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Signal Transduction and Activation of the NADPH Oxidase
in Eosinophils

Mark A Lindsay+, Mark A Giembycz
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Activation of the eosinophil NADPH oxidase and the subsequent release of toxic oxygen radicals has
been implicated in the mechanism of parasite killing and inflammation.  At present, little is known of the
signal transduction pathway that govern agonist-induced activation of the respiratory burst and is the
subject of this review.  In particular, we focus on the ability of leukotrine B4 to activate the NADPH
oxidase in guinea-pig peritoneal eosinophils which can be obtained in sufficient number and purity for
detailed biochemical experiments to be performed.
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The NADPH oxidase (E.C. 1.23.45.3) cataly-
ses the single electron reduction of molecular O2
to superoxide (O2

- ), a powerful oxidising and re-
ducing agent (Fig. 1) (Babior et al. 1973). In the
presence of superoxide dismutase, O2

- dismutates
to hydrogen peroxide (H2O2) which can be subse-
quently converted into hypobromous acid in the
presence of eosinophil peroxidase (a highly basic
protein stored within specific eosinophil granules)
and bromide (Weiss et al. 1986) (Fig. 1). Alterna-
tively, in the presence of ferrous ions, O2

- and H2O2
interact to form the membrane-perturbing hydroxyl
radical (OH.), one of the most unstable oxidising
species known (Fig. 1). Other pathways of free
radical formation have also been described includ-
ing the reaction of O2

- with nitric oxide to form
peroxynitrite which provides an additional, iron-
independent route of OH. formation together with
nitrogen dioxide radicals (Fig. 1). Hypobromous
acid is able to interact with H2O2 to form singlet
oxygen, the biological significance of which is
currently unclear (Fig. 1). Activation of the
NADPH oxidase and the subsequent production
of toxic oxygen radicals is thought to be important
to the role of  eosinophils during host defence
(Butterworth & Thorne 1993). However, it is now
appreciated that NADPH oxidase activation maybe
cytotoxic to many mammalian cells, particular
those of the gut, skin and lung, a finding that has
implicated eosinophils in the pathogenesis of a
number of non-parasitic inflammatory disorders,
including Crohn’s disease, atopic dermatitis and
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allergic asthma (Butterfield & Leiferman 1993).
Indeed, the activity of the NADPH oxidase is sig-
nificantly higher in eosinophils that in other ph-
agocytes (Yamashita et al. 1985, Petreccia et al.
1987, Sedgwick et al. 1988, Yagisawa et al. 1996).

At present, little is known of the intracellular
mechanisms responsible for NADPH oxidase ac-
tivation in eosinophils. This is in contrast to neu-
trophils, where studies of the mechanism of O2

-

release by the chemotactic peptide, formyl-methyl-
leucyl-phenylalanine (fMLP) have suggested the
participation of phospholipase A2- (PLA2), phos-
pholipase C- (PLC), phospholipase D- (PLD) pro-
tein kinase C- (PKC), phosphatidylinositol 3-
kinnase- (PI-3K) and tyrosine kinase-dependent
pathways (possibly those leading to mitogen acti-
vated protein kinase stimulation) (Bokoch 1995).
This lack of knowledge relates primarily to the dif-
ficulty in obtaining sufficient numbers of cells, par-
ticular human eosinophils. Thus, we and others
have overcome this problem by using guinea-pig
eosinophils as a model system, which can be har-
vested from the peritoneum in sufficient numbers
for detailed biochemical studies.

