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Immune Response of Cattle Infected with African
Trypanosomes
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Trypanosomosis is the most economically important disease constraint to livestock productivity in
sub-Saharan Africa and has significant negative impact in other parts of the world. Livestock are an
integral component of farming systems and thus contribute significantly to food and economic security
in developing countries. Current methods of control for trypanosomosis are inadequate to prevent the
enormous socioeconomic losses resulting from this disease. A vaccine has been viewed as the mo
desirable control option. However, the complexity of the parasite’s antigenic repertoire made develop-
ment of a vaccine based on the variable surface glycoprotein coat unlikely. As a result, research is now
focused on identifying invariant trypanosome components as potential targets for interrupting infection
or infection-mediated disease. Immunosuppression appears to be a nearly universal feature of infection
with African trypanosomes and thus may represent an essential element of the host-parasite relation-
ship, possibly by reducing the host’s ability to mount a protective immune response. Antibody, T cell and
macrophage/monocyte responses of infected cattle are depressed in both trypanosusceptible anc
trypanotolerant breeds of cattle. This review describes the specific T cell and monocyte/macrophage
functions that are altered in trypanosome-infected cattle and compares these disorders with those that
have been described in the murine model of trypanosomosis. The identification of parasite factors that
induce immunosuppression and the mechanisms that mediate depressed immune responses might st
gest novel disease intervention strategies.
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African trypanosomes are intravascular, extration of the mechanisms involved in either parasite
cellular parasites of livestock, humans and wild anier disease control.
mals. Within the mammalian host, their cell mem- Immunodepression is a well-documented fea-
brane is covered by a variant surface glycoproteinre of trypanosomosis in cattle, humans and mice
(VSG) coat; termed variable because each parasitdansfield 1989, De Baetselier 1996, Taylor 1998).
has an estimated 1000 VSG genes (Van der Ploedldtere is evidence that infection-related im-
al. 1982), each encoding an antigenically distinahunodepression compromises the ability of ani-
surface coat. Cattle immunized with irradiated trymals to control trypanosomosis (Sternberg et al.
panosomes or purified VSG are protected againstl®94), as well as secondary infections (Scott et al.
homologous (trypanosomes expressing the sam@77, Rurangirwa et al. 1978). Therefore identifi-
antigenic repertoire), but not a heterologous, chatation of host factors that induce immunodepres-
lenge (Wellde et al. 1975, Morrison et al. 1982)sion and the immune mechanisms involved might
Thus, the potential of African trypanosomes to exprovide a rational approach for vaccine design
press different VSG coats reduces the likelihood &imed at improved disease control and thus in-
an effective VSG-based vaccine. As a result, vacreased livestock productivity.
cine design strategies are now focused on invariant The majority of research on African try-
trypanosome molecules that mediate pathogenegianosomosis has focused on murine infections with
(Authié 1994). It is clear that antigen selection and@rypanosoma brucesubsp. as models of human
vaccine design will require knowledge of the im-disease. In contrast, research on trypanosomosis
mune responses provoked by infection and defingf livestock has centred mainly on infections of
cattle withT. congolenseBesides the obvious fact
that murine and bovine hosts are immunologically
distinct, it is important to remember that
N . ) _congolensandT. bruceisubsp. are also biologi-
kctg;lrgfg)zg?ggrgumor' Fax: 254-2-631499. E-mallco v/ istinct. The most important difference may
Received 12 November 1998 be thatT. . colngolelnses a}strlctly mtravascular para-
Accepted 19 January 1999 site, while infection withT. bruceisubsp. has ex-
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travascular foci, particularly within the central ner{Darji et al. 1996), as well as in IF¢eceptor null
vous system. The sum effect of these differencesutant mice (Mabbott et al. 1998). Moreover, mice
limits the value of comparisons between the twéreated with a substrate analog inhibitor of nitric
experimental models. Nonetheless, research axide controlled parasitaemia and anaemia better
trypanosomosis of livestock has often followed irthan untreated mice did (Sternberg et al. 1994,
the path of that on human trypanosomosis and thiabbott & Sternberg 1995). This suggests that the

comparisons can not be avoided. animals were capable of a more effective response
T CELL AND MONOCYTE/MACROPHAGE RE- if nitric oxide-mediated suppression was reversed.
SPONSES However, depressed T cell responses in the spleens

of chronically infected mice are not sensitive to

T cell proliferative responses are depressegyqr nitric oxide inhibitors or anti-IFig{Beschin
during infection in both murine and bovine hostsg; 41 1998 Mabbott et al. 1998). In addition, al-

