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Expression and Function of βββββ1 Integrins on Human
Eosinophils

Maria-Cristina Seminario, Bruce S Bochner+

Department of Medicine, Division of Clinical Immunology, Johns Hopkins Asthma and Allergy Center, The
Johns Hopkins University, Hopkins Bayview Circle, Baltimore, MD  21224-6801, USA

Eosinophils preferentially accumulate at sites of chronic allergic diseases such as bronchial
asthma.  The mechanisms by which selective eosinophil migration occurs are not fully understood.
However, interactions of cell-surface adhesion molecules on the eosinophil with molecular
counterligands on endothelial and epithelial cells, and on extracellular matrix proteins, are likely to
be critical during the recruitment process.  One possible mechanism for selective eosinophil recruit-
ment involves the α4β1 (VLA-4) integrin which is not expressed on neutrophils.  Correlations have
been found between infiltration of eosinophils and endothelial expression of VCAM-1, the ligand for
VLA-4, in the lungs of asthmatic individuals as well as in late phase reactions in the lungs, nose and
skin.  Epithelial and endothelial cells respond to the Th2-type cytokines IL-4 and IL-13 with selective
de novo expression of VCAM-1, consistent with the possible role of VCAM-1/VLA-4 interactions in
eosinophil influx during allergic inflammation.  Both β1 and β2 integrins on eosinophils exist in a state
of partial activation.  For example, eosinophils can be maximally activated for adhesion to VCAM-1 or
fibronectin after exposure to β1 integrin-activating antibodies or divalent cations, conditions that do
not necessarily affect the total cell surface expression of β1 integrins.  In contrast, cytokines like IL-5
prevent β1 integrin activation while promoting β2 integrin function.  Furthermore, ligation of integrins
can regulate the effector functions of the cell.  For example, eosinophil adhesion via β1 and/or β2
integrins has been shown to alter a variety of functional responses including degranulation and
apoptosis.  Thus, integrins appear to be important in mediating eosinophil migration and activation in
allergic inflammation.  Strategies that interfere with these processes may prove to be useful for treat-
ment of allergic diseases.
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Eosinophil accumulation is a distinctive feature
of allergic airways inflammation (Bochner et al.
1994).  Evidence for a role of eosinophils in the
airway inflammation in asthma comes from a vari-
ety of studies.  The presence of increased numbers
of these cells has been demonstrated in bronchial
biopsies, bronchoalveolar lavage (BAL) fluid and

peripheral blood of patients with asthma.  Further-
more, these cells appear to be in an activated state
or in the process of degranulation and the levels of
their granule proteins have been extensively corre-
lated with clinical symptoms of asthma.

Recent studies on the role of eosinophils have
focused on the mechanisms by which these cells
infiltrate the airways (Resnick & Weller 1993,
Bochner & Schleimer 1994).  Although the exact
mechanisms by which selective eosinophil recruit-
ment occurs remain incompletely defined, leuko-
cyte recruitment is known to result from the inter-
action of cell-surface adhesion molecules (e.g.,
selectins, integrins, and immunoglobulin superfam-
ily members) with molecular counterligands on vas-
cular endothelial cells, extracellular matrix (ECM)
proteins, epithelial cells and other tissue structures
(Carlos & Harlan 1994, Bochner & Schleimer 1997).
While other factors determine the phenotype of
infiltrating cells, such as cytokines and chemokines
(Springer 1995), this chapter will focus on the role
of β1 integrins in eosinophil trafficking and func-
tion.
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EXPRESSION OF INTEGRINS ON EOSINOPHILS

Integrins are plasma membrane receptors com-
posed of α and β heterodimeric transmembrane
subunits generated from at least 16 α and 8 β sub-
units to produce over 20 different receptors
(Bochner & Schleimer 1997).  Both chains are re-
quired for normal receptor expression and for ligand
binding.  Members of the integrin family mediate
cell-to-cell and cell-to-extracellular matrix interac-
tions.

Table summarizes the expression of integrins
on eosinophils.  The predominant integrins on all
leukocytes are in the β2 (CD18) subfamily (Bochner
& Schleimer 1997).  Granulocytes including eosi-
nophils express the β2 integrins LFA-1, Mac-1,
p150,95 and αdβ2 (Grayson et al. 1997).  LFA-1 binds
specifically to intercellular adhesion molecule-1
(ICAM-1), ICAM-2 and ICAM-3, Mac-1 binds to
ICAM-1 and the iC3b product of activated comple-
ment, αdβ2 recognizes ICAM-3, while cellular
ligands for p150,95 are as yet unknown.  Because
all granulocytes express β2 integrins, there appears
to be no immediate explanation for how they might
contribute to selective eosinophil recruitment.
However, there are conditions under which eosi-
nophil β2 integrins, especially Mac-1, may be se-
lectively altered by stimuli such as cytokines [e.g.,
IL-5 (Walsh et al. 1990)] and chemokines (e.g.,
eotaxin) (Burke Gaffney & Hellewell 1996).

