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The effects of nitric oxide on the immune system during
Trypanosoma cruzi infection
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Trypanosoma cruzi infection triggers substantial production of nitric oxide (NO), which has been shown to have 
protective and toxic effects on the host’s immune system. Sensing of trypomastigotes by phagocytes activates the 
inducible NO-synthase (NOS2) pathway, which produces NO and is largely responsible for macrophage-mediated 
killing of T. cruzi. NO is also responsible for modulating virtually all steps of innate and adaptive immunity. How-
ever, NO can also cause oxidative stress, which is especially damaging to the host due to increased tissue damage. 
The cytokines IFN-γ and TNF-α, as well as chemokines, are strong inducers of NOS2 and are produced in large 
amounts during T. cruzi acute infection. Conversely, TGF-β and IL-10 negatively regulate NO production. Here we 
discuss the recent evidence describing the mechanisms by which NO is able to exert its antimicrobial and immune 
regulatory effects, the mechanisms involved in the oxidative stress response during infection and the implications of 
NO for the development of therapeutic strategies against T. cruzi.
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Nitric oxide (NO) and the respiratory cycle: the be-
ginnings of oxidative stress

Nitrogen monoxide, also called NO, is a low-molec-
ular weight radical (30 kDa) that performs multiple bio-
logic activities. The biological importance of this ubiq-
uitous intra- and intercellular signalling molecule was 
first described in the early 1980s as being part of the 
endothelial derived relaxing factors (Furchgott & Za-
wadzki 1980). NO was named “Molecule of the Year” in 
1992 by the journal Science and, later that decade, stud-
ies were conducted to demonstrate �������������������its cardinal mecha-
nism of action on vascular smooth muscle cells (Murad 
1986). These studies made it clear that generation of NO 
by endothelial cells causes smooth muscle relaxation 
through activation of guanylate cyclase by nitrosation of 
its heme group. This work resulted in the Nobel Prize 
in Physiology and Medicine being conferred to Murad, 
Furchgott and Ignarro, in 1998 (Murad 1986).

It is hypothesised that NO may have originated in 
metazoans as an ancient mechanism of first-line de-
fence against intracellular pathogens. This theory has 
been confirmed by the wide occurrence of the enzyme 
responsible for NO production, NO-synthase (NOS2), in 
several species, ranging from invertebrates (Ribeiro et 

al. 1993) to mammals and non-mammalian vertebrates. 
In mammals, NO production is upregulated in response 
to infection by a wide range of unicellular organisms 
such as bacteria, yeast and parasites (i.e., Trypanosoma 
cruzi) (Cardoni et al. 1990). ���������������������������Evidently, evolutionary di-
versity has induced NO synthesis to be performed in re-
sponse to different kinds of stress stimuli.

Under homeostatic conditions, NO is produced at 
low concentrations from constitutive NOS2 and acts as 
an intracellular messenger and a cytoprotective (antioxi-
dant) factor. Indeed, overexpression of NOS3 blocks the 
exocytosis of inflammatory mediators by endothelial 
cells, thus preventing blood vessel inflammation. Con-
versely, exposure to inflammatory stimuli leads to the 
production of substantial amounts of NO in a variety of 
cell types����������������������������������������������   , as well as ��������������������������������� modifications of the cellular mi-
croenvironment, which by its turn upregulates NO ef-
fects. These effects are a consequence of the formation 
of dinitrogen trioxide and peroxynitrite at sites of simul-
taneous superoxide formation, as occurs in phagocytes 
(Chen & Deen 2001).

The old paradigm stating that NO is a mere “un-
specific” cytostatic mediator of defence has been chal-
lenged by the recent discovery that NO has a large 
variety of effects on the biology of leukocytes. These ef-
fects can be direct or indirect and can influence several 
physiological processes, ranging from DNA transcrip-
tion and replication to protein synthesis and secretion 
(Marnett et al. 2003). Under physiological conditions, 
NO mediates homeostatic anti-inflammatory reactions, 
such as inhibition of neutrophil adhesion (Dal Secco et 
al. 2006), cyclooxygenase activity (Gilroy 2005), cy-
tokine production (Livonesi et al. 2009), osteoclast bone 
resorption (Fukada et al. 2008), among others, in order 
to prevent autoimmunity.
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The broad spectrum of effects performed by NO can 
be exerted through two main mechanisms: the activa-
tion of guanylate cyclase (which can be soluble in the cy-
tosol or coupled to the cell membrane) (Poulos 2006) or 
through its interaction with the major cellular source of 
superoxide anion, the NO/Cytochrome C oxidase, which 
is found in mitochondria.