In mice, T cell proliferation to mitogens and paray,,,ghT. b. rhodesiensinfected IFNg receptor
site antigens is either blocked or reduced. Reduc ock out mice controlled anaemia better over the

proliferative responses are associated with dgg; ten days of infection, these same mice experi-
creased interleukin-2 (IL-2) production and IL-2 Y ' P

4 o - “enced more severe anaemia than wild type mice
receptor (IL-2R) expression in infected mic yp

. ater in infection (Mabbott et al. 1998).
(Sileghem et al. 1986, 1987); nevertheless, cells g ies h hat BNERd
retain the ability to secrete IFditSileghem et al. | ecent studies have suggested that

. FN-gplay opposing roles in regulation of parasite
1987, Bakhiet et al. 1990, Olsson et al. 1991y, T pryceirelease factors that induce mu-
Schieifer et al. 1993). The mechanisms controfne cpg T cells to secrete IFgiwhich was shown
ling T cell suppression in trypanosome-infected, e 4 parasite growth factor (Olsson et al. 1991).
m|cer?re not only ﬂte-hspeqﬂc,r?ut alsofd[ffcfar dursimilarly, T. bruceiinduces production of TNE;

ing the acute and chronic phases of infectiofynich in' contrast to IFNg has trypanolytic activ-
(Beschin et al. 1998, Mabbott et al. 1998). In thﬁy (Mégez et al. 1993[\%997)_ )|/—|powev{:r, it is not

lymph node, prostaglandins and nitric oxide S&jetynown how these cytokines interacwivoto
creted by activated macrophages inhibit IL-2 proj,ence parasite numbers. The challenge now is

duction (Sileghem et al. 1989b) and proliferation, ,nqerstand the contribution of these two
(Beschin et al. 1998), respectively, during the acutg 1okines to direct control of parasite numbers
phase of infection in murine hosts. Decreased | balanced with their influence on downstream im-
2R expression is prostaglandin-independent and nological responses.

reversed by anti-IFNgrantibodies (Darji etal. 1993, = summary, macrophages of trypanosome-in-

1996), as is decreased proliferation (Beschin et g : : ive f
1998). In addition, the administration of anti-TNF- %Céﬁda;n L(:rgs?;%?;:c?ir:;n rpﬂt::;gsglxri)géesasrll\ée_ma\lf:t_()rs

a antibodies to infected mice partially restores T, jng the early acute phase of infection these fac-
cell proliferative responses in the lymph node (Darjf

. - ; “Yors are involved in reduced T cell responses in the
etal. 1992). During the chronic stages of infectiony)jaen and, to a lesser extent, the Iympph node of

%rucei subsp.-infected mice. In addition, produc-
tion of IFN-gby T cells appears to be a common
%ature in murine trypanosomosis. However, the
. o factors that mediate suppressed T cell prolifera-
Both TNFa and IFNg are involved in in- yjye responses in chronically infected mice are not

creased secretion of macrophage-derived nitrig ,nderstood. More importantly, it is not clear
oxide and prostaglandins in the peritoneal cavit

; neal Cavitjow th | ith i
and spleen of. brucei andT. b. rhodesiensi- ip?m}ngzztﬁoﬁgggses relate to either protection or
fected mice. These products in turn mediate T cell -, | g liferati IL-2
suppression (Sternberg & Mc Guigan 1992 n cattle, mitogen-induced proliferation,

i ; production and IL-2R expression by cells derived
Schleifer & Mansfield 1993), but apparently onlyg.,n, the lymph node draining the site of infection

during the very early days of infection (Beschin €L e transientlv depressed (Flvnn & Sileahem 1991
al. 1998, Mabbott et al. 1998). The addition of niy e et 4, 13)/96,pTay|or e(t a 1996a).gWhiIe try-
tric oxide- and prostaglandin-inhibitors to cellsy,nosome-specific proliferative responses can be
derived from the spleen and peritoneal cavity.of detected in the draining lymph node during the

; o . . S0ME&econd week of infection, they are not associated
antigen-specific and mitogen-triggered proliferay, i, significant IL-2 production and are nearly

tion (Schieifer & Mansfield 1993). Similarly, ni- jhqent"hy one month post-infection (Lutje et al.
tric oxide production was suppressed and prohfilg% 1996, Taylor et al. 1996a).