Human and guinea-pig eosinophils undergo a
rapid and transient activation of the NADPH oxi-
dase to a range of physiological soluble and par-
ticulate stimuli including leukotriene B4 (LTB4)
(Palmbald et al. 1984, Maghni et al. 1991, Rabe et
al. 1992, Subramanian et al. 1992, Perkins et al.
1995), platelet activating factor (PAF) (Shute et
al. 1990, Wymann et al. 1995), fMLP (Palmblad
et al. 1984, Kroegal et al. 1990, Wymann et al.
1995), complement factor 5a (C5a)(Wymann et al.
1995), interleukin-8 (IL-8) (Wymann et al. 1995),
eotaxin (Elsner et al. 1996, Tenscher et al. 1996)
and opsonized particles (Koenderman et al. 1990,
Shute et al. 1990). Furthermore, pre-incubation
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with sub-threshold concentrations of PAF has been
demonstrated to prime the subsequent NADPH
oxidase response to opsonized particles (Tool et
al. 1992) and fMLP (Zoratti et al. 1992). More re-
cent studies have demonstrated a similar priming
in human eosinophils adherent to tissue culture
plates coated with a range of extracellular matrix
proteins (e.g. fibronectin, fibrinogen, collagen,
laminin) and fetal calf serum.  Under these condi-
tions, the cytokines tumor necrosis factor-α (TNF-
α), granulocyte macrophage-colony stimulating
factor (GM-CSF), which are unable to stimulate
the NADPH oxidase in ‘non-adherent’ cells, pro-
duce a slowly developing and sustained genera-
tion of O2

-  (Dri et al. 1991, Horie & Kita 1994).
However, since there are no studies concerning the
biochemical mechanism of NADPH oxidase acti-
vation in adherent eosinophils, this review will
focus predominately upon those studies on ‘non-
adherent’ cells. In particular, we will concentrated
upon recent studies of the mechanism of LTB4-
induced NADPH oxidase activation in guinea-pig
eosinophils (Perkins et al. 1995, Lindsay et al.
1995a, b).

STRUCTURE AND ASSEMBLY OF THE NADPH OXI-
DASE

In neutrophils, an active NADPH oxidase com-
plex assembles at the phagocytic and plasma mem-
branes following activation (Segal & Abo 1993)
(Fig. 2). At least five proteins are required for the
formation of an active oxidase complex: the mem-
brane-bound cytochrome b558 (consisting of two
subunits, gp91phox and p22phox )  and the cytosolic
proteins, p47phox, p67phox and a small GTP-bind-

ing protein, Rac-1 or Rac2 (Casimer & Teahan
1994, Bokoch 1994). Recently, two additional com-
ponents have been identified, these being the cy-
tosolic protein, p40phox, that appears to be associ-
ated with p67phox (Wientjes et al. 1993, Tsunawaki
et al. 1994) and the membrane associated small
GTP-binding protein, Rap1a (Gabig et al. 1995).
Under resting conditions, the cytosolic components
exist as a 240-300 kDa oligomer (Park et al. 1992,
1994). Following activation, translocation of these
components to the membrane-bound cytochrome
b558 and assembly of the active oxidase complex
is thought to be mediated by a mechanism involv-
ing both protein binding through Src homology 3
(SH3) domains and phosphorylation of p47phox

(Rosrosan & Leto, 1990, McPhail 1994, Park &
Ahn, 1995, Demendez et al. 1996).

Fig. 2: structure of the NADPH oxidase. PPP: proline rich re-
gions; SH3: src homology domain 3.

Fig. 1: generation of reactive oxygen species in eosinophils.
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In eosinophils, evidence for a similar if not
identical mechanism of oxidase assembly and ac-
tivation is also available. Thus, the cytosolic com-
ponents, p47phox, p67phox, p40phox and membrane
components, p22phox and gp91phox  have been iden-
tified (Segal et al. 1981, Yagisawa et al. 1996, Zhan
et al. 1996) whilst p47phox and  p67phox have been
shown to reconstitute NADPH oxidase activity in
cell free systems prepared from both neutrophils
and eosinophils fractions (Bolsher et al. 1990).

