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Signal Transduction and Activation of the NADPH Oxidase
in Eosinophils

Mark A Lindsay*, Mark A Giembycz

Thoracic Medicine, Imperial College School of Medicine, National Heart and Lung Institute, Dovehouse Street,
London SW3 6LY, UK

Activation of the eosinophil NADPH oxidase and the subsequent release of toxic oxygen radicals has
been implicated in the mechanism of parasite killing and inflammation. At present, little is known of the
signal transduction pathway that govern agonist-induced activation of the respiratory burst and is the
subject of this review. In particular, we focus on the ability of leukotript Bictivate the NADPH
oxidase in guinea-pig peritoneal eosinophils which can be obtained in sufficient number and purity for
detailed biochemical experiments to be performed.

Key words: leukotriene B- eosinophil - NADPH oxidase - signal transduction

The NADPH oxidase (E.C. 1.23.45.3) cataly-allergic asthma (Butterfield & Leiferman 1993).
ses the single electron reduction of moleculgr Oindeed, the activity of the NADPH oxidase is sig-
to superoxide (9 ), a powerful oxidising and re- nificantly higher in eosinophils that in other ph-
ducing agent (Fig. 1) (Babior et al. 1973). In theagocytes (Yamashita et dl985, Petreccia et al.
presence of superoxide dismutase, @smutates 1987, Sedgwick et al988, Yagisawa et al. 1996).
to hydrogen peroxide (§0,) which can be subse- At present, little is known of the intracellular
guently converted into hypobromous acid in thenechanisms responsible for NADPH oxidase ac-
presence of eosinophil peroxidase (a highly bastovation in eosinophils. This is in contrast to neu-
protein stored within specific eosinophil granulesjrophils, where studies of the mechanism gf O
and bromide (Weiss et al. 1986) (Fig. 1). Alternarelease by the chemotactic peptide, formyl-methyl-
tively, in the presence of ferrous ions, @d HO, leucyl-phenylalanine (fMLP) have suggested the
interact to form the membrane-perturbing hydroxyparticipation of phospholipase,A(PLA,), phos-
radical (OH), one of the most unstable oxidisingpholipase C- (PLC), phospholipase D- (PLD) pro-
species known (Fig. 1). Other pathways of freéein kinase C- (PKC), phosphatidylinositol 3-
radical formation have also been described includinnase- (PI-3K) and tyrosine kinase-dependent
ing the reaction of © with nitric oxide to form pathways (possibly those leading to mitogen acti-
peroxynitrite which provides an additional, iron-vated protein kinase stimulation) (Bokoch 1995).
independent route of Obrmation together with This lack of knowledge relates primarily to the dif-
nitrogen dioxide radicals (Fig. 1). Hypobromousdficulty in obtaining sufficient numbers of cells, par-
acid is able to interact with J@, to form singlet ticular human eosinophils. Thus, we and others
oxygen, the biological significance of which ishave overcome this problem by using guinea-pig
currently unclear (Fig. 1). Activation of the eosinophils as a model system, which can be har-
NADPH oxidase and the subsequent productiomested from the peritoneum in sufficient numbers
of toxic oxygen radicals is thought to be importantor detailed biochemical studies.
to the role of eosinophils during host defence Human and guinea-pig eosinophils undergo a
(Butterworth & Thorne 1993). However, it is nowrapid and transient activation of the NADPH oxi-
appreciated that NADPH oxidase activation maybdase to a range of physiological soluble and par-
cytotoxic to many mammalian cells, particularticulate stimuli including leukotriene JB(LTB )
those of the gut, skin and lung, a finding that ha@Palmbald et all 984, Maghni et all991, Rabe et
implicated eosinophils in the pathogenesis of al. 1992, Subramanian et dl992, Perkins et al.
number of non-parasitic inflammatory disorders1995), platelet activating factor (PAF) (Shute et
including Crohn’s disease, atopic dermatitis andl. 1990, Wymann et all995), fMLP (Palmblad
et al. 1984, Kroegal et all990, Wymann et al.
1995), complement factor 5a (C5a)(Wymann et al.
*Corresponding author. Fax: +44-171-351. 5675. E-mailt995), interleukin-8 (IL-8) (Wymann et &l995),
m.lindsay@ic.ac.uk eotaxin (Elsner et all996, Tenscher et &996)
Received 3 September 1997 and opsonized particles (Koenderman e1990,
Accepted 30 September 1997 Shute et al1990). Furthermore, pre-incubation
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Fig. 1: generation of reactive oxygen species in eosinophils.