The guanylate cyclase-dependent effects of NO 
mainly affect the vascular tonus thereby affecting the 
inflammatory reaction. Other effects pertaining to mi-
tochondrial functions involve the respiratory burst (Gha-
fourifar & Cadenas 2005). Mitochondria can produce 
NO through its own Ca2+-sensitive synthase (mitochon-
drial, mtNOS). This enzyme regulates mitochondrial 
oxygen consumption and transmembrane potential via a 
reversible reaction with cytochrome C oxidase. The in-
tramitochondrial reaction of NO with superoxide anion 
yields peroxynitrite, which irreversibly modifies suscep-
tible targets within the mitochondria, inducing oxidative 
and/or nitrative stress.

In addition to their primary role in the production 
of energy (ATP), mitochondria generate reactive oxy-
gen species (ROS) that can directly or indirectly af-
fect the NO response (Poderoso 2009). Since NO and 
ONOO- can inhibit cellular respiration at the level of 
cytochrome C oxidase and complexes I-III, respective-
ly, it has been suggested that mitochondrial function 
can influence the balance between apoptosis and necro-
sis induced by NO (Lizasoain et al. 1996). In addition, 
NO can stimulate the biogenesis of new mitochondria 
in a guanosine 3’,5’-monophosphate (cGMP)-dependent 
manner (Nisoli et al. 2003).

These findings are of particular relevance for T. cruzi 
infection, since it has been described that T. cruzi causes 
an energetic impairment in myocardial mitochondria, 
without altering the organelle ultra structure (Uyemura et 
al. 1995). Hence, it is possible that T. cruzi can control the 
central machinery responsible for energetic metabolism 
in the host in order to access metabolites that are crucial 
to its proliferation (Schwarcz de Tarlovsky et al. 1995, 
Baez et al. 2008). This possibility is crucial and warrants 
further research in order to understand the mechanisms 
that induce oxidative stress during T. cruzi infection.

Iron-proteins constitute a predominant scavenger 
mechanism of NO (Angelo et al. 2008, Richardson & 
Lok 2008). As iron is mainly provided by the heme 
group, it constitutes an additional link between the func-
tions of NO and the respiratory cycle (Chung et al. 2008). 
Oxygen drives the conversion of nitrosylhemoglobin in 
the “tense” structure (or partially nitrosylated, deoxy) 
to S-nitrosohemoglobin in the “relaxed” structure (or 
ligand-bound, oxy). In the absence of oxygen, nitroxyl 
anion (NO-) is liberated in a reaction which produces 
methemoglobin. The yields of both S-nitrosohemoglobin 
and methemoglobin are dependent on the NO/Hb ratio. 
These recently discovered reactions have provided new 
insights into the ���������������������������������������origin��������������������������������� of S-nitrosothiols, methemoglob-
in and its related valence hybrids.

Mechanistic re-examination of the interactions of 
NO with other heme proteins containing allosteric thiol 
sites may be warranted (Gow & Stamler 1998). In addi-

tion, it is well established that, in the Haber-Weiss reac-
tion (a reaction that generates hydroxyl radicals [•OH] 
from hydrogen peroxide and superoxide [•O2

−]), iron has 
a catalytic role, which leads to the propagation of dam-
aging ROS. Thus, NO appears to be involved in cellular 
defence against iron-mediated ROS generation, mainly 
by the induction of cellular iron removal (Larrainzar et 
al. 2008, Trujillo et al. 2008). The role of these mecha-
nisms in the pathogenesis of T. cruzi-induced myocardi-
tis is currently unknown.

