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Immune Response of Cattle Infected with African
Trypanosomes

Katherine A Taylor+, Bea Mertens

International Livestock Research Institute, PO Box 30709, Nairobi, Kenya

Trypanosomosis is the most economically important disease constraint to livestock productivity in
sub-Saharan Africa and has significant negative impact in other parts of the world. Livestock are an
integral component of farming systems and thus contribute significantly to food and economic security
in developing countries. Current methods of control for trypanosomosis are inadequate to prevent the
enormous socioeconomic losses resulting from this disease. A vaccine has been viewed as the most
desirable control option. However, the complexity of the parasite’s antigenic repertoire made develop-
ment of a vaccine based on the variable surface glycoprotein coat unlikely. As a result, research is now
focused on identifying invariant trypanosome components as potential targets for interrupting infection
or infection-mediated disease. Immunosuppression appears to be a nearly universal feature of infection
with African trypanosomes and thus may represent an essential element of the host-parasite relation-
ship, possibly by reducing the host’s ability to mount a protective immune response. Antibody, T cell and
macrophage/monocyte responses of infected cattle are depressed in both trypanosusceptible and
trypanotolerant breeds of cattle. This review describes the specific T cell and monocyte/macrophage
functions that are altered in trypanosome-infected cattle and compares these disorders with those that
have been described in the murine model of trypanosomosis. The identification of parasite factors that
induce immunosuppression and the mechanisms that mediate depressed immune responses might sug-
gest novel disease intervention strategies.
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African trypanosomes are intravascular, extra-
cellular parasites of livestock, humans and wild ani-
mals. Within the mammalian host, their cell mem-
brane is covered by a variant surface glycoprotein
(VSG) coat; termed variable because each parasite
has an estimated 1000 VSG genes (Van der Ploeg et
al. 1982), each encoding an antigenically distinct
surface coat. Cattle immunized with irradiated try-
panosomes or purified VSG are protected against a
homologous (trypanosomes expressing the same
antigenic repertoire), but not a heterologous, chal-
lenge (Wellde et al. 1975, Morrison et al. 1982).
Thus, the potential of African trypanosomes to ex-
press different VSG coats reduces the likelihood of
an effective VSG-based vaccine. As a result, vac-
cine design strategies are now focused on invariant
trypanosome molecules that mediate pathogenesis
(Authié 1994). It is clear that antigen selection and
vaccine design will require knowledge of the im-
mune responses provoked by infection and defini-

tion of the mechanisms involved in either parasite
or disease control.

Immunodepression is a well-documented fea-
ture of trypanosomosis in cattle, humans and mice
(Mansfield 1989, De Baetselier 1996, Taylor 1998).
There is evidence that infection-related im-
munodepression compromises the ability of ani-
mals to control trypanosomosis (Sternberg et al.
1994), as well as secondary infections (Scott et al.
1977, Rurangirwa et al. 1978). Therefore identifi-
cation of host factors that induce immunodepres-
sion and the immune mechanisms involved might
provide a rational approach for vaccine design
aimed at improved disease control and thus in-
creased livestock productivity.

The majority of research on African try-
panosomosis has focused on murine infections with
Trypanosoma brucei subsp. as models of human
disease. In contrast, research on trypanosomosis
of livestock has centred mainly on infections of
cattle with T. congolense. Besides the obvious fact
that murine and bovine hosts are immunologically
distinct, it is important to remember that T.
congolense and T. brucei subsp. are also biologi-
cally distinct. The most important difference may
be that T. congolense is a strictly intravascular para-
site, while infection with T. brucei subsp. has ex-
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travascular foci, particularly within the central ner-
vous system.  The sum effect of these differences
limits the value of comparisons between the two
experimental models. Nonetheless, research on
trypanosomosis of livestock has often followed in
the path of that on human trypanosomosis and thus
comparisons can not be avoided.

