

tokines to regulate T cell responses in vivo is not fully 
understood and the events that occur during the human 
immune response to toxoplasmosis are unclear. The fol-
lowing section will provide a personal perspective on 
some of the questions and areas of investigation that will 
help address these specific questions.

Imaging the immune response to T. gondii - Histori-
cally, in order to examine immune responses at the cel-
lular level, immunologists have relied upon techniques 
and reagents that provided “snapshots” of lymphocyte 
behavior at a given time point, long after early activation 
or priming events had occurred (Mempel et al. 2004, 
Sumen et al. 2004, Germain et al. 2005, 2006, Garside 
& Brewer 2008). Some of the outstanding questions in 
the field of T. gondii immunology involve understand-
ing how cytokine-producing accessory cells and T cells 
interact to coordinate a protective immune response and, 
subsequently, how effector T cells interact with T. gondii-
infected cells to control parasite replication.  Addressing 
these issues will require a more dynamic approach to 
analyzing cellular immunity, in which cell-cell interac-
tions in vivo can be observed in real-time. In the past 
decade, advances in whole-body animal imaging and 
intravital multiphoton (MP) microscopy have provided 
new tools to observe and study the behavior of single 
cells.  Here we will provide examples of questions in the 
field that have been addressed using imaging technology 
and discuss how these studies can be extended to further 
investigate the behavior of individual immune cells dur-
ing toxoplasmosis.

Until recently, we have had a limited insight into how 
T. gondii-infected cells behave in vivo during toxoplas-
mosis and how T cells and APC interact with infected 
cells. The development of transgenic parasite lines that 
express fluorescent (Striepen et al. 1998) or biolumines-
cent proteins has allowed for imaging and flow cytome-
try studies that analyze infected cells in vivo and in vitro. 
Using parasites that express luciferase in conjunction 
with whole-body animal imaging techniques, patterns 
of T. gondii dissemination (Hitziger et al. 2005, Saeij et 
al. 2005), reactivation (Dellacasa-Lindberg et al. 2007) 
and stage conversion (Saeij et al. 2008) in vivo have been 
described. Fluorescent parasites have been used to char-
acterize CD11c+ and CD11b+ cells as Trojan horses that 
spread T. gondii throughout the host (Courret et al. 2006, 
Lambert et al. 2006), investigate apoptotic and cytolytic 
pathways in infected cells (Persson et al. 2007), describe 
how infected cells present T. gondii antigen (Gubbels et 
al. 2005, Dzierzsinski et al. 2007) and examine interac-
tions between parasites and DC (Boes et al. 2002, McKee 
et al. 2004). Additionally, transgenic parasite lines that 
express a model antigen, such as ovalbumin (Pepper et al. 
2004, Gubbels et al. 2005), β-galactosidase (Kwok et al. 
2003) or Eα (Pepper et al. 2008), allow antigen-specific 
T cell responses to be tracked. Using bioluminescent and 
fluorescent parasites in conjunction with model antigen 
systems, the interaction between infected target cells and 
antigen-specific T cells can be investigated using exist-
ing technologies (Dzierszinski & Hunter 2008) and, ulti-
mately, as resolution improves, it may be possible to visu-
alize these interactions using whole-body imaging.
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While multiple groups have identified important 
roles for inflammatory and immunoregulatory cyto-
kines during toxoplasmosis, additional studies will be 
required to identify the cellular sources of these factors 
and determine when and where they are produced. To 
date, the tools to investigate these issues have had limi-
tations. Ex vivo cytokine production has been assayed 
in response to a stimulus, using intracellular cytokine 
staining or enzyme-linked immunoassay as read-outs, 
but stimulating cells in this manner may not reflect the 
events that occur in vivo (Mohrs et al. 2001). An alter-
native approach to studying these cells is through the 
use of cytokine-reporter mice, in which an appropriate 
cytokine promoter drives the expression of a fluorescent 
protein. Today, there are reporters available for multiple 
cytokines, including IFN-γ (Stetson et al. 2003), IL-4 
(Mohrs et al. 2001), IL-10 and IL-12p40 (Reinhardt et al. 
2006). Thus far, these reporters have been used primar-
ily in flow-based assays to detect cytokine-producing 
cells. However, these animals lend themselves well to 
imaging studies, including MP microscopy, and could 
be applied to investigate real-time immune responses to 
T. gondii. In the past decade, advances in the field of MP 
microscopy have allowed researchers to image deep into 
tissues for long periods of time to accurately monitor and 
quantitate lymphocyte behavior and migration in vivo. 
MP microscopy uses pulses of low-energy, high-density 
photons to excite fluorophors, allowing for four-dimen-
sional analysis of immune cells with minimal photo-
bleaching. Intravital MP microscopy, in conjunction with 
the development of new fluorescent reagents and surgical 
techniques, has led to the development of novel questions 
and hypotheses (reviewed in Mempel et al. 2004, Sumen 
et al. 2004, Germain et al. 2005, 2006, Garside & Brewer 
2008). Cytokine reporter mice will provide new insights 
into how cytokine-producing cells migrate and interact 
with other cells. This work will be important in under-
standing the broad orchestration of cytokine production 
throughout an immune response and the detailed role of 
the cytokine-producer in distinct microenvironments.