NO and the immune response

As previously stated, one of the most important func-
tions of NO in the immune system is in antimicrobial 
defence (De Groote & Fang 1995, Fang 1997, Nathan & 
Shiloh 2000). Reactive oxygen and nitrogen species de-
rived from NO are essential for protection against vari-
ous intracellular pathogens including viruses, bacteria, 
fungi and protozoans. More specifically, NO has been 
demonstrated to protect against infection from T. cruzi 
(Figs 1, 2) and other protozoa as Toxoplasma gondii, 
Leishmania major, Leishmania donovani, Plasmodium 
sp and Schistosoma mansoni (Adams et al. 1990, Vespa 
et al. 1994, Wynn et al. 1994, James 1995, Stenger et 
al. 1996, Murray & Nathan 1999, Brunet 2001).��������� Further-
more, the killing activity of NO has also been shown to 
be effective in host defence against tumour cells (Huerta 
et al. 2008) and alloantigens (Shi et al. 2008).

NO is perhaps the most important among the group 
of early mediators produced by cells of the innate im-
mune system. Phagocytes constitute the first line of 
microbial defence and they function by sensing the 
presence of different types of infectious agents (Carnei-
ro-Sampaio & Coutinho 2007) through pattern recogni-
tion receptors, including Toll-like receptors (TLRs) and 
the most recently described NOD- (NLRs) and RIG-like 
receptors. These receptors recognise multiple microbial 
patterns; therefore, they are critical for triggering the 
production of inflammatory mediators and essential for 
activation of the adaptive immune response (Schnare 
et al. 2001, Kanneganti et al. 2007, Underhill 2007). In 
fact, several antigens derived from intracellular para-
sites can be recognized by innate immune receptors on 
macrophages, triggering NOS2 activity (Xie et al. 1992, 
MacMicking et al. 1997).

NOS2 is produced by antigen-presenting cells (APC) 
during antigen processing and presentation to T cells 
and it can modulate various functions of APCs. It can 
inhibit the expression of major histocompatibility com-
plex class II molecules in activated macrophages and, 
at high concentrations, may also inhibit IL-12 synthesis, 
thus contributing to the desensitization of macrophages 
after exposure to inflammatory stimuli (van der Veen 
2001). Indeed, NO induces transcription of IL-12 p40, 
but not of IL-12 p35, in human macrophages (Salvucci et 
al. 1998). The IL-12 p40 homodimer is an antagonist for 
IL-12 and this antagonism might be at least partially re-
sponsible for the reduced Th1 reactivity in the presence 
of NO (Pahan et al. 2001). However, a new report has 
indicated that the IL-12 p40 homodimer can also induce 
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it was demonstrated that the activities of MMP-2 and 
MMP-9 are increased during acute myocarditis in ex-
perimental T. cruzi infection and that the inhibition of 
these enzymes leads to reduced myocarditis and im-
proved survival in mice (Gutierrez et al. 2008). �������Accord-
ingly, MMPs are activated in inflammatory or ischemic/
reperfusion conditions (Gu et al. 2002).

Fig. 1: production of nitric oxide by macrophages correlates with the 
intracellular killing of Trypanosoma cruzi. Peritoneal murine mac-
rophages were infected with T. cruzi and cultured for 48 h in the pres-
ence of recombinant IFN-γ as indicated on the X axis of A. Then, the 
levels of nitrite were measured in the supernatants by Griess reagent 
method (A); b, c, d: microphotographs show the parasites (labeled 
with CFSE before infection) when the cells where not stimulated with 
IFN-g (b) or with 0.1 ng/mL (c) or 1 ng/mL (d) of recombinant IFN-γ. 
Note the reduction in the parasite staining as concentration of IFN-γ 
increases in the culture.

Fig. 2: IFN-γ induces macrophage activation and intracellular killing 
of Trypanosoma cruzi. Peritoneal murine macrophages were cultured 
for 48 h in the presence of T. cruzi and medium alone (A, B) or supple-
mented with 0.1 ng/mL of recombinant IFN-γ (C,D). Observe in C 
and D the absence of intracellular parasites and, instead of that, empty 
vacuoles can be noted (asterisks).