T CELL AND MONOCYTE/MACROPHAGE RE-
SPONSES

T cell proliferative responses are depressed
during infection in both murine and bovine hosts.
In mice, T cell proliferation to mitogens and para-
site antigens is either blocked or reduced. Reduced
proliferative responses are associated with de-
creased interleukin-2 (IL-2) production and IL-2
receptor (IL-2R) expression in infected mice
(Sileghem et al. 1986, 1987); nevertheless, cells
retain the ability to secrete IFN-g (Sileghem et al.
1987, Bakhiet et al. 1990, Olsson et al. 1991,
Schleifer et al. 1993). The mechanisms control-
ling T cell suppression in trypanosome-infected
mice are not only site-specific, but also differ dur-
ing the acute and chronic phases of infection
(Beschin et al. 1998, Mabbott et al. 1998). In the
lymph node, prostaglandins and nitric oxide se-
creted by activated macrophages inhibit IL-2 pro-
duction (Sileghem et al. 1989b) and proliferation
(Beschin et al. 1998), respectively, during the acute
phase of infection in murine hosts. Decreased IL-
2R expression is prostaglandin-independent and is
reversed by anti-IFN-g antibodies (Darji et al. 1993,
1996), as is decreased proliferation (Beschin et al.
1998). In addition, the administration of anti-TNF-
a antibodies to infected mice partially restores T
cell proliferative responses in the lymph node (Darji
et al. 1992). During the chronic stages of infection
nitric oxide does not mediate T cell unresponsive-
ness in the lymph node; although IFN-g is involved,
so are other factors that have not yet been identified
(Beschin et al. 1998).

Both TNF-a and IFN-g are involved in in-
creased secretion of macrophage-derived nitric
oxide and prostaglandins in the peritoneal cavity
and spleen of T. brucei- and T. b. rhodesiense-in-
fected mice. These products in turn mediate T cell
suppression (Sternberg & Mc Guigan 1992,
Schleifer & Mansfield 1993), but apparently only
during the very early days of infection (Beschin et
al. 1998, Mabbott et al. 1998). The addition of ni-
tric oxide- and prostaglandin-inhibitors to cells
derived from the spleen and peritoneal cavity of T.
b. rhodesiense-infected mice restored trypanosome
antigen-specific and mitogen-triggered prolifera-
tion (Schleifer & Mansfield 1993). Similarly, ni-
tric oxide production was suppressed and prolif-
eration was restored in cultures treated with anti-
IFN-g (Beschin et al. 1998) or anti-TNF-a mAb

(Darji et al. 1996), as well as in IFN-g receptor null
mutant mice (Mabbott et al. 1998).  Moreover, mice
treated with a substrate analog inhibitor of nitric
oxide controlled parasitaemia and anaemia better
than untreated mice did (Sternberg et al. 1994,
Mabbott & Sternberg 1995). This suggests that the
animals were capable of a more effective response
if nitric oxide-mediated suppression was reversed.
However, depressed T cell responses in the spleens
of chronically infected mice are not sensitive to
either nitric oxide inhibitors or anti-IFN-g (Beschin
et al. 1998, Mabbott et al. 1998). In addition, al-
though T. b. rhodesiense-infected IFN-g receptor
knock out mice controlled anaemia better over the
first ten days of infection, these same mice experi-
enced more severe anaemia than wild type mice
later in infection (Mabbott et al. 1998).

Recent studies have suggested that TNF-a and
IFN-g play opposing roles in regulation of parasite
growth. T. brucei release factors that induce mu-
rine CD8 T cells to secrete IFN-g, which was shown
to be a parasite growth factor (Olsson et al. 1991).
Similarly, T. brucei induces production of TNF-a,
which, in contrast to IFN-g, has trypanolytic activ-
ity (Magez et al. 1993, 1997). However, it is not
yet known how these cytokines interact in vivo to
influence parasite numbers. The challenge now is
to understand the contribution of these two
cytokines to direct control of parasite numbers
balanced with their influence on downstream im-
munological responses.

In summary, macrophages of trypanosome-in-
fected mice produce immunosuppressive factors
such as prostaglandins, nitric oxide, and TNF-a.
During the early acute phase of infection these fac-
tors are involved in reduced T cell responses in the
spleen and, to a lesser extent, the lymph node of T.
brucei subsp.-infected mice. In addition, produc-
tion of IFN-g by T cells appears to be a common
feature in murine trypanosomosis.  However, the
factors that mediate suppressed T cell prolifera-
tive responses in chronically infected mice are not
fully understood.  More importantly, it is not clear
how these responses relate to either protection or
immunopathology.

In cattle, mitogen-induced proliferation, IL-2
production and IL-2R expression by cells derived
from the lymph node draining the site of infection
are transiently depressed (Flynn & Sileghem 1991,
Lutje et al. 1996, Taylor et al. 1996a). While try-
panosome-specific proliferative responses can be
detected in the draining lymph node during the
second week of infection, they are not associated
with significant IL-2 production and are nearly
absent by one month post-infection (Lutje et al.
1995, 1996, Taylor et al. 1996a).