When other integrins are examined, more obvi-
ous differences in expression among granulocytes
are observed (Georas et al. 1993, Ebisawa et al. 1995).
Unlike neutrophils, eosinophils express the α4
integrins VLA-4 (α4β1) and α4β7 which mediate
binding to VCAM-1, an immunoglobulin superfam-

ily member induced by cytokines on endothelium
and epithelial cell lines (Atsuta et al. 1997, Bochner
& Schleimer 1997), and to an alternatively spliced
domain in fibronectin, CS-1 (Anwar et al. 1994,
Matsumoto et al. 1997).  The α4β7 integrin binds to
the mucosal addressin cell adhesion molecule-1
(MAdCAM-1) that has structural homology to
ICAM-1 and VCAM-1 (Walsh et al. 1996, Briskin
1997).  Eosinophils also express α6β1 (VLA-6), a
ligand for the extracellular matrix protein laminin
(Georas et al. 1993, Tourkin et al. 1993).  Basophils
resemble eosinophils in that they too express α4β1
and α4β7, but instead of α6β1, they express α5β1,
another ligand for fibronectin (Saini et al. 1997).

EOSINOPHIL-ENDOTHELIAL INTERACTIONS
THROUGH βββββ1 INTEGRINS

One mechanism of selective eosinophil recruit-
ment involves the β1 integrin α4β1 (VLA-4), which
is expressed on human eosinophils but not on neu-
trophils.  This may be important for allergic inflam-
matory responses since it is a receptor for VCAM-
1, and correlations have been found between infil-
tration of eosinophils and expression of VCAM-1
in the lungs of patients with asthma as well as in
late phase reactions in the lungs, nose or skin
(Kyan-Aung et al. 1991, Bentley et al. 1993,  Lee et
al. 1994,  Gosset et al. 1994, Ohkawara et al. 1995,
Fukuda et al. 1996).  Expression of VCAM-1 also
correlated with eosinophil numbers in nasal polyp
tissues (Jahnsen et al. 1995, Beck et al. 1996).

Resting endothelial cells do not express VCAM-
1.  However, exposure of endothelial cells to IL-1,
TNF, or bacterial endotoxin induces expression of
endothelial adhesion molecules, including ICAM-
1, E-selectin and VCAM-1.  Specific antibodies to
ICAM-1 and E-selectin have been shown to inhibit
adherence of eosinophils to IL-1 stimulated endot-
helial monolayers by about 20-30% (Bochner et al.
1991).  In contrast, VCAM-1 antibodies are extremely
effective at inhibiting eosinophil but not neutro-
phil adherence (Bochner et al. 1991).  Furthermore,
anti-VLA-4 antibodies inhibit eosinophil, but not
neutrophil, adhesion to IL-1 stimulated endothe-
lium (Dobrina et al. 1991, Walsh et al. 1991).  These
results indicate that specific induction of VCAM-1
on endothelial cells could selectively promote eosi-
nophil adherence.

Eosinophils are predominant at inflammatory
sites where Th2-type cytokines, such as IL-4 and
IL-13, are prevalent (Hamilos et al. 1996, Rankin et
al. 1996).  In vitro, both of these cytokines selec-
tively lead to the induction of VCAM-1 expression
without any significant effect on the expression of
E-selectin or ICAM-1 on endothelial cells (Schleimer
et al. 1992, Kaiser et al. 1993, Bochner et al. 1995).
Furthermore, incubation of endothelial cells with

TABLE

Expression of integrins on human eosinophilsa

Integrin CD designation Expression

α1β1 49a/29 No
α2β1 49b/29 No
α3β1 49c/29 No
α4β1 49d/29 Yes
α5β1 49e/29 No
α6β1 49f/29 Yes
αLβ2 11a/18 Yes
αMβ2 11b/18 Yes
αXβ2 11c/18 Yes
αdβ2 αd/18 Yes
β3    61 No
β4   104 No
β5 none Unknown
β6 none Unknown
α4β7 49d/103 Yes

a: based on data from (Georas et al. 1993, Ebisawa et al.
1995, Grayson et al. 1997).
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IL-4 or IL-13 has no effect on neutrophil adhesion
but induces eosinophil adhesion in a dose-depen-
dent manner (Schleimer et al. 1992, Bochner et al.
1995).  These cytokines can be synergistic and se-
lective in their ability to induce VCAM-1 on endot-
helial cells.  The combination of IL-4 with either IL-
1 or TNF results in at least 5-fold higher levels of
VCAM-1 surface expression than either cytokine
alone, with no induction of ICAM-1 or E-selectin
(Iademarco et al. 1995, Ebisawa et al. 1997).