NO production by microglia (Jana et al. 2009), revealing 
the complex functions of NO in innate immunity.

Furthermore, NO affects the immune profile of Th1 
cells, as mice with a disrupted NOS2 gene exhibit en-
hanced Th1 activity, which in turn, can affect the Th1/
Th2 balance (Singh et al. 2000). It has been shown that 
high amounts of NO prevent apoptosis and, given that 
Th1 cells are more susceptible to apoptosis than Th2 
cells, this represents an additional regulatory mecha-
nism of the Th1/Th2 balance (Xiao et al. 2008).

NO can also affect immune responses through its 
ability to regulate S-nitrosylation of several components 
of the apoptotic machinery (Okuda et al. 1996, Melino et 
al. 1997, Johann et al. 2007, Shibata et al. 2007). Apop-
tosis is an important process in lymphocyte homeostasis 
and maturation in the thymus, as well as in lymphocyte 
proliferation in the periphery. Decreased S-nitrosylation 
of caspase-3 increases its intracellular enzymatic activ-
ity. In addition, Fas-mediated activation of caspase-3 is 
induced not only by cleavage of the zymogen to its active 
subunits, but also by denitrosylation of its active thiol 
site. The regulation of apoptosis by NO has an obvious 
impact on the strength of effector immune responses.

The cytoprotective properties of low/intermediate 
levels of NO may limit tissue damage during inflamma-
tion (Cattell & Jansen 1995, Okuda et al. 1996, Niedbala 
et al. 1999, De Gouw et al. 2001). ����������������������Interestingly, NO sig-
nificantly increases the proliferation, division and viabil-
ity of regulatory T cells (Sakaguchi 2004), a lymphocyte 
subset which has been shown to be involved in acute 
experimental T. cruzi infection (Mariano et al. 2008). 
Indeed, regulatory T cells induced by NO stimulation 
(NO-Treg) are as efficient as natural Tregs in suppress-
ing the differentiation of different effector lymphocyte 
subsets (Niedbala et al. 1999, Packard & Khan 2003). 
Furthermore, exposure of murine lymphocytes to NO 
suppresses IL-2 transcription, reducing clonal expan-
sion and indirectly favouring a Th2 response (Taylor-
Robinson et al. 1994).

Other important feedback mechanisms mediated by 
NO, which prevent dysregulated immune responses, in-
clude downregulation of cell adhesion and migration, 
which unchecked, would result in serious and over-
whelming inflammatory injury (Biffl et al. 1996, Hokari 
et al. 1998, Staykova et al. 2003, Dal Secco et al. 2006). 
Of note, inactivation of P-selectin expression by NO, 
which affects leukocyte adherence, may also preferen-
tially affect Th1 cell migration (van Wely et al. 1998).

Upon stimulation by cytokines or bacterial lipopol-
ysaccharide (LPS), endothelial cells exhibit increased 
expression of ICAM-1 in vitro, which contributes to the 
transmigration of all classes of leukocytes, but mainly 
neutrophils��������������������������������������������� (Biffl et al. 1996). In addition, NOS2 defi-
ciency or inhibition of NOS or sGC by pharmacologi-
cal inhibitors, leads to enhanced LPS-induced ICAM-1 
expression on mesenteric microcirculation (Dal Secco 
et al. 2006).

The migration of inflammatory cells may also be af-
fected by the chemical modifications of matrix metal-
loproteinases (MMPs) (Ridnour et al. 2007). Recently, 
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NO may also affect lymphocyte migration by alter-
ing cell motility. In vitro, NO induces actin polarization 
in T cells, inhibiting their trans-endothelial migration 
in a p70S6 kinase-independent manner (Staykova et al. 
2003). Moreover, NO may also inhibit the expression of 
integrins, such as CD11a/CD18, in neutrophils (Banick 
et al. 1997, Grisham et al. 1998). Since NOS2 is involved 
in peroxynitrite-dependent tyrosine nitration (Sato et al. 
2000, Yeh et al. 2007), it also regulates chemokine pro-
duction and affects the inflammatory response mediated 
by IP-10, MCP-1, MIP-1a and MIP-2, and IL-8 (Mach et 
al. 1999, Pfeilschifter et al. 2001).