ROLE OF PHOSPHOLIPASE C, INTRACELLULAR
CA2+ AND PROTEIN KINASE C

In neutrophils, stimulation of phospholipase C
(PLC) is thought to be central to the activation of
the NADPH oxidase. PLC catalyses the hydrolysis
of phosphatidylinositol (4,5)-bisphosphate to
inositol (1,4,5)-trisphosphate (IP3) and diacylglyc-
erol (DAG). IP3 can release Ca2+ from intracellular
stores whilst DAG is known to activate protein ki-
nase C (PKC). Studies in eosinophils have demon-
strated a rapid and transient increase in both IP3
and [Ca2+]i following exposure of guinea-pig and
human eosinophils to LTB4, PAF and fMLP
(Kroegel et al. 1991, Perkins et al. 1995, Wymann
et al. 1995). Furthermore, human eosinophils re-
lease DAG following stimulation with opsonized
particles (Koenderman et al. 1990). However, the
generation of O2-derived free radicals is only mar-
ginally suppressed in Ca2+-depleted cells, suggest-
ing that neither IP3 nor Ca2+ play a major role in
the activation of the NADPH oxidase (Subramanian
et al. 1992, Perkins et al. 1995, Wymann et al. 1995).
Similarly, whilst the PKC activators, phorbol es-
ters, are potent and robust stimulants of oxidase
activation in guinea-pig and human eosinophils
(Petreccia et al. 1987, Perkins  et al. 1995), the PKC
inhibitors Ro-31 8220 (Perkins et al. 1995) and 1-
O-hexadecyl-2-O-methylglycerol (Rabe et al. 1992)
only partially inhibit (by 20 to 30%) agonist-induced
H2O2 release in guinea-pig eosinophils, suggest-
ing that PKC is not central to this response. Indeed,
in human eosinophils exposed to opsonised par-
ticles, the rate of oxygen consumption is augmented
in the presence of inhibitors of PKC (van der
Bruggen et al. 1993) implying that one of more of
these enzymes can negatively regulate oxidase ac-
tivation. Collectively, therefore, these data provide
persuasive evidence that agonist-induced activation
of the NADPH oxidase in eosinophils is mediated
by mechanisms that are largely independent of  in-
tracellular Ca2+

 and PKC.

ROLE OF PHOSPHOLIPASE D AND PHOSPHATIDY-
LINOSITOL 3-KINASE

Phospholipase D (PLD) catalyses the hydroly-
sis of phosphatidylcholine (PC) to phosphatidic

acid (PA) which can subsequently hydrolysed to
diradylglycerol (DRG) by phosphatidic acid
phosphohydrolase. Since PLD is generally consid-
ered to be the predominate pathway for the pro-
duction of DAG, it was originally thought that PLD
mediates NADPH oxidase activation following
PKC stimulation (Bonser et al. 1989, Thompson
et al. 1990, Kessels et al. 1991). However, recent
studies in cell free system have suggested the pos-
sible involvement of PA-regulated protein kinases
in the mechanism of p47phox phosphorylation and
NADPH oxidase activation (McPhail et al. 1995).
Attempts to measure PLD activation in eosinophils
have produced conflicting results which is prob-
ably related to differences in the stimuli used. Thus,
although C5a stimulated PLD activation in human
eosinophils (Minnicozzi et al. 1990) this was not
observed in guinea-pig eosinophils exposed to
LTB4 (Perkins et al. 1995). Unusually, the latter
study found that butan-1-ol, an inhibitor of PLD
was able to inhibit NADPH oxidase activation.
However, it is likely that the action of butan-1-ol
was due to its ability to elevate intracellular cyclic
AMP, which is known to inhibit the activation of
the NADPH oxidase in eosinophils (see below)
(Perkins et al. 1995).

Phosphatidylinositol 3-kinase (PI 3-kinase)
catalyses the enzymatic conversion of phospha-
tidylinositol 4,5-bisphosphate to phospha-
tidylinositol 3,4,5-trisphosphate. In neutrophils,
this reaction is apparently pre-requisite for the ac-
tivation of the NADPH oxidase since selective in-
hibitors of PI 3-kinase, such as wortmannin  and
LY294002, effectively suppress the generation of
O2

- in response to fMLP (Ding et al. 1995, Vlahos
et al. 1995). Furthermore, the use of these inhibi-
tors has facilitated the identification and
characterisation of PI 3-kinase activated protein
kinases that are able to phosphorylate peptides
derived from p47phox (Ding et al. 1995, 1996).