with sub-threshold concentrations of PAF has beeang protein, Rac-1 or Rac2 (Casimer & Teahan
demonstrated to prime the subsequent NADPH994, Bokoch 1994). Recently, two additional com-
oxidase response to opsonized particles (Tool pbnents have been identified, these being the cy-
al. 1992) and fMLP (Zoratti et al992). More re- tosolic protein, p48°X that appears to be associ-
cent studies have demonstrated a similar primingted with p6?h°X(W|entjes etal. 1993, Tsunawaki

in human eosinophils adherent to tissue culturet al. 1994) and the membrane associated small
plates coated with a range of extracellular matri&G TP-binding protein, Rapla (Gabig et al. 1995).
proteins (e.g. fibronectin, fibrinogen, collagenUnder resting conditions, the cytosolic components
laminin) and fetal calf serum. Under these condiexist as a 240-300 kDa oligomer (Park efl8b2,
tions, the cytokines tumor necrosis factoffNF-  1994). Following activation, translocation of these
a), granulocyte macrophage-colony stimulatingcomponents to the membrane-bound cytochrome
factor (GM-CSF), which are unable to stimulatebgsg and assembly of the active oxidase complex
the NADPH oxidase in ‘non-adherent’ cells, pro4s thought to be mediated by a mechanism involv-
duce a slowly developing and sustained generaig both protein binding through Src homology 3
tion of O,” (Dri et al.1991, Horie & Kita 1994). (SH3) domains and phosphorylation of placx
However, since there are no studies concerning tiigosrosan & Leto1990, McPhail 1994, Park &
biochemical mechanism of NADPH oxidase actiAhn, 1995, Demendez et 4996).

vation in adherent eosinophils, this review will
focus predominately upon those studies on ‘non-
adherent’ cells. In particular, we will concentrated__
upon recent studies of the mechanism of j-TB §
induced NADPH oxidase activation in guinea-pig
eosinophils (Perkins et al995, Lindsay et al.
19954, b).

STRUCTURE AND ASSEMBLY OF THE NADPH OXI-
DASE

47phox
In neutrophils, an active NADPH oxidase com- i
plex assembles at the phagocytic and plasma mem- Phosphorylatmn
branes following activation (Segal & Abo 1993 pm.e.nKmasec
(Fig. 2). At least five proteins are required for th protin Kinase A

formation of an active oxidase complex: the men Prespretdnosia skinase ’99“'a‘e“

protein kinases

brane-bound cytochrom%(con&stmg of twQ  Phosphatidicacid regulated protein

h kinases
subunits, gp9"and p22"°) and the cytosolic Fig. 2: structure of the NADPH oxidase. PPP: proline rich re-

proteins, p47"%% p6P"%*and a small GTP-hind- gions; SH3: src homology domain 3.
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In eosinophils, evidence for a similar if notacid (PA) which can subsequently hydrolysed to
identical mechanism of oxidase assembly and adiradylglycerol (DRG) by phosphatidic acid
tivation is also available. Thus, the cytosolic comphosphohydrolase. Since PLD is generally consid-
ponents, p4X paPoX p4PNOXand membrane ered to be the predominate pathway for the pro-
components, p22°*and gp92h°X have been iden- duction of DAG, it was originally thought that PLD
tified (Segal et all981, Yagisawa et 1996, Zhan mediates NADPH oxidase activation following
et al.1996) whilst p4?"%%and p6Ph°*have been PKC stimulation (Bonser et al989, Thompson
shown to reconstitute NADPH oxidase activity inet al.1990, Kessels et al991). However, recent
cell free systems prepared from both neutrophilstudies in cell free system have suggested the pos-

and eosinophils fractions (Bolsher et2990). sible involvement of PA;éeguIated protein kinases
in the mechanism of p27°*phosphorylation and

ROLE OF PHOSPHOLIPASE C, INTRACELLULAR , g g

CA2* AND PROTEIN KINASE C NADPH oxidase activation (McPhail et 4995).