NO also participates in the maintenance of inflam-
matory diseases (such as arthritis, ulcerative colitis and 
Crohn’s disease) and in the pathogenesis of T. cruzi-
induced myocarditis (Silva et al. 2003, Machado et al. 
2008). Indeed, several classic inflammatory symptoms, 
for example erythema and vascular leakiness, are related 
to the production of NO and can be reverted by NOS in-
hibition (Cuzzocrea et al. 2002). In chronic immune re-
sponses to intracellular pathogens, NO is reported to play 
a regulatory role and may promote parasite persistence. 
For these reasons, it is suggested that NO is cytostatic 
rather than cytotoxic for parasites (Klotz et al. 1995).

The dual role of NO during T. cruzi infection

Intracellular protozoans have infected vertebrates 
since ancient times and are usually able to establish 
chronic infection. A spontaneous cure is uncommon in 
these diseases, suggesting that potent mechanisms have 
been developed by these pathogens in order to evade im-
mune detection or destruction. Among these keystone 
mechanisms, which attest to their remarkable strength, 
is the capacity of T. gondii, T. cruzi and Leishmania spp. 
to invade and replicate within many different cell types 
(Leiriao et al. 2004, Denkers & Butcher 2005, Gregory 
& Olivier 2005).

Infection with T. cruzi in humans can lead to the de-
velopment of Chagas disease, the clinical features and 
evolution of which are determined by a combination of 
parasite factors (i.e. tissue tropism and evasion mecha-
nisms), mode of inoculation (i.e. the mode of contami-
nation or transmission and the size of the inoculum), as 
well as by host-derived factors (i.e. exacerbated immune 
response) (Coura 2007).

During T. cruzi infection, NO can directly or indirect-
ly modulate the effector leukocyte machinery through 
diverse mechanisms. This process involves microbicidal 
effects derived from toxic-free radicals (peroxinitrite 
and superoxide) generated after NO production, as well 
as regulation/enhancement of the inflammatory re-
sponse induced during this type of infection, a dual role 
in the immunity that is usually observed for NO. This 
well-known immune duality is usually dependent on 
concentration and, once dysregulated, may lead to host 
cell toxicity, autoimmunity or parasite persistence due to 
immune evasion, all of which can lead to pathology (FR 
Gutierrez et al. 2009, unpublished observations).

NO is involved in the control of T. cruzi-induced par-
asitemia and directly kills the parasite in vitro (Vespa 

et al. 1994) (Figs 1, 2). NO affects T. cruzi by chemi-
cally modifying cysteine-containing proteins and/or by 
binding to metalloproteins that mediate crucial meta-
bolic processes. Recently, it was reported that NO or 
NO donors can inhibit the catalytic activity of cruzipain, 
the major papain-like cysteine proteinase in T. cruzi. 
Analogous to a similar protein in Plasmodium, this 
dose-dependent effect was attributed to S-nitrosylation 
of Cys25, a catalytic residue present in the active site of 
cruzipain (Venturini et al. 2000).

The strength of NO toxicity is dependent on the sen-
sitivity of the parasite, which differs among parasite 
strains and according to the physiological microenvi-
ronment. NO has been demonstrated to be the princi-
pal effector molecule involved in macrophage-mediated 
killing of T. cruzi amastigotes (Nathan & Shiloh 2000, 
Colasanti et al. 2002, Silva et al. 2003). Contradictory 
evidence suggests that susceptible mouse strains display 
increased macrophage activation after contact with the 
parasite��������������������������������������������������, which may be due to the fact that, in these ani-
mals, infection with T. cruzi induces an overwhelming 
production of both NO and •O2

− (Russo et al. 1989, Car-
doni et al. 1990, Arantes et al. 2004).