Currently, little is known of the role of PI 3-
kinase during activation of the eosinophil NADPH
oxidase. While wortmannin attenuates eotaxin-in-
duced NADPH oxidase activation in human eosi-
nophils (Elsner et al. 1996), it has no affect upon
LTB4-induced H2O2 generation in guinea-pig eosi-
nophils at concentrations that abolish the fMLP
evoked respiratory burst in neutrophils (Perkins et
al. 1995).

ROLE OF PHOSPHOLIPASE A2 AND ARACHIDONIC
ACID

It has been proposed that arachidonic acid
(AA), cleaved from membrane phospholipids by
PLA2, may play an important role in the activation
of the human neutrophils (Badwey et al. 1984,
Curnette et al. 1984, Aebischer et al. 1993,
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Henderson et al. 1993). The mechanism underly-
ing these responses is still unknown although AA
has been demonstrated to have a number of intrac-
ellular actions in other cell types. These include
the inhibition of ras GTPase activating protein
(Homayoun & Stacey, 1993, Sermon et al. 1996),
activation of PKC (Khan et al. 1995) and MAP
kinases (Rao et al. 1994, Hii et al. 1995), increas-
ing intracellular Ca2+ concentration (Hardy et al.
1995) and to synergise with GTPγS to cause rac
p21 translocation to membrane fractions and the
subsequent activation of the NADPH oxidase in
cell-free systems (Sawai et al. 1993). We have
found that addition of exogenous AA to guinea-
pig eosinophils stimulates H2O2  generation in a
concentration-dependent manner (Lindsay et al.
1995a). This response was unaffected by inhibi-
tors of cyclo-oxygenase and lipoxygenase indicat-
ing that is not mediated by its metabolism to pros-
taglandins, thromboxane or leukotrienes and may
reflect a direct action of AA. However, the role of
PLA2 activation and the release of AA during re-
ceptor mediated NADPH oxidase activation in
eosinophils is virtually unknown. Studies with
fMLP- (White et al. 1993) and opsonized zymo-
san-stimulated (Shute et al. 1990) eosinophils have

implied a possible role for endogenous PLA2 in
the mechanism of  O2

- generation. However, these
conclusions were derived pharmacologically us-
ing the non-selective PLA2 inhibitors, mepacrine
and 4-bromophenacyl bromide and did not attempt
to measure the AA release. In recent experiments,
using the release of [3H]AA from pre-loaded cells
as a marker of PLA2 activation, we have investi-
gated the role of  PLA2 during LTB4-induced
NADPH oxidase activation. We have found that
the liberation of [3H]AA from eosinophils occurs
with a time- and concentration-dependence con-
sistent with a causal role in the generation of H2O2
(Fig. 3). However, since the non-selective PLA2
inhibitor, mepacrine caused only a small inhibi-
tion of H2O2 generation at a concentration (50mM)
that completely attenuated [3H]AA release, this
suggests that PLA2 activation is not central to the
mechanism of LTB4-induced NADPH oxidase ac-
tivation (Fig. 3).

ROLE OF MAP KINASES AND TYROSINE KINASES

MAP kinases is the generic term used to de-
scribe an ever increasing family of serine/threo-
nine kinases. At present, the three most
characterised MAP kinases families are the extra-

Fig. 3: LTB4-induced phospholipase A2 and NADPH oxidase activation in guinea-pig eosinophils. The time (A,D) and dose-
dependent (B,E) release of [3H]AA and maximal rate of H2O2 generation and the affect of the PLA2 inhibitor, mepacrine upon the
these two responses (C,F), was measured in control (-n -) and LTB4-stimulated (1µM) (- o -) guinea-pig eosinophils.  Control H2O2
release was essentially zero.
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cellular regulated kinases 1 and 2 (ERK1/2), the c-
jun N-terminal kinases 46 and 54 (JNK46/JNK54)
and the p38 kinases. The upstream mechanisms that
regulate the activation of the MAP kinases are pres-
ently an area of intense investigation.