, ) i ) Attempts to measure PLD activation in eosinophils

In neutrophils, stimulation of phospholipase Gyaye produced conflicting results which is prob-
(PLC) is thought to be central to the activation ofpy related to differences in the stimuli used. Thus,
the NADPH oxidasePLC catalyses the hydrolysis gjthough C5a stimulated PLD activation in human
of phosphatidylinositol (4,5)-bisphosphate taegsingphils (Minnicozzi et al.990) this was not
inositol (1,4,5)-trisphosphate (Pand diacylglyc-  gpserved in guinea-pig eosinophils exposed to
erol (DAG). IP; can release Gafrom intracellular LTB, (Perkins et al1995). Unusually, the latter
stores whilst DAG is known to activate protein ki'study found that butan-1-ol, an inhibitor of PLD
nase C (PKC). Studies in eosinophils have demogyas”aple to inhibit NADPH oxidase activation.
strated a rapid and transient increase in bogh Ifpjowever, it is likely that the action of butan-1-ol
and [C&"]; following exposure of guinea-pig and yas due to its ability to elevate intracellular cyclic
human eosinophils to LTB PAF and fMLP  aAMPp, which is known to inhibit the activation of
(Kroegel et al1991, Perkins et al995, Wymann e NADPH oxidase in eosinophils (see below)
et al. 1995). Furthermore, human eosinophils ré¢Perkins et al. 1995).
Ieas'e DAG following stimulation with opsonized Phosphatidylinositol 3-kinase (Pl 3-kinase)
particles (Koenderman et dl990). However, the catalyses the enzymatic conversion of phospha-
generation of Qderllved free radicals is only mar-tidylinositol 4,5-bisphosphate to phospha-
ginally suppressed in é“adfpleted cells, suggest- tigylinositol 3,4,5-trisphosphate. In neutrophils,
ing that neither IPnor C&* play a major role in this reaction is apparently pre-requisite for the ac-
the activation of the NADPH oxidase (Subramaniagyation of the NADPH oxidase since selective in-
etal.1992, Perkins et al995, Wymann et al995).  pipjtors of PI 3-kinase, such as wortmannin and
Similarly, whilst the PKC activators, phorbol es-| y294002, effectively suppress the generation of
ters, are potent and robust stimulants of OX|daS@2- in response to fMLP (Ding et al. 1995, Vlahos
activation in guinea-pig and human eosinophilg’a| 1995). Furthermore, the use of these inhibi-
(Petreccia et al 987, Perkin®t al.1995), the PKC {515 has facilitated the identification and
inhibitors Ro-31 8220 (Perkins et &B95) and 1-  cparacterisation of Pl 3-kinase activated protein
O-hexadecyl-2-methylglycerol (Rabe etdl992)  |jnases that are able to phosphorylate peptides
only partially |n_h|b|t (by 20to 30%)_ agomst-mducedderived from p4?1°X (Ding et al.1995, 1996).
H,0, release in guinea-pig eosinophils, suggest-  cyrrently, little is known of the role of Pl 3-
ing that PKC is not central to this response. Indeeginase during activation of the eosinophil NADPH
in human eosinophils exposed to opsonised pagxijdase. While wortmannin attenuates eotaxin-in-
ticles, the rate of oxygen consumptioaugmented qyced NADPH oxidase activation in human eosi-
in the presence of'lnhlt')ltors of PKC (van dernophils (Elsner et all996), it has no affect upon
Bruggen et al1993) implying that one of more of | g induced HO, generation in guinea-pig eosi-
these enzymes can negatively regulate oxidase gfsphils at concentrations that abolish the fMLP

tivation. Collectively, therefore, these data provideyoked respiratory burst in neutrophils (Perkins et
persuasive evidence that agonist-induced activatig{i 1995

of the NADPH oxidase in eosinophils is mediated
by mechanisms that are largely independent of ifROLE OF PHOSPHOLIPASE A, AND ARACHIDONIC
tracellular C&*and PKC. Act
ROLE OF PHOSPHOLIPASE D AND PHOSPHATIDY- It has been proposed that arachidonic acid
LINOSITOL 3-KINASE (AA), cleaved from membrane phospholipids by
, PLA,, may play an important role in the activation

_ Phospholipase D (PLD) catalyses the hydrolysf the human neutrophils (Badwey et 4884,

sis of phosphatidylcholine (PC) to phosphatidi¢:rnetteet al. 1984, Aebischer et atl993,
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Henderson et all993). The mechanism underly-implied a possible role for endogenous BLA

ing these responses is still unknown although Ashe mechanism of Dgeneration. However, these
has been demonstrated to have a number of intramenclusions were derived pharmacologically us-
ellular actions in other cell types. These includéng the non-selective PLAInhibitors, mepacrine
the inhibition of ras GTPase activating proteirand 4-bromophenacyl bromide and did not attempt
(Homayoun & Stacey, 1993, Sermon etl&l96), to measure the AA release. In recent experiments,
activation of PKC (Khan et all995) and MAP using the release ofi]JAA from pre-loaded cells
kinases (Rao et al994, Hii et al1995), increas- as a marker of PLAactivation, we have investi-
ing intracellular C&* concentration (Hardy et al. gated the role of PLAduring LTB,-induced
1995) and to synergise with G§¥to cause rac NADPH oxidase activation. We have found that
p21 translocation to membrane fractions and thiie liberation of $H]AA from eosinophils occurs
subsequent activation of the NADPH oxidase inwith a time- and concentration-dependence con-
cell-free systems (Sawai et dl993). We have sistent with a causal role in the generation gD
found that addition of exogenous AA to guinea{Fig. 3). However, since the non-selective BLA
pig eosinophils stimulates @, generation in a inhibitor, mepacrine caused only a small inhibi-
concentration-dependent manner (Lindsay et aion of H,0, generation at a concentration (50mM)
1995a). This response was unaffected by inhibthat completely attenuatedH]AA release, this
tors of cyclo-oxygenase and lipoxygenase indicasuggests that PLAactivation is not central to the
ing that is not mediated by its metabolism to prosnechanism of LTB-induced NADPH oxidase ac-
taglandins, thromboxane or leukotrienes and maywation (Fig. 3).

reflect a ¢re_ct action of AA. However, the (ole Of . OLE OF MAP KINASES AND TYROSINE KINASES

PLA, activation and the release of AA during re- i . .

ceptor mediated NADPH oxidase activation in MAP kinases is the generic term used to de-
eosinophils is virtually unknown. Studies withscribe an ever increasing family of serine/threo-

fMLP- (White et al.1993) and opsonized zymo- hine kinases. At present, the three most
san-stimulated (Shute et 24890) eosinophils have characterised MAP kinases families are the extra-
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Fig. 3: LTB,-induced phospholipase,fand NADPH oxidase activation in guinea-pig eosinophils. The time (A,D) and dose-
dependent (B,E) release 8HJAA and maximal rate of 5D, generation and the affect of the PJiAhibitor, mepacrine upon the
these two responses (C,F), was measured in contrylgnd LTB,-stimulated (M) (-  -) guinea-pig eosinophilsControl H,0,
release was essentially zero.
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cellular regulated kinases 1 and 2 (ERK1/2), the ttave extended the later study and shown £TB
jun N-terminal kinases 46 and 54 (JNK46/JNK54)nduced phosphorylation of the p38 MAP kinases
and the p38 kinases. The upstream mechanisms talthough we were unable to demonstrated activa-
regulate the activation of the MAP kinases are pretion of INKs (Fig. 4). However, since the selective
ently an area of intense investigation. inhibitors of ERK and p38 MAP kinases,
The LTB,-, C5a- and fMLP-stimulated re- PD098059 (Alessi et al995, Dudley et all995)
sponses are thought to activate eosinophils via iand SK203580 (Lee et al. 1994) respectively, failed
tercalation with receptors linked to the pertussito significantly attenuate 40, generation (Fig. 5),
toxin sensitive G-protein, GKita et al. 1991, this suggested that MAP kinases do not mediate
Miyamasu et al1995, Wymann et all995, Lind-  LTB,-induced NADPH oxidase activation.
say et al1995b). Recent studies in both neutro-
phils and transfected cell lines, have identified some Ti
salient aspects of the mechanism pfitked MAP ime (sec)
kinase activation (for reviews see Bokoch, 1995, 0 2 5 10 20 30 60 90120

1996, Denhardt 1996). In the case of ERK1/2 acti-

vation, the release of tifly subunit of Gresults

in the phosphorylation of Shc and the subsequent ERK 12~
engagement of Grb2-Sos by a mechanism involv-

ing phosphatidylinositol 3-kinase (Downey et al.
1996) and the a Src-like tyrosine kinase (Wan et

al. 1996). The guanine nucleotide exchanger, Sos B Time (sec)
stimulates GDP/GTP exchange and activation of 0 2 5 10 20 30 60 90120
p218s, Activated p218S recruits the serine/threo- JNK54—

nine kinase Raf-1 to the plasma membrane where jyk4s—

it is stimulated by an as yet unidentified mecha-

nism. Raf-1 then catalyses the phosphorylation and

activation of MAP kinase kinase 1/2 (MEK1/2) C Time (sec)

which can subsequently phosphorylate and acti-

vate the ERK1/2 MAP kinase. At present, much 0 2 5 10 20 30 60 90120

less is known of the pathway responsible for G pas-p-

linked activation of the INK and p38 MAP kinases.

Once again the mechanism is thought to involve

the By subunit which acts through members of theig_ 4: | T8,-induced MAP kinase activation in guinea-pig eosi-

Rho family of small GTP-binding proteins (raclnophils. Time dependent effect of L] Btimulation (M) upon

and cdc42). These GTP-binding proteins are b&RK1/2 (A) and JNK46/54 (B) activation and p38 MAP kinase

lieved to stimulate PAK, a p21-activated kinasePhosphorylation (C) in guinea-pig eosinophils. ERK