Efforts to characterise the regulation of IFN-g
in T. congolense-infected cattle have been incon-
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clusive. While mitogen-induced IFN-g secretion by
lymph node cells was shown to increase in infected
cattle (Sileghem & Flynn 1992, Lutje et al. 1996),
in another study, no significant change was detected
(Taylor et al. 1996a). In addition, no increase in
IFN-g mRNA is observed in lymph node or pe-
ripheral blood mononuclear cells (PBMCs) of in-
fected cattle (Taylor et al. 1996a, 1998). Nonethe-
less, expression of IFN-g mRNA was higher in the
spleen of two infected calves compared with their
uninfected identical twin (Taylor et al. 1996a).
These differences suggest that bovine trypa-
nosomosis produces highly compartmentalized im-
mune responses, similar to those seen in mice (De
Baetselier 1996, Beschin et al. 1998).

Unlike those of the mouse, bovine monocyte and
macrophage effector functions do not appear to be
activated during trypanosomosis. Ex vivo secretion
of TNF-a from monocytes of T. congolense-infected
cattle is not increased, however, a small but transi-
tory increase is observed in T. vivax-infected cattle
(Sileghem et al. 1994). In keeping with this obser-
vation, TNF-a mRNA expression did not increase
in the PBMC of T. congolense-infected cattle (Tay-
lor et al. 1998, Mertens et al. 1999). Moreover, ni-
tric oxide production is not elevated during infec-
tion of cattle and neither nitric oxide nor prostag-
landins are responsible for reduced T cell prolifera-
tion of lymph node cells (Sileghem & Flynn 1992,
Taylor et al. 1996a).

More recent research suggests that IL-10, a mac-
rophage de-activating cytokine, might be related to
the apparent failure of monocytes and macrophages
of trypanosome-infected cattle to produce inflam-
matory products. IL-10 mRNA transcripts are el-
evated in the peripheral blood, lymph node and
splenic leukocytes of T. congolense-infected cattle
(Taylor et al. 1996a, 1998). A pleuripotent cytokine,
IL-10 is associated with TH2 type responses and can
suppress macrophage effector and costimulatory
functions (Moore et al. 1993).

IL-10 is known to suppresses the activation of
inducible nitric oxide synthase, IL-1a, IL-6, TNF-
a and, possibly, IL-12, at the level of transcription
in murine macrophages (deWaal Malefyt et al.
1991, Fiorentino et al. 1991, Kennedy et al. 1994).
Coincident with the observed increase in IL-10
mRNA expression in PBMC, lymph node and
spleen, monocytes of trypanosome-infected cattle
became desensitised to IFN-g-induced secretion of
nitric oxide (Taylor et al. 1996a, 1998). Further-
more, recombinant human IL-10 blocks both IFN-
g-induced nitric oxide and TNF-a production by
monocytes derived from healthy cattle (Taylor et
al. 1998). This, combined with the evidence that
TNF-a production (Sileghem et al. 1994, Taylor
et al. 1998, Mertens et al. 1999) does not increase
during infection, suggests that macrophage

monokines are not activated during bovine
trypanosomosis and that IL-10 may be involved in
this lack of response. Indeed, recent experiments
have demonstrated that anti-IL-10 antibodies par-
tially restored IFNg-induced nitric oxide produc-
tion by monocytes derived from T. congolense-in-
fected cattle (unpublished data).

IL-10 also acts to downregulate expression of
the B7 costimulatory molecules on murine anti-
gen-presenting cells (Willems et al. 1994), which
may lead to T cell anergy and in some cases
apoptosis (Dubois et al. 1994). Anergic T cells do
not proliferate or produce IL-2, but retain the abil-
ity to produce other cytokines such as IFN-g
(Jenkins et al. 1990). IL-10 has been associated
with the induction of parasite antigen-specific T
cell anergy in asymptomatic microfilaremic filari-
asis patients (King et al. 1993), schistosomiasis
(King et al. 1996), leishmaniasis (Ghalib et al.
1993) and toxoplasmosis (Candolfi et al. 1995).
Suppressed costimulatory signalling has also been
proposed as the cause of anergy of TH1 cells that
leads to apoptosis during HIV infection (Clerici et
al. 1994) and leprosy (Sieling et al. 1993).

A number of observations are consistent with
the loss of antigen-specific proliferation and IL-2
production in the lymph node of trypanosome-in-
fected cattle arising from IL-10-mediated T cell
anergy. First, the antigen-specific hypo-responsive-
ness of lymph node cells is preceded by a period
of responsiveness, at which time IL-10 mRNA tran-
scripts are normal (Taylor et al. 1996a, 1998). Sec-
ond, that T cell suppression in the lymph nodes of
infected cattle is related to suppression of macroph-
age accessory cell function is consistent with the
finding that “macrophage-like” cells are respon-
sible for depressed mitogen-triggered proliferation
of lymph node cells (Flynn & Sileghem 1991).
Third, recombinant human IL-10 suppresses pro-
liferation of antigen-specific bovine T cell clones
and down-regulates expression of IL-2R and IFN-
g mRNA (Chitko-McKown et al. 1995).  Interest-
ingly, BALB/c mice, which are highly trypano-
susceptible, produce significantly more IL-10 when
infected with T. congolense than relatively
trypanoresistant C57Bl/6 mice.  Addition of anti-
IL-10 antibodies in cultures of mitogen-stimulated
spleen cells from infected mice completely restored
proliferation (Uzonna et al. 1998). In this study,
BALB/c mice treated with anti-IL-10 antibodies
and infected with T. congolense exhibited slightly
longer survival times than untreated mice. Efforts
are currently underway to test the role of IL-10 in
mitogen and antigen-specific T cell responses dur-
ing trypanosomosis in cattle directly.

There is conflicting evidence regarding the in-
tegrity of macrophage costimulatory functions
during murine trypanosomosis. IL-1 secretion and
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antigen-presentation function are depressed in T.
b. rhodesiense-infected mice (Paulnock et al. 1988)
and in both resistant and susceptible strains of T.
congolense-infected mice (Mitchell et al. 1986).
Similarly, Ia+ macrophages are depleted during
murine T. b. rhodesiense infection (Bagasra et al.
1981). No increase in IL-1 mRNA transcription
was observed in the PBMC of T. congolense-in-
fected trypanotolerant or trypanosusceptible cattle
(Mertens et al. 1999), again suggesting that
costimulatory functions are not elevated. It should
be noted, however, that increased IL-1 production
was observed in T. brucei-infected mice (Sileghem
et al. 1989a).

Analysis of cytokine mRNA expression con-
firms that neither TH1 cytokines nor inflammatory
monokines are increased during T. congolense in-
fection of either trypanosusceptible or try-
panotolerant cattle (Mertens et al. 1999). However,
transcription of the TH2 type cytokine IL-4 was
increased in trypanotolerant cattle, but not
trypanosusceptible cattle, one month post-infection
(Mertens et al. 1999). As IL-4 is an important regu-
latory molecule for isotype switching from IgM to
IgG1 (Estes 1996), perhaps it is not coincidental
that trypanotolerant cattle produce more IgG1 to a
number of trypanosome antigens than do
trypanosusceptible cattle (Taylor et al. 1996b).

CONCLUSIONS

A crucial question is whether depressed mac-
rophage and T cell responses tip the balance of
infection in favour of the host or the parasite dur-
ing bovine trypanosomosis. Down-regulation of
monokines and other TH1 type cytokines by IL-10
has been shown to protect against immunopathol-
ogy in mice infected with a variety of parasites
(Flores-Villanuveva et al. 1996, Gazzinelli et al.
1996) but can also lead to ineffective parasite kill-
ing (Heinzel et al. 1991, Silva et al. 1992, Gazzinelli
et al. 1992). In this context, it is important to
recognise the distinction between trypanotolerant
and trypanosusceptible cattle. Trypanotolerant
breeds of cattle are not refractory to infection. In
fact, they are just as “susceptible” to primary in-
fection as so-called trypanosusceptible breeds.
There is little or no difference in parasitaemia be-
tween trypanotolerant and trypanosusceptible cattle
during the early stages of infection. Despite this,
trypanotolerant cattle maintain higher packed-cell
volumes throughout infection and eventually con-
trol parasite numbers during the chronic stages of
infection (Paling et al. 1991a, b). That antigen-spe-
cific and mitogen-driven T cell responses appear
to be equally depressed in both trypanotolerant and
trypanosusceptible breeds of cattle, suggests that
these responses are not required to control disease.

However, loss of these responses may be neces-
sary for the successful establishment of parasites,
as well as their continued presence, in both the
acutely- and chronically-infected animal. In con-
trast, specific antibody responses and an
upregulation of IL-4 in trypanotolerant cattle may
be involved in these animals ability to control dis-
ease, despite the presence of parasites.

Our laboratory is currently devoted to under-
standing the role of IL-4 and isotype switching in
trypanotolerance. In addition, efforts to determine
the contribution of depressed TH1 and macrophage
effector functions to the establishment and mainte-
nance of infection continue. Development of im-
proved strategies for the control of trypanosomosis
will depend heavily on an understanding of the bal-
ance between protective and pathogenic immune
responses in the face of infection.
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