The LTB4-, C5a- and fMLP-stimulated re-
sponses are thought to activate eosinophils via in-
tercalation with receptors linked to the pertussis
toxin sensitive G-protein, Gi (Kita et al. 1991,
Miyamasu et al. 1995, Wymann et al. 1995, Lind-
say et al. 1995b). Recent studies in both  neutro-
phils and transfected cell lines, have identified some
salient aspects of the mechanism of Gi-linked MAP
kinase activation (for reviews see Bokoch, 1995,
1996, Denhardt 1996). In the case of ERK1/2 acti-
vation, the release of the βγ subunit of  Gi results
in the phosphorylation of Shc  and the subsequent
engagement of Grb2-Sos by a mechanism involv-
ing phosphatidylinositol 3-kinase (Downey et al.
1996) and the a Src-like tyrosine kinase (Wan et
al. 1996). The guanine nucleotide exchanger, Sos
stimulates GDP/GTP exchange and activation of
p21ras. Activated p21ras recruits the serine/threo-
nine kinase Raf-1 to the plasma membrane where
it is stimulated by an as yet unidentified mecha-
nism. Raf-1 then catalyses the phosphorylation and
activation of MAP kinase kinase 1/2 (MEK1/2)
which can subsequently phosphorylate and acti-
vate the ERK1/2 MAP kinase. At present, much
less is known of the pathway responsible for Gi-
linked activation of the JNK and p38 MAP kinases.
Once again the mechanism is thought to involve
the βγ subunit which acts through members of the
Rho family of small GTP-binding proteins (rac1
and cdc42). These GTP-binding proteins are be-
lieved to stimulate PAK, a p21-activated kinase,
which in turn phosphorylates and activates a se-
quence containing MEK kinases, then MEKs and
finally the JNK and p38 MAP kinases. Since the
cytosolic component p47phox has been demon-
strated to contain possible MAP kinase phospho-
rylation sites whilst another cytosolic component,
rac1 is involved in the mechanism of MAP kinase
activation, this pathway is potentially important in
the mechanism of NADPH oxidase activation.

Although there are no studies demonstrating
NADPH oxidase activation by interleukin-5 (IL-
5), this cytokine has been reported to cause activa-
tion of the lyn-ras-raf1-MEK-ERK pathway in
human eosinophils (Pazdrak et al. 1995, Bates et
al. 1996). Furthermore, 5-oxo-eicosatetraenoate (5-
oxoETE) has been shown to phosphorylate the p42
and p44 MAP kinase (probably ERK1/2) in hu-
man eosinophils (O’Flaherty et al. 1996) whilst
Araki et al. (1995) have demonstrated PKC-inde-
pendent activation of raf1 and ERK following
LTB4-activation of guinea-pig eosinophils. We

have extended the later study and shown LTB4-
induced phosphorylation of the p38 MAP kinases
although we were unable to demonstrated activa-
tion of JNKs (Fig. 4). However, since the selective
inhibitors of ERK and p38 MAP kinases,
PD098059 (Alessi et al. 1995, Dudley et al. 1995)
and SK203580 (Lee et al. 1994) respectively, failed
to significantly attenuate H2O2 generation (Fig. 5),
this suggested that MAP kinases do not mediate
LTB4-induced NADPH oxidase activation.

Fig. 4: LTB4-induced MAP kinase activation in guinea-pig eosi-
nophils. Time dependent effect of LTB4 stimulation (1µM) upon
ERK1/2 (A) and JNK46/54 (B) activation and p38 MAP kinase
phosphorylation (C) in guinea-pig eosinophils. ERK1/2 and
JNK46/54 activity were measured using an in-gel renaturation
assay employing myelin basic protein and GST-c-jun, respec-
tively, as the substrates whilst p38 phosphorylation was deter-
mined by western blotting with an anti-phospho-p38 specific
antibody (p38-P).