An additional mechanism by which NO can affect 
the metabolism of T. cruzi is through the reduction of 
available growth factors. For example, iron is an impor-
tant growth factor for T. cruzi (Ciccarelli et al. 2007). 
NO induces nitrosilation of the heme group from hae-
moglobin, haematin or haemin, the main sources of 
iron. The main target of oxidative stress during T. cruzi 
infection is the erythrocyte, as it is the major principle 
site of the antioxidant chemical machinery. The nature 
and extent of oxidative injury depends on three factors: 
(i) the induction of NOS2 and, thus production of NO 
in response to infection (Alvarez et al. 2004); (ii) the 
oxidative stress generated outside of  the erythrocyte, 
particularly phagocyte-derived •O2

− and (iii) the rate of 
reaction between NO and either haemoglobin or •O2

−. 
The imbalanced counteraction of the oxidative response 
leads to haematological disorders (i.e., anaemia), which 
are observed in the acute phase of T. cruzi infection 
(Malvezi et al. 2004).

Oxidative stress is also observed in myocarditis 
during experimental T. cruzi infection. As myocarditis 
progresses, a substantial decline in cardiac mtDNA con-
tent (54-60%) and mitochondria-encoded transcripts (50-
65%) indicate that alterations in mtDNA contribute to the 
quantitative deficiencies in respiratory chain activity of 
infected individuals (Vyatkina et al. 2004). In fact, dur-
ing chagasic cardiomyopathy, mitochondrial dysfunction 
occurs as a consequence of intense oxidative stress (Wen 
et al. 2006) and is evidenced by deficiencies in respira-
tory chain complexes (CI-CV) (Garg 2005).

As previously suggested, the accuracy of initial path-
ogen recognition by the immune system is crucial for the 
production of NO ������������������������������������in order to mount an appropriate im-
mune response. TLRs can sense the presence of T. cruzi  
(Campos & Gazzinelli 2004), however, because it is an 
intracellular protozoan, T. cruzi has an extremely com-
plex antigenic repertoire (Buscaglia et al. 2006). This 
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makes it difficult to determine the exact mechanism by 
which the large diversity of cell-surface molecules on T. 
cruzi are recognised by the innate immune system (Tar-
leton 2007). Although other molecules may be involved, 
it is known that innate recognition of glycophosphati-
dylinositol-anchored mucin-like glycoproteins from T. 
cruzi are potent inducers of NO biosynthesis by IFN-γ-
activated macrophages (Camargo et al. 1997).

Early after infection, IL-12 is required for the induc-
tion and maintenance of IFN-γ production by innate and 
adaptive immune cells (Silva et al. 1998). IFN-γ produc-
tion by Th1 effector cells has consistently been impli-
cated in the pathogenesis of Chagas disease and is an 
important factor for maintaining T. cruzi-mediated pa-
thology. During acute experimental T. cruzi infection in 
mice, the parasite induces a profound suppression of the 
lymphoproliferative response to mitogens and T. cruzi 
antigens. This process is largely mediated by increased 
NO synthesis and decreased IL-2 production (Abra-
hamsohn & Coffman 1995). Our group demonstrated 
that NO induces apoptosis of cells from BALB/c mice 
acutely infected by T. cruzi. Splenocytes from infected 
mice displayed reduced viability and elevated levels of 
spontaneous apoptosis after 48 h in culture. Inhibition 
of NO production, by the addition of the L-arginine 
analogue NG-monomethyl-L-arginine or the addition of 
monoclonal antibodies (mAbs) against IFN-γ or TNF-α 
partially restored viability and decreased apoptosis of 
splenocytes from infected mice (Martins et al. 1998). 
In addition, the production of IL-17 has recently been 
implicated in mediating regulatory responses against T. 
cruzi (Monteiro et al. 2007). Of note, IL-17 markedly 
augments NOS2 mRNA and subsequent NO production. 
Additionally, T. cruzi infection induces the expression of 
chemokines (MIG, IP-10, RANTES, MIP) and adhesion 
molecules at sites of CD4+ and CD8+ T cell infiltration 
(Teixeira et al. 2002). Cytokines and NO can modulate 
the production of chemokines and adhesion molecules 
in vivo and in vitro, influencing the course of infection 
(Savino et al. 2007, Machado et al. 2008). Chemokine 
receptors are also involved in cellular activation during 
parasitic infections and this G-protein-coupled signal-
ling pathway is implicated in NO production as well 
(Benevides et al. 2008).