In addition to examining the migration and behavior 
of cytokine-producing cells, other issues in T. gondii im-
munology can be addressed using MP microscopy. These 
include determining what interactions T cells and APC 
participate in, and how T cells, APC and other cell types 
migrate and behave during primary infection (Chtanova 
et al. 2008). Imaging studies using reporter mice for lin-
eage-specific cell surface markers can be used to quan-
titate the location, frequency and duration of encounters 
between T cells and various APC. This information will 
give us a better understanding of how effector T cells 
are primed and activated and whether migration within 
lymphoid tissues and through sites of infection differs. 
Notably, the nature of lymphocyte behavior, migration 
and cell-cell interactions in the brains of chronically in-
fected mice is largely unknown. Intravital MP imaging 
will be key in developing a model of the cellular immune 
response in this tissue site. 

Human immunology - While toxoplasmosis has been 
recognized as an important human disease for almost 75 
years, the rodent has been the model of choice to study 

the immune response to T. gondii. Rodents are natural 
hosts of this organism, are easy to use and maintain, can 
be genetically manipulated to produce knockouts and 
transgenics and there is a wide array of reagents to study 
the murine immune system. Additionally, the technical 
and ethical difficulties of human research have presented 
a substantial challenge to researchers with an interest in 
better understanding how the human host interacts with 
the parasite. Thus, with notable exceptions, we know 
little about the human immune response to toxoplasmo-
sis. While most immunocompetent humans that become 
infected with T. gondii are asymptomatic, the parasite 
can cause disease in two main groups of people: those 
with acquired or primary immunodeficiencies and fe-
tuses infected in utero (Petersen & Dubey 2001). These 
two classes of patients present different challenges to 
health professionals in terms of diagnosis, case manage-
ment and drug treatment. For basic researchers, studying 
how and why disease occurs in susceptible patients may 
provide the opportunity to develop new vaccines and 
immune-based therapies.

Congenital toxoplasmosis occurs in infants that are 
infected during gestation, following a primary challenge 
of the mother (Wong & Remington 1994). Interestingly, 
not all pregnant women that contract a primary infec-
tion transmit the parasite to their fetus. The mechanisms 
that influence vertical transmission are poorly defined, 
although there is a positive correlation between rate of 
transmission and infection during the second or third tri-
mester of pregnancy (Desmonts & Couvreur 1984, Dunn 
et al. 1999). The placenta itself also appears to play an im-
portant role in mediating transmission (Pfaff et al. 2007) 
and studies in the murine model suggest a role for IFN-γ 
in facilitating transmission (Abou-Bacar et al. 2004). Ad-
ditionally, there is evidence that fetuses infected in utero 
may be tolerized to T. gondii antigens in both the mouse 
(Suzuki & Kobayashi 1990) and the human (McLeod et 
al. 1985, Hara et al. 1996, Yamamoto et al. 2000). Howev-
er, the nature of the fetal response to T. gondiii challenge, 
and how this response ultimately impacts the long-term 
consequences of in utero infection, is unclear.

One of the most important challenges in managing 
congenital toxoplasmosis is developing effective pre-
ventative measures. In mothers previously exposed to T. 
gondii, the fetus is very rarely infected (Remington et 
al. 2000), suggesting that natural maternal immunity to 
T. gondii is sufficient to protect the fetus from vertical 
transmission. In principle, this protection could be mim-
icked using a vaccine. Numerous strategies have been 
employed to elicit protective immunity in mouse models 
of congenital toxoplasmosis, including recombinant pro-
tein (Letscher-Bru et al. 2003) and DNA-based vaccine 
strategies (Mévélec et al. 2005), but to date, a human 
vaccine has not been developed.  