Fig. 5: effect of MAP kinase inhibitors upon LTB4-induced
NADPH oxidase activation in guinea-pig eosinophils. Eosino-
phils were pre-incubated  for 10 min and 30 min with PD098059
(A) and SB203580 (B), respectively, stimulated with 1µM LTB4
and the maximum rate of H2O2 generation determined. Control
H2O2 release was essentially zero.
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A number of inhibitor studies have implicated
a possible role for  protein tyrosine kinases during
NADPH oxidase activation in eosinophils (Nagata
et al. 1995, Elsner et al. 1996). Since these inhibi-
tors may exert their action through inhibition of
the src-related tyrosine kinases, their affects maybe
secondary to inhibition of the MAP kinases cas-
cade. However, our observation that the tyrosine
kinase inhibitors, herbimycin A and lavendustin
A, can dose dependently inhibit the MAP kinase-
independent LTB4 response in guinea-pig eosino-
phil (Fig. 6), suggests the existence of an additional
tyrosine kinase dependent pathway(s) responsible
for NADPH oxidase activation.

Fig. 6: Effect of tyrosine kinase inhibitors upon LTB4-induced
NADPH oxidase activation in guinea-pig eosinophils. Eosino-
phils were pre-incubated for 5min with the stated concentration
of lavendustin A and herbimycin A. Following 1µM LTB4 stimu-
lated, the maximal rate of H2O2 generation was determined.
Control H2O2 release was essentially zero.

INHIBITION OF THE NADPH OXIDASE BY CYCLIC
AMP

A number of cyclic AMP-elevating drugs in-
hibit agonist-induced activation of the NADPH
oxidase in eosinophils. Pre-treatment of eosinophils
with β2-adrenoceptor agonists such as salbutamol,
partially suppress this response but short periods
of pre-incubation are necessary if inhibition is to
be seen (Yukawa et al. 1990, Rabe et al. 1993).
This phenomenon is believed to be due to the rapid
development of tachyphylaxis, and may be due to
uncoupling of β-adrenoceptors since receptor
down-regulation is not observed. Paradoxically, the
long-acting β2-agonists salmeterol is inactive on
guinea-pig eosinophils and actually behaves as a
competitive antagonist. However, this might relate
to the very poor efficacy of salmeterol coupling,
with a low density of β-adrenoceptors on eosino-
phils.

Lipophilic cyclic AMP analogues (Dent et al.
1991) and selective inhibitors of the phosphodi-

esterase (PDE) 4 isoenzymes family also effec-
tively prevent activation of the respiratory burst
oxidase (Dent et al. 1991, 1994, Souness et al. 1991,
Barnette et al. 1995, Hatzelmann et al. 1995).

CONCLUSION

In comparison to neutrophils, little is known
of the mechanism of NADPH oxidase activation
in eosinophils. As a consequence of the difficul-
ties in obtaining sufficient numbers of cells for bio-
chemical studies, the majority of the detailed bio-
chemical studies have been performed using
guinea-pig peritoneal eosinophils. However, where
detailed studies have been performed, these results
suggest there maybe fundamental difference be-
tween the mechanism of NADPH oxidase in eosi-
nophils and neutrophils. Thus, increases in intrac-
ellular Ca2+ concentration and protein kinase C
activation are not required for NADPH oxidase
activation in either human or guinea-pig eosino-
phils. Furthermore, in contrast to fMLP stimula-
tion of neutrophils, LTB4-stimulated NADPH oxi-
dase activation in guinea-pig eosinophils appears
to be mediated via a  tyrosine kinase dependent
mechanism that is esssentially independent of PLD,
PI 3-kinase, PLA2 and MAP kinases.  These dis-
parities probably derive from the both the differ-
ences in the stimuli and/or the functional roles of
these two cell  types.
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