eration was restored in cultures treated with anti- ; ;
; - Efforts to characterise the regulation of Ii|gN-
IFN-g (Beschin et al. 1998) or anti-TNEMAD i, T congolensénfected cattle have been incon-

ness in the lymph node; although I involved,
so are other factors that have not yet been identifi
(Beschin et al. 1998).
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clusive. While mitogen-induced IFbisecretion by monokines are not activated during bovine
lymph node cells was shown to increase in infectetdypanosomosis and that IL-10 may be involved in
cattle (Sileghem & Flynn 1992, Lutje et al. 1996)this lack of response. Indeed, recent experiments
in another study, no significant change was detectédve demonstrated that anti-IL-10 antibodies par-
(Taylor et al. 1996a). In addition, no increase itially restored IFNrinduced nitric oxide produc-
IFN-g mRNA is observed in lymph node or pe-tion by monocytes derived frof congolensén-
ripheral blood mononuclear cells (PBMCs) of in-fected cattle (unpublished data).
fected cattle (Taylor et al. 1996a, 1998). Nonethe- IL-10 also acts to downregulate expression of
less, expression of IFFMRNA was higher in the the B7 costimulatory molecules on murine anti-
spleen of two infected calves compared with theigen-presenting cells (Willems et al. 1994), which
uninfected identical twin (Taylor et al. 1996a).may lead to T cell anergy and in some cases
These differences suggest that bovine trypapoptosis (Dubois et al. 1994). Anergic T cells do
nosomosis produces highly compartmentalized inmot proliferate or produce IL-2, but retain the abil-
mune responses, similar to those seen in mice (ty to produce other cytokines such as IGN-
Baetselier 1996, Beschin et al. 1998). (Jenkins et al. 1990). IL-10 has been associated
Unlike those of the mouse, bovine monocyte andith the induction of parasite antigen-specific T
macrophage effector functions do not appear to kel anergy in asymptomatic microfilaremic filari-
activated during trypanosomodisx vivosecretion asis patients (King et al. 1993), schistosomiasis
of TNF-a from monocytes of. congolensénfected (King et al. 1996), leishmaniasis (Ghalib et al.
cattle is not increased, however, a small but transi993) and toxoplasmosis (Candolfi et al. 1995).
tory increase is observedTnvivaxinfected cattle Suppressed costimulatory signalling has also been
(Sileghem et al. 1994). In keeping with this obserproposed as the cause of anergy gt Tells that
vation, TNFa mRNA expression did not increaseleads to apoptosis during HIV infection (Clerici et
in the PBMC ofT. congolensénfected cattle (Tay- al. 1994) and leprosy (Sieling et al. 1993).
lor et al. 1998, Mertens et al. 1999). Moreover, ni- A number of observations are consistent with
tric oxide production is not elevated during infecthe loss of antigen-specific proliferation and IL-2
tion of cattle and neither nitric oxide nor prostagproduction in the lymph node of trypanosome-in-
landins are responsible for reduced T cell prolifergected cattle arising from IL-10-mediated T cell
tion of lymph node cells (Sileghem & Flynn 1992 anergy. First, the antigen-specific hypo-responsive-
Taylor et al. 1996a). ness of lymph node cells is preceded by a period
More recent research suggests that IL-10, a maef responsiveness, at which time IL-10 mRNA tran-
rophage de-activating cytokine, might be related tecripts are normal (Taylor et al. 1996a, 1998). Sec-
the apparent failure of monocytes and macrophagesd, that T cell suppression in the lymph nodes of
of trypanosome-infected cattle to produce inflaminfected cattle is related to suppression of macroph-
matory products. IL-10 mRNA transcripts are elage accessory cell function is consistent with the
evated in the peripheral blood, lymph node anfinding that “macrophage-like” cells are respon-
splenic leukocytes of. congolensénfected cattle sible for depressed mitogen-triggered proliferation
(Taylor et al. 1996a, 1998). A pleuripotent cytokinepf lymph node cells (Flynn & Sileghem 1991).
IL-10 is associated with,J2 type responses and canThird, recombinant human IL-10 suppresses pro-
suppress macrophage effector and costimulatoliferation of antigen-specific bovine T cell clones
functions (Moore et al. 1993). and down-regulates expression of IL-2R and IFN-
IL-10 is known to suppresses the activation of mRNA (Chitko-McKown et al. 1995). Interest-
inducible nitric oxide synthase, ILallL-6, TNF- ingly, BALB/c mice, which are highly trypano-
a and, possibly, IL-12, at the level of transcriptiorsusceptible, produce significantly more IL-10 when
in murine macrophages (deWaal Malefyt et alinfected withT. congolenseahan relatively
1991, Fiorentino et al. 1991, Kennedy et al. 1994}rypanoresistant C57BI/6 mice. Addition of anti-
Coincident with the observed increase in IL-10L-10 antibodies in cultures of mitogen-stimulated
MRNA expression in PBMC, lymph node andspleen cells from infected mice completely restored
spleen, monocytes of trypanosome-infected cattlgroliferation (Uzonna et al. 1998). In this study,
became desensitised to IfRNhduced secretion of BALB/c mice treated with anti-IL-10 antibodies
nitric oxide (Taylor et al. 1996a, 1998). Furtherand infected witil. congolensexhibited slightly
more, recombinant human IL-10 blocks both IFN{onger survival times than untreated mice. Efforts
ginduced nitric oxide and TNE-production by are currently underway to test the role of IL-10 in
monocytes derived from healthy cattle (Taylor emitogen and antigen-specific T cell responses dur-
al. 1998). This, combined with the evidence thaihg trypanosomosis in cattle directly.
TNF-a production (Sileghem et al. 1994, Taylor  There is conflicting evidence regarding the in-
et al. 1998, Mertens et al. 1999) does not increasegrity of macrophage costimulatory functions
during infection, suggests that macrophageduring murine trypanosomosis. IL-1 secretion and
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antigen-presentation function are depressetl in However, loss of these responses may be neces-
b. rhodesiensinfected mice (Paulnock et al. 1988)sary for the successful establishment of parasites,
and in both resistant and susceptible strainb of as well as their continued presence, in both the
congolenséenfected mice (Mitchell et al. 1986). acutely- and chronically-infected animal. In con-
Similarly, l1a” macrophages are depleted durindrast, specific antibody responses and an
murineT. b. rhodesiensimfection (Bagasra et al. upregulation of IL-4 in trypanotolerant cattle may
1981). No increase in IL-1 mRNA transcriptionbe involved in these animals ability to control dis-
was observed in the PBMC @f congolensén-  ease, despite the presence of parasites.
fected trypanotolerant or trypanosusceptible cattle Our laboratory is currently devoted to under-
(Mertens et al. 1999), again suggesting thagtanding the role of IL-4 and isotype switching in
costimulatory functions are not elevated. It shoulttypanotolerance. In addition, efforts to determine
be noted, however, that increased IL-1 productiotie contribution of depresseg, Tand macrophage
was observed ifi. bruceiinfected mice (Sileghem effector functions to the establishment and mainte-
et al. 1989a). nance of infection continue. Development of im-
Analysis of cytokine mRNA expression con-proved strategies for the control of trypanosomosis
firms that neither ;1 cytokines nor inflammatory Will depend heavily on an understanding of the bal-
monokines are increased durifigcongolensén- ~ ance between protective and pathogenic immune
fection of either trypanosusceptible or try-responses in the face of infection.
panotolerant cattle (Mertens et al. 1999). However, REFERENCES