In the immunocompetent murine host during sec-
ondary challenge, CD8+ T cells are vital in mediating 
protection (Gazzinelli et al. 1991). This observation 
suggests that a successful vaccine should mobilize par-
asite-specific CD8+ T cells to prevent primary infection 
(Pfaff et al. 2007). Unfortunately, the study of antigen-
specific T cell responses in humans has been limited 
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due to reagent availability and thus the evaluation of 
human cellular responses to vaccines has been difficult. 
In the past decade however, numerous groups have de-
veloped MHC class I tetramer reagents to identify and 
study antigen-specific CD8+ (Serbina & Pamer 2003) 
and CD4+ (Mallone & Nepom 2004) T cells in human 
viral and bacterial infections. These reagents specifi-
cally identify T cells with the T cell receptor (TCR) for a 
peptide of interest and have been used to track vaccine-
specific responses in humans (Serbina & Pamer 2003). 
Recently, a number of groups have collaborated to de-
velop tetramer reagents for immundominant T. gondii 
CD8+ T cell epitopes in the murine model (Blanchard et 
al. 2008, Frickel et al. 2008). This approach could be ap-
plied to develop tetramers for use in human studies, so 
that the T. gondii-specific T cell responses of newborns 
infected in utero and vaccinated women before and dur-
ing pregnancy could be examined. The development of 
these tetramer reagents would allow for the detailed in-
vestigation of fetal anergy in response to T. gondii anti-
gens and would provide a read-out of vaccine efficacy.

Patients with primary or acquired immunodeficien-
cies represent a broad group of individuals with various 
deficits in T cell, monocyte, cytokine and B cell func-
tion. Cancer patients with immunosuppressive cancers, 
including leukemia and lymphoma, experience recru-
descence of chronic infection as T cell function declines. 
Cancer or transplant patients receiving immunosuppres-
sive drugs as part of a chemotherapeutic regimen also 
present with reactivated toxoplasmosis (Armstrong et 
al. 1971, Ruskin & Remington 1976, Frenkel et al. 1978, 
Hakes & Armstrong 1983, Derouin et al. 1992, Israelski 
& Remington 1993, Lappaleinen et al. 1998). Patients 
with hyper-IgM syndrome, in which the CD40/CD40L 
interaction is disrupted, resulting in defects in cell-medi-
ated immunity and an inability to class switch (Aversa et 
al. 1994), are susceptible to primary infection (Subauste 
et al. 1999). Finally, HIV-infected patients, as described 
above, have an increased incidence of TE (Horowitz et 
al. 1983, Pitchenik et al. 1983, Luft et al. 1984, Levy et 
al. 1988, Jones et al. 1996). Widespread use of highly 
active anti-retroviral therapy (HAART) has led to better 
control of viral replication, accompanied by an increase 
in immune function; thus, TE and other opportunistic 
infections are not as prevalent in these patients as was 
once the case.  However, new immunosuppressed co-
horts are continually emerging, including patients with 
autoimmune disorders being treated with immunmodu-
latory drugs (Hemmer et al. 2006), and growing drug 
resistance to HAART may result in the reemergence of 
TE as a clinical problem in HIV/AIDS patients (Alfonso 
et al. 2002, Wensing & Boucher 2003). Together, these 
at-risk patient groups present challenges for basic human 
immunology research and clinical management.  

Patients with increased susceptibility to toxoplasmo-
sis provide the researcher with the opportunity to better 
understand how the human immune system functions.  
Importantly, these patient cohorts highlight the need for 
innovative new drug treatments and effective therapies 
(Fischer 2007). With new advances in human immunol-
ogy, including the application of multi-color flow cy-

tometry for detection of cell surface markers, cytokine 
expression and intracellular cell signaling molecules, 
researchers and clinicians will be able to develop a bet-
ter understanding of human immunity to T. gondiii and 
will also have a greater ability to assess the efficacy of 
treatment. These tools also promise to be useful in iden-
tifying and developing immunomodulators and immune 
therapies to manage this infection. Since the intact hu-
man immune response controls parasite replication ef-
fectively in most cases, immune therapy to replace or 
augment dysfunctional immune responses in patients 
with immunodeficiencies may be an effective approach 
to managing this condition (McCabe 2001).  

In the first 100 years of research in T. gondii immu-
nology, we have developed an initial model to understand 
the complexity of the immunoregulatory networks that 
limit immunopathology and control infection. The study 
of T. gondii has made significant contributions to the 
field of immunology and is well-suited to continue to do 
so, in understanding cytokine function and investigating 
human immune responses. Hopefully, in the next 100 
years of T. gondii research, investigators will be able to 
better understand how the innate and adaptive immune 
systems are coordinated and controlled in mice and hu-
mans, develop a protective vaccine to prevent congeni-
tal toxoplasmosis and generate new effective treatment 
regimens for patients affected by toxoplasmosis. The 
greatest challenge will be to intelligently question our 
current models for understanding the immune response 
to T. gondii and creatively test these models to move the 
field forward.
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