Further support for the potential importance of
β1 integrins and their ligands is provided by in
vivo studies where the function of these adhesion
molecules, or the cytokines that induce their ex-
pression, has been blocked.  Efforts to antagonize
VLA-4, VCAM-1, and IL-4 have all been shown to
reduce eosinophil recruitment and allergic airways
or cutaneous inflammation in a variety of animal
models (Gonzalo et al. 1996, Richards et al. 1996,
Lobb 1997, Fryer et al. 1997).

EOSINOPHIL-EXTRACELLULAR MATRIX (ECM) IN-
TERACTIONS  THROUGH βββββ1 INTEGRINS

After migration through the endothelium, eosi-
nophils come into contact with the proteins of the
basement membrane and ECM.  The ECM is a com-
plex web of large fibrillar proteins that underlies the
endothelium and epithelium and surrounds con-
nective tissue cells.  Cellular interactions with ECM
proteins can have profound consequences on leu-
kocyte function (Hunt et al. 1997).  Eosinophils in-
teract with two ECM proteins, fibronectin and
laminin, through two β1 integrins, namely VLA-4
and VLA-6 (α6β1), respectively.

Fibronectin -  Fibronectin is encoded by a
single gene, but alternative splicing of the primary
RNA transcript gives rise to polypeptide diversity
that appears to be regulated in a cell type-specific
fashion (Walsh & Wardlaw 1997).  The IIICS region
of fibronectin contains a 25 amino acid site, named
CS-1, that contains a sequence (LDV) recognized
by VLA-4.  Plasma fibronectin lacks the IIICS bind-
ing site in at least half of its subunits, whereas tis-
sue fibronectin has it in both subunits.  Despite
expression of α4 integrins on eosinophils, whether
they spontaneously attach to fibronectin remains
controversial.  Some studies have shown that rest-
ing eosinophils adhere to fibronectin in a VLA-4-
dependent manner and exhibit prolonged survival
via autocrine production of cytokines such as GM-
CSF (Anwar et al. 1994, Neeley et al. 1994, Walsh et
al. 1995).  Other studies, however, have found little
or no adhesion without prior activation with plate-
let-activating factor, Mn++ or a β1 integrin-activat-
ing antibody (Kuijpers et al. 1993, Kita et al. 1996,
Matsumoto et al. 1997).  A possible explanation for

these discrepancies may arise from the fact that
eosinophils express the β2 integrin Mac-1, and en-
gagement through this receptor to a different site
on fibronectin, or to the blocking protein (typically
albumin), may be occurring.

Eosinophils also express α4β7, another ligand
for fibronectin (Erle et al. 1994, Walsh et al. 1996).
Levels of α4β7 on eosinophils are comparable to
those for α4β1.  In addition to functioning as a
fibronectin ligand, it can also be a ligand for
MAdCAM-1 and VCAM-1 (Erle et al. 1994, Walsh
et al. 1996).  However, α4β7 on eosinophils appears
to be relatively inactive, because activation with
Mn++ is required to demonstrate consistent adhe-
sion (unpublished observations).

Laminin -  Laminin consists of 3 distinct chains
coded for by different but related genes.  The
mechanism by which laminin interacts with cells is
complex (Walsh & Wardlaw 1997).  It is recognised
by different integrin receptors including α1β1,
α2β1, α3β1, α6β1 and αvβ3, of which only α6β1
appears to be specific for laminin.  Eosinophils can
adhere to plate-bound laminin; this interaction re-
quires divalent cations and is completely abolished
by anti-α6 or anti-β1 antibodies.  Indeed, eosino-
phils were shown by flow cytometry and immuno-
precipitation to express α6β1 (Georas et al. 1993).
As has been shown for fibronectin, eosinophils
cultured on laminin exhibit prolonged survival
(Tourkin et al. 1993).

