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A puzzle in Chagas disease research has been
to correlate molecular markers with epidemiology
since isolates of Trypanosoma cruzi exhibit a broad
host range, induce distinct clinical presentations
in patients and show great diversity in biological
and biochemical characteristics. Early studies on
population genetics revealed substantial isozymic
variability among isolates of T. cruzi defining three
major groups or zymodemes named Z1, Z2 and
Z3 (Miles et al. 1978, 1980). Further analysis of
15 gene loci disclosed a greater heterogeneity de-
termining the distribution of 121 T. cruzi isolates
into 43 zymodemes that could not be grouped by
the authors in few natural clusters (Tibayrenc &
Ayala 1988). The main conclusion of these studies
was that the population structure of this parasite is
clonal rather than sexual, and, as a consequence,
the present genetic and biological variability of T.
cruzi is resultant from the independent evolution
of clonal lines (Tibayrenc & Ayala 1988). Accep-
tance of clonal propagation of T. cruzi implies that
the classical definition of species is not fully ad-
equate to this parasite. It has been proposed that
each distinct genotype should be studied individu-
ally and special attention given to the most repre-
sented ones (Tibayrenc 1995). On the other hand,
other groups still believe that it is worth searching
for genetically and ecologically coherent group-
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ing of isolates (Macedo & Pena 1998). Indeed the
remarkable genetic diversity of T. cruzi (Morel et
al. 1980, Henriksson et al. 1990, Macedo et al.
1992) initially identified could be somewhat orga-
nized (Henriksson et al. 1993, Tibayrenc 1995).
However, analyses of these fast evolving genetic
markers could not clearly show defined clusters.

TYPING OF T. CRUZI ISOLATES BASED ON A RRNA
SEQUENCE

In contrast to the diversity suggested by former
approaches, analyses of markers with lower evo-
lutionary rate such as multigenic families suggested
dichotomy within T. cruzi isolates. PCR amplifi-
cation of a sequence from the D7 divergent do-
main of the 24Sa rRNA (LSU) gene indicated di-
morphism among T. cruzi isolates and allowed the
division of 16 parasite stocks into two groups
(Souto & Zingales 1993). This observation was
confirmed by others following riboprinting analy-
sis in 18 isolates from North America (Clark &
Pung 1994). Subsequently, a variable spot in the
spacer region of the mini-exon gene was found in
strains of T. cruzi which also showed dimorphism
after PCR amplification (Souto et al. 1996).

The typing approaches based on rRNA and
mini-exon sequences were used to analyse 88 T.
cruzi stocks from humans, insects and sylvatic ani-
mals from several Latin America countries. Am-
plification of these sequences originated 125 or
110bp products for rDNA and 300 or 350bp prod-
ucts for the mini-exon. Within individual isolates,
one of the three associations was observed: the
125bp rDNA product with the 300bp mini-exon
product (defined as group 1), the 110bp rDNA
product with the 350bp mini-exon product (defined
as group 2), and the presence of both rDNA am-
plification products with the mini-exon group 1
product (defined as group 1/2) (Fig. 1) (Souto et
al. 1996). RAPD analysis showed variability be-
tween individual isolates, however, tree analysis
clearly indicated the presence of two major
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branches. Interestingly, the group 2 isolates corre-
lated precisely with one branch of the tree, and
group 1 and group 1/2 isolates correlated with the
other branch (Fig. 1) (Souto et al. 1996). Our stud-
ies clearly indicate that T. cruzi isolates can be par-
titioned into two major Lineages, which we named
Lineage 1 and 2 (Fig. 1) (Souto et al. 1996). In that
study several isolates classified as Z1 and Z2 were
analyzed and it was concluded that Z2 stocks be-
long to Lineage 1, while stocks classified as Z1
fall into Lineage 2. The position of Z3 was further
investigated based on mini-exon sequence analy-
sis and it was concluded that it constitutes a dis-
crete sub Lineage within Lineage 2 (Fernandes et
al. 1998a). This observation agrees with previous
conclusions indicating that Z3 although distinct
from, is related to Z1 (Miles et al. 1980).

The existence of these lineages can be noticed
by detailed isoenzyme data (Tibayrenc 1995). Con-
cerning the major clones defined by Tibayrenc and
Ayala (1988), our typing assays indicate that clones
19/20 belong to Lineage 2, while clones 32 and 39
belong to Lineage 1. It should be pointed out that
clone 39 maintains heterozygosity at several loci
and is classified as group 1/2 (Souto et al. 1996).
More recently, the bi-polar grouping of T. cruzi has
been supported by riboprinting analysis (Stothard
et al. 1998), rRNA and mini-exon (spliced-leader)
promoter sequences and activities (Floeter-Winter
et al. 1997, Nunes et al. 1997a, b), microsatellite
markers (Oliveira et al. 1998) and structure of ri-
bosomal spacers (Fernandes et al. 1999a).

Presently, several laboratories are involved in
the definition of the relevance of the two lineages
and their sub-groups with respect to the epidemio-
logical and biological properties of T. cruzi. These
studies as well as the analysis of the evolutionary
origin of the two Lineages should indicate whether
each Lineage constitutes, according to the modern
concept of species, an ecological and a genetic unit
(Macedo & Pena 1998).

THE RIBOSOMAL RNA CISTRON

Southern blot analysis (Souto et al. 1996),
riboprinting (Clark & Pung 1994, Stothard et al.
1998) and restriction profiles of internal transcribed
spacers (ITS) from the rDNA cistron (Fernandes
et al. 1999a) clearly indicate that the overall struc-
ture of the ribosomal RNA cistron differs between
isolates of Lineage 1 and Lineage 2, supporting
this division. It has also been shown that group 1/
2 isolates have both types of rRNA cistrons, with
eight to ten-fold greater copy number of group 2-
rDNA genes relative to group 1-rDNA genes
(Souto et al. 1996).

Previous studies in different organisms have
shown that rRNA gene promoters exhibit species-

specific control (Sollner-Webb & Towers 1986).
A plasmid construct bearing the promoter sequence
from the rRNA cistron of the CL strain drove the
expression of chloramphenicol acetyl transferase
(CAT) when transfected into epimastigotes of some
T. cruzi strains, but surprisingly, was inactive in
others (Tyler-Cross et al. 1995). We examined the
activity of the same construction in isolates belong-
ing to the two major phylogenetic lineages. It was
observed that CL strain (Lineage 1) rRNA pro-
moter drove high CAT activity in Lineage 1 iso-
lates, but essentially no activity in Lineage 2 strains.
Thus, the CL rRNA promoter exhibited a clear
Lineage 1-specificity (Floeter-Winter et al. 1997,
Nunes et al. 1997a).

In order to analyse the activity of Lineage 2
rRNA promoter, we cloned the corresponding seg-
ment from the Dm28 strain. Alignment of this se-
quence (800bp) with rRNA promoters from other
strains of T. cruzi indicated 98% and 82% identity
with sequences of Lineage 2 and Lineage 1 strains,
respectively (Floeter-Winter et al. 1997, Stolf
1999). These data indicate that the sequence ho-
mology in this region also reflects the division into
two lineages. We have also analysed the rRNA
promoter sequences from group 1/2 isolates, which
contains two types of ribosomal RNA cistrons. It
was observed that the type 1 promoter sequence of
NR cl3 clone (group 1/2) has 96% identity with
that of CL Brener clone (Lineage 1, group 1) and
80% identity with that of Dm28 strain (Lineage 2,
group 2). On the other hand, the type 2 promoter
sequence of NR cl3 clone has 82% identity with
that of CL Brener clone and 90% identity with that
of Dm28 strain (Stolf 1999).

The activity of Lineage 1 and Lineage 2 pro-
moters was investigated by transient expression of
CAT reporter gene in different T. cruzi isolates
typed as rDNA group 1, group 2 and group 1/2 (cf
in Fig. 1). It was observed that Lineage 1 promoter
is expressed in both group 1 and group 1/2 strains,
but shows no activity in group 2 isolates. On the
other hand, Lineage 2 promoter is expressed in the
three groups of isolates (Nunes et al. 1997a, Stolf
1999). In the specific case of group 1/2 it was ob-
served that the expression of CAT driven by L2
promoter was higher than that driven by the L1
promoter. Interestingly, RT-PCR experiments con-
ducted with total RNA extracted from group 1/2
isolates allowed to conclude that only the rRNA
cistron of type 2 is transcribed in vivo (Stolf 1999).

Taken together, our data indicate that there are
clear differences in the sequence and activity of
the rRNA promoter regions in the representatives
of the two major lineages. The specificity of the
promoter activity is not mutually exclusive, since
group 1 and group 1/2 strains express promoters
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Fig. 1: UPGMA tree based on the proportion of bands not shared among the isolates. For each isolate the corresponding rDNA and
mini-exon groups as well as the host from which it was derived are indicated (after Souto et al. 1996).

from both groups, but group 2 strains only express
group 2 promoters. The reasons for these observa-
tions are unclear but might be related to the char-
acteristics of the components of the transcription
machinery in the T. cruzi groups. Nevertheless,
since it has previously been shown for many eu-
karyotes that the rRNA promoter activity is spe-
cies-selective (Sollner-Web & Towers 1986) the
observation that T. cruzi rRNA promoters show
group-specificities supports the conclusion that
these groups could be considered discrete taxa.

EPIDEMIOLOGICAL DISTRIBUTION

We have analysed by the 24Sa rRNA and/or
mini-exon typing methods more than 200 isolates
from triatomine species and mammalian hosts from
the domestic and sylvatic cycles originating from
12 Brazilian states. Data provide evidence for a
strong association of T. cruzi Lineage 1 with the
domestic cycle, while Lineage 2 is preferentially
encountered in the sylvatic cycle (Fernandes et al.
1998b, 1999b, Zingales et al. 1998, cf also Fig. 1).
Data also suggest that Lineage 1 has properties that
favour human infections, possibly due to higher
parasitemia, since all parasites isolated from se-
ropositive individuals from endemic regions be-

long to this Lineage (Fernandes et al. 1998b,
Zingales et al. 1998). On the other hand, Lineage
2 was isolated from very few human seropositive
cases in Amazonas where T. cruzi is enzootic
(Zingales et al. 1998).

These observations concerning the general
behaviour of the two lineages in chagasic patients
in Brazil agree with data regarding the distribution
of two major clones: 20 (Lineage 2) and 39 (Lin-
eage 1) in children and vectors from a Bolivian
endemic area (Breniere et al. 1998). It was con-
cluded that clone 39 is prevalent in patients, while
in vectors (Triatoma infestans) clones 20 and 39
are found with comparable frequencies. These re-
sults suggest a limited selection in the transmis-
sion of the two clones and a drastic control of clone
20 parasitemia by the immune system of children
patients.

Analysis of 68 T. cruzi stocks from mammals
and triatomines of the Atlantic Coast rainforest in
the State of Rio de Janeiro suggests a preferential
adaptation of Lineage 1 to primates and Lineage 2
to opossums (Fernandes et al. 1999b), as has also
been concluded from studies conducted in Geor-
gia State (USA) (Clark & Pung 1994, Pung et al.
1998).
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BIOLOGICAL EVIDENCE

Several biological evidence also support the
conclusion that the two phylogenetic lineages have
different characteristics. Experimental infection of
marsupials with strains of Lineages 1 and 2 indi-
cates the elimination of type 1 strain from the host,
while the type 2 strain promotes a permanent and
very mild infection (Carreira et al. 1996). In vivo
and in vitro experiments suggest that the two lin-
eages differ markedly in infectivity to mammals.
In fact, it has been shown that two T. cruzi strains
Y and CL (Lineage 1) are highly infective to mice,
while strain G (Lineage 2) does not produce para-
sitemia (Yoshida 1983). This observation agrees
with data derived from the analysis of isolates from
human chagasic patients (Fernandes et al. 1998b,
Zingales et al. 1998). It has also been reported that
Lineage 1 strains are four times more infective to
HeLa cells than Lineage 2 strains. These results
have been correlated with the expression of glyco-
protein gp90 which seems to inhibit calcium mo-
bilization required for cell invasion and is present
in the eight analyzed strains of Lineage 2 but not
in Lineage 1 isolates (Ruiz et al. 1998). Regarding
the parasite-triatomine vectors interaction, it is
known that growth and metacyclogenesis of dif-
ferent T. cruzi isolates in the insect depend on the
strain of the parasite (Garcia & Azambuja 1991,
Lana et al. 1998). For example, it has been shown
that infection of Dipetalogaster maximus with two
different clones of T. cruzi showed that only one
clone underwent metacyclogenesis. Similar results
were seen when different strains and clones of T.
cruzi infected Rhodnius prolixus. It was also ob-
served that clone Dm28c (Lineage 2) was two to
three orders of magnitude more resistant to a lytic
agent purified from the crop of R. prolixus than
the Y strain (Lineage 1). Resistence to lytic activ-
ity, as well as reactivity to specific lectins found in
the digestive tract of triatomines may provide se-
lective advantages for the development of certain
strains of T. cruzi over other strains (cf. Garcia &
Azambuja 1991).

EVOLUTION OF T. CRUZI LINEAGES

Comparative sequence analysis of the variable
region D7 within the LSU rRNA was used to check
whether the divergence between T. cruzi Lineages
1 and 2 occurred before the divergence of the ex-
tant strains as suggested by RAPD (Souto et al.
1996) and also to verify whether the lineages are
truly monophyletic. Therefore, sequences of the
D7 region were determined for T. rangeli and 14
strains of T. cruzi and aligned. This alignment was
used to build maximum likelihood trees using dif-
ferent transition models and rooted by outgroup
(T. rangeli). The tree presented suggests that the

divergence between T. cruzi Lineages 1 and 2 oc-
curred before the divergence of the extant strains
and separate T. cruzi into two groups in 100% of
bootstrap replicates (Fig. 2). Also a third group
seems to be present  which corresponds to group
1/2, where the presence of two types of rDNA cis-
trons has been shown. Alignment of the sequence
of type 1 D7 region of SO3 (group 1/2) places this
isolate among Lineage 1 strains (Fig. 2) while type
2 D7 sequence does not allow the establishment of
a clear position in the tree. In fact, depending on
the algorithm parameters used (parsimony, differ-
ent models of maximum likelihood and gamma
distribution), group 1/2 in some trees seems to be
more related to Lineage 1 and in other trees to Lin-
eage 2. Sequence comparisons of small subunit
rDNA (SSU) and faster evolving genes will prob-
ably help to determine whether group 1/2 is more
closely related to Lineage 1 or 2 or if it really is a
third lineage of strains.

Fig. 2: phylogeny of several Trypanosoma cruzi isolates based
on D7 region of the LSU rDNA. T. rangeli was used as an
outgroup. The scale bar indicates the number of substitutions
per sequence position and the number “100” above the node
dividing Lineages 1 and 2 indicates that this topology was sup-
ported by 100% bootstrap replicates. This tree inferred by Maxi-
mum likelihood has the same topology observed when Parsi-
mony methods were applied but differs from Neighbor Joining
trees. In most reconstructions the clade representing group 1/2
could not be resolved. (Bas, Basileu strain; Tul, Tulahuen strain).

T. rangeli

Phylogenetic reconstructions using the SSU
gene indicate that divergence between the two T.
cruzi lineages is greater than the distances separat-
ing four species of Leishmania and comparable to
distances among trypanosomatid genera Crithidia,
Leishmania, Endotrypanum and Leptomonas
(Briones et al. 1999). Using patristic distances (sum
of branch lengths) of the maximum likelihood tree
and the evolutionary rates of 0.85% sequence di-
vergence/100 million years and 2% sequence di-
vergence/100 million years (Escalante & Ayala
1995) we estimated the divergence time of the two
lineages to be 88 to 37 million years, respectively.
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Because the rate of 2% sequence divergence/100
million years for the SSU rDNA might reflect the
evolution of faster evoling segments of the mol-
ecule we believe that 88 million years of sequence
divergence more likely reflects an average rate for
the entire gene (Briones et al. 1999).

CONCLUDING REMARKS

Evidence supporting the existence of two ma-
jor phylogenetic lineages in T. cruzi is accumulat-
ing from independent genomic markers, DNA se-
quence comparison, population genetics and pro-
moter activity from multigenic families. Data in-
dicate that these lineages are distinct evolutionary
units. In addition, epidemiological and biological
studies suggest that these lineages have different
characteristics. Therefore, the division of T. cruzi
into two major groups is evident not only geno-
typically but also physiologically. It is time for the
re-evaluation of the T. cruzi taxon and to work out
a common nomenclature for these lineages that will
serve not only taxonomists but the general com-
munity of researchers working with T. cruzi. Fur-
ther genetic characterization of the subgroups
within these lineages is a fundamental step towards
the understanding of the complex epidemiological
and clinical manifestations of Chagas disease.
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Note added in proof: during this Symposium it
was recommended to adopt a common nomencla-
ture to name the two principal groups of Trypano-
soma cruzi strains – TC1 and TC2. In this direc-
tion, Lineage 1 and Lineage 2 referred in this pa-
per correspond to groups TC2 and TC1, respec-
tively.