One mechanism by which the innate immune re-
sponse can affect the activation of T cells is through the 
macrophage-mediated reduction of available L-arginine 
in the microenvironment. The levels of this metabo-
lite depend on the cytokine milieu. For example, mac-
rophages stimulated with IL-4 and IL-13 (but not IFN-γ) 
up-regulate arginase I and the L-arginine receptor CAT-
2B, thus inducing a rapid reduction in the concentrations 
of L-arginine; this, in turn, down-modulates the expres-
sion of CD3ε in T lymphocytes reducing their activation 
(Rodriguez et al. 2003). Arginine is also required for 
the synthesis of NO, thus this can constitute a feedback 
mechanism to regulate the immune system. Recently, 
recognition of intracellular pathogens by TLRs has 
been implicated in the downregulation of NO produc-
tion, through increased arginase I activity, in a STAT6-

independent manner, which favours parasite growth and 
survival (El Kasmi et al. 2008).

As one of the most successful parasitic protozoans, T. 
cruzi has evolved active strategies to evade host defences 
(Eckmann et al. 2000). Interestingly, epimastigote forms 
of T. cruzi synthesise their own NO through a partially 
characterized NOS enzyme which displays regulatory 
and immunochemical properties resembling those of 
endogenous NOS1 (Pereira et al. 1999, Goldstein et al. 
2000, Piacenza et al. 2001).

Furthermore, T. cruzi can also exploit the removal of 
apoptotic cells by professional phagocytes, which is an 
important mechanism by which some pathogen-induced 
cell alterations are ultimately detected and which is in-
volved in the recycling of cellular constituents. Uptake 
of apoptotic cells does not induce an inflammatory re-
sponse. Accordingly, macrophages upregulate arginase 
II after phagocytosis of apoptotic cells, which regulates 
NO production by NOS2 (Freire-de-Lima et al. 2000, 
Johann et al. 2007). Additionally, L-arginine, the sub-
strate for NO production, can inhibit the programmed 
cell death of epimastigotes, either by NOS2-dependent 
production or by the activity of arginine decarboxylase, 
which produces polyamines that support parasite prolif-
eration (Paveto et al. 1995).

Implications of NO in therapeutic treatment against 
Chagas disease

The current pharmacological agents available to treat 
Chagas disease include benznidazole (Rochagan and 
Rodanil; Roche, Brazil) and nifurtimox (Lampit; Bayer, 
Germany). These drugs are relatively effective in the 
acute and sub-chronic stages of Chagas disease (Rus-
somando et al. 1998, Sosa Estani et al. 1998, Cançado 
2002, Altclas et al. 2005). However, both drugs have sig-
nificant side effects, including anorexia, vomiting, pe-
ripheral polyneuropathy and allergic dermopathy (Rassi 
et al. 1999). Moreover, several parasite strains are resist-
ant to these treatments, even during the acute phase of 
the disease (Filardi & Brener 1987, Galvao et al. 1993, 
Urbina 1999). The rate of cure observed in patients with 
these drugs is 50-70% during the acute phase and 0-20% 
during the chronic phase (Guedes et al. 2006). This situ-
ation is severely aggravated by the absence of a diagnos-
tic standard, which makes the parameters for a cure, in 
order to evaluate the outcome of trypanocidal therapies, 
debatable. Thus, there is an imperative requirement for 
the development of novel, safe therapeutic agents to treat 
Chagas disease.