transcription of the J2 type cytokine IL-4 was . .
: . uthié E 1994. Trypanosomiasis and trypanotolerance:
increased in 'grypanotolerant cattle, bUt npf'\ a role for congopainParasitol Today 10360-364.

trypanosusceptible cattle, one month post-lnfectlogagasra 0. Schell RF, Le Frock JL 1981. Evidence for

(Mertens etal. 1999). As IL-4 is animportant regu- “gepletion of 14 macrophages and associated immu-
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ing bovine trypanosomosis. Down-regulation of 429.439
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ing (Heinzel etal. 1991‘ Silva et ‘.""-.19.92' GazzmeIfF WC 1995. Interleukin-10 downregulates prolifera-
et al. 1992). In this context, it is important to

- LD tion and expression of interleukin-2 receptor p55
recognise the distinction between trypanotolerant chain and interferom; but not interleukin-2 or

and trypanosusceptible cattle. Trypanotolerant interleukin-4, by parasite-specific helper T cell
breeds of cattle are not refractory to infection. In  clones obtained from cattle chronically infected with
fact, they are just as “susceptible” to primary in- Babesia bovisr Fasciola hepaticaJ Interferon
fection as so-called trypanosusceptible breeds, Cytokine Re45:915-922. _
There is little or no difference in parasitaemia beg'er(':‘i;vMS-mrK‘ Eﬁﬁiﬁﬁ"éﬁ%ﬂﬁgﬂfg n‘;’?ggingéfe
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