EOSINOPHIL-EPITHELIAL INTERACTIONS
THROUGH βββββ1 INTEGRINS

Airway epithelium may also be an active par-
ticipant in allergic inflammation.  Epithelial cells are
biologically active, express adhesion receptor pro-
teins, and produce cytokines and chemokines
(Polito & Proud 1997).  Until recently, only ICAM-
1, but not E-selectin or VCAM-1, had been identi-
fied in the respiratory epithelium in vitro and in in
vivo biopsies from patients with asthma (Bloemen
et al. 1993, Fukuda et al. 1996, Stark et al. 1996).
However, in the BEAS-2B bronchial epithelial cell
line, culture with TNF or IL-1 was found to induce
VCAM-1 mRNA and cell surface expression (as well
as ICAM-1 expression), while culture with IL-4 in-
duced VCAM-1 but not ICAM-1 expression
(Atsuta et al. 1997).  Maximal VCAM-1 expression
resulted from the combination of TNF and IL-4.
Furthermore, TNF treatment increased adhesion of
eosinophils to BEAS-2B monolayers and this ad-
hesion was blocked with VCAM-1 antibodies.
These findings suggest that cytokine activation
can induce expression of VCAM-1 on airway epi-
thelium which can functionally interact with eosi-
nophils through VLA-4.
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ALTERATIONS IN FUNCTION VERSUS EXPRESSION
OF βββββ1 INTEGRINS ON EOSINOPHILS

Levels of α4β1 and α6β1 on eosinophils are
not altered after migration in vitro or in vivo or
after cytokine activation, nor do levels differ among
hypodense versus normodense eosinophils or cells
from allergic versus nonallergic donors (Georas et
al. 1992, 1993,  Hansel & Walker 1992,   Kroegel et
al. 1994).  However, in addition to the amount of
expression of cell surface adhesion molecules, the
functional state of integrins can be regulated, lead-
ing to changes in the affinity for counterligand bind-
ing without changing the level of cell surface ex-
pression (Diamond & Springer 1994).  Recent stud-
ies have shown that the activation state of integrins
can influence cell adhesion and function.  The avid-
ity of integrins, not just the total number of mol-
ecules expressed, influences cell adhesion and mi-
gration (Hunt et al. 1997).  While a particular integrin
may have more than one ligand, the avidity for each
ligand may differ.  It has recently been demonstrated
that α4β1 integrins on eosinophils exist in a state
of partial activation, and can be maximally activated
for adhesion to ligands such as fibronectin and
VCAM-1 after exposure to manganese or integrin-
activating antibodies, conditions that do not affect
the total cell surface expression of β1 integrins
(Werfel et al. 1996, Matsumoto et al. 1997).  Mainte-
nance of basal levels of β1 integrin function on
eosinophils appears to require tyrosine kinase ac-
tivity, because reversible downregulation of VCAM-
1 adhesion is seen in cells exposed to genistein or
tyrphostins (Nagata et al. 1995, Matsumoto et al.
1997).

SIGNALING VIA βββββ1 INTEGRINS ON EOSINOPHILS

Outside-in signaling -  Adhesion molecules are
not only involved in adhesive interactions but also
in transducing signals from the extracellular to the
intracellular compartments and regulating effector
functions of the cell (Ginsberg et al. 1992, Clark &
Brugge 1995).  For eosinophils, ligation of integrins
has been shown to alter a variety of functional re-
sponses (Dri et al. 1991, Anwar et al. 1993,  Tourkin
et al. 1993, Neeley et al. 1994, Nagata et al. 1995,
Kita et al. 1996).  Signaling mechanisms via integrins
are still poorly understood.  The intracytoplasmic
domains of integrins lack kinase or phosphatase
activity of their own; they also lack sequence ho-
mology with known signaling proteins (Hemler et
al. 1994).  However, recent reports have shown that
integrin engagement, either with ligand or with an-
tibodies, is capable of transducing signals
(Miyamoto et al. 1995) and induces the phospho-
rylation of the tyrosine kinase pp125FAK (FAK)
(Schaller & Parsons 1994).

Outside-in signaling is initiated by the β sub-
unit cytoplasmic-domain dependent rearrangement
of cytoskeletal components and actin into focal
adhesion complexes (FAC), found at areas of cell-
ECM interaction (Clark & Brugge 1995).  Formation
of FAC’s in adherent cells is thought to be associ-
ated with cell spreading.  A predominant FAC’s
component, FAK, has been shown to physically
interact with the cytoplasmic domain of β integrins,
which in turn is thought to recruit several signaling
molecules to FAC’s (Schaller & Parsons 1994).  It is
not clear whether the cytoskeletal and signaling
components found in FAC’s associate with
integrins in leukocytes.  Besides FAK, β1 integrin
interacts directly or indirectly with cytoskeletal pro-
teins (McArthur Lewis & Schwartz 1995, Yamada
& Miyamoto 1995, Wahl et al. 1996).

In addition to FAK, integrin receptor occupancy
leads to the activation of the Src family of tyrosine
kinases (Shattil et al. 1994) and the Ras/MAP ki-
nase pathway (Schaller & Parsons 1994).  Recently
a novel serine/threonine kinase has been reported
to associate with the β1 integrin cytoplasmic do-
main (Hannigan et al. 1996).  The 59 kD protein,
known as integrin-linked kinase (ILK), was found
to phosphorylate a peptide representing the β1
integrin cytoplasmic domain and to co-localize with
β1 in focal plaques.

Outside-in signaling is also regulated by the α
subunit cytoplasmic tails.  Those of α2 and α5 lo-
calize predominantly to FAC’s and show increased
spreading on ECM.  In contrast, the expression of
the α4 cytoplasmic tail correlates with chemo and
haptotactic migration, suggesting that α4 is respon-
sible for weaker integrin-cytoskeletal interactions
(Kassner et al. 1995).  This is a potential mechanism
by which α4β1, highly expressed in eosinophils,
could increase cell motility.

Inside-out signaling -  The rapidity of inside-
out signaling insures that leukocytes can quickly
modify their adhesiveness in response to stimuli.
This is achieved by changes in integrin functional
activity rather than integrin expression on the cell
surface.  The signaling pathways involved in in-
side-out signaling are still ill-defined (Hunt et al.
1997).  Recent progress in this field has been mainly
in T cells.  Several activation stimuli have been
shown to upregulate integrin function.  Treatment
of T cells with PMA or the Ca+2 ionophore A23187
has been shown to upregulate integrin-mediated
T- cell adhesion, indicating that both protein ki-
nase C and Ca+2 are involved in the intracellular
signaling events (Shimizu et al. 1990), whereas treat-
ment of Jurkat cells with the serine-threonine phos-
phatase inhibitor okadaic acid depresses fibronectin
adhesion through β1 integrins (Seminario et al.
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1997).  Furthermore, cell-surface receptors, called
integrin regulators,  can induce an inside-out sig-
nal.  These integrin regulators include the TCR com-
plex, CD2, CD28, CD7 (Chan et al. 1991, Shimizu et
al. 1992) and cell surface signaling proteins of the
transmembrane-4 superfamily that include CD9,
CD53, CD63, CD82 and CD81 (Mannion et al. 1996).

Receptors for chemokines have been shown to
be a class of integrin regulators for leukocyte inter-
actions with the endothelium (Springer 1990, del
Pozo et al. 1995).  Chemokine receptors belong to
the seven membrane spanning family of G protein
coupled receptors (Schall & Bacon 1994, Teran &
Davies 1996).  Signaling through chemokine recep-
tors is thought to be very rapid inducing integrin
activity within minutes.   For example, the
chemokines RANTES, MCP-1, MIP-1α and MIP-
1β have been shown to upregulate β1 integrin me-
diated adhesion of T cells (Carr et al. 1996), mono-
cytes (Weber et al. 1996) and eosinophils (Weber
et al. 1996b) to counterreceptors and ECM ligands.

CONCLUSIONS

Eosinophils selectively migrate to sites of
chronic allergic inflammation where they are
thought to be one of the major contributors to the
underlying pathology.  An initial step in the re-
cruitment of leukocytes is their adhesion to endot-
helium, followed by transendothelial migration and
chemotaxis into tissue parenchyma.  Several adhe-
sion molecules have been implicated in eosinophil
adherence, however, VLA-4, which is not present
in neutrophils, provides a potential mechanism by
which specific recruitment occurs.  This chapter
has reviewed the biology of β1 integrins on eosi-
nophils and their potential roles in preferential cel-
lular trafficking.  Although the exact mechanisms
of tissue eosinophilia are yet to be fully defined, it
is clear that β1 integrin-mediated adhesion to tis-
sue structures are important for cellular migration
and is capable of altering cellular function.  Further
elucidation of this process should lead to a better
understanding of mechanisms of allergic inflamma-
tion, and may ultimately lead to the design of better
therapies for allergic diseases.
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