As stated before, parasite elimination largely de-
pends on the production of pro-inflammatory cytokines, 
such as IFN-γ, TNF-α and IL-12, as they act in concert 
to activate macrophages to kill the intracellular parasite 
through the production of NO and its derived nitrogen 
and oxygen radicals (Aliberti et al. 1999, 2001, Machado 
et al. 2000). Studies using experimental models of acute 
T. cruzi infection have demonstrated that the anti-para-
sitic activity of benznidazole involves the participation 
of these cytokines (Michailowsky et al. 1998, Molina et 
al. 2000), as well as covalent modifications of macromol-
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ecules by nitroreducer intermediates (reductive stress). 
Conversely, nifurtimox acts by reducing the nitro group 
to unstable nitro anion radicals, which, in turn, react to 
produce highly toxic reduced oxygen metabolites (super-
oxide anion and hydrogen peroxide) (Docampo 1990).

NO donor compounds have low toxicity in vitro and 
in vivo and are stable in aqueous media in the presence 
of oxygen and NO released by reducing agents that are 
present in the host inflammatory microenvironment 
(Bogdan 2001, Silva et al. 2007). These donor com-
pounds have recently emerged as an interesting and 
important alternative treatment to experimental T. cruzi 
infection (Silva et al. 2007). We recently reported that a 
series of ruthenium nitrosyls, trans-[RuII(NO+)(NH3)4L]
X3, L: imidazole “{imidazole in complex with nitrogen 
[imN] or imidazole in complex with carbon [imC]�����, py-
ridine [py], L-histidine [L-hist], sulphite [SO3

2-], pyra-
zine [pz], nicotinamide [nic], 4-picoline [4-pic], triethyl-
phosphite [(P(OEt)3)], isonicotinamide [isn], isonicotinic 
acid [ina], X = BF4

-, Cl- or PF6
-} and [RuII(NO+)(Hedta)] 

display trypanocidal activity against the Y strain of 
T. cruzi. Such compounds were efficient in reducing 
parasitemia, cardiac inflammation and also allowed 
increased survival of infected mice (Silva et al. 2007). 
We also showed that the new and more potent NO do-
nor, trans-{RuCl[(15)aneN4]NO}2+ complex [(15)aneN4  =  
1,4,8,12-tetraazacyclopentadecane, a macrocyclic quad-
ridentate amine ligand] induced parasitological cure in 
a therapeutic schedule that involved a 20-day treatment 
of mice infected with the Y strain of T. cruzi. We evalu- 
ated the parasitological cure of mice treated with trans-
{RuCl[(15)aneN4]NO}2+ and compared it to treatment 
with benznidazole or treatment with both drugs. Benz-
nidazole or trans-{RuCl[(15)aneN4]NO}2+ administrated 
alone resulted in a 40% and 20% parasitological cure, re-
spectively. However, when administered together, 80% 
of the treated animals were considered cured. These 
findings were associated with reduced or absent cardi-
ac damage during the acute phase of T. cruzi infection 
(PMM Guedes et al., unpublished observations).

These studies provide evidence that NO donors help 
to improve the efficacy of current trypanocidal drugs, 
reducing the time of treatment and preventing adverse 
reactions. Hence, administration of NO donors and other 
drugs in conjunction can constitute a promissory thera-
peutic avenue that could be explored as a new alternative 
for the treatment of Chagas disease.

In conclusion, NO is essential for host survival dur-
ing acute experimental T. cruzi infection. Its production 
is rapidly triggered in cells of the innate immune system, 
after the parasite is detected, and later by adaptive im-
mune cells. A delicate, yet not completely understood, 
interplay exists between the components of the immune 
response and the concentration of NO.

Vast scientific evidence shows that NO can exert its 
effects on the immune response either directly or through 
the activity of its derivatives (mainly oxygen and nitro-
gen reactive species), which are able to induce structural 
modifications in cytokines and chemokines, thus alter-
ing their biological activities. In the same manner, NO 

can affect the biology of T. cruzi by direct toxicity, by 
affecting essential metabolites, or by enhancing the im-
mune response against the parasite.

Nonetheless, this broad spectrum of activity of NO 
can also be responsible for extensive damage to the tis-
sues of infected hosts and for manifestation of the dis-
ease. These data have led investigators to propose NO as 
a crucial target for the immunotherapy of this infectious 
disease. However, additional studies are required to fur-
ther understand the multiple roles of NO and to establish 
the risks and benefits of such therapeutic approaches 
during parasitic infection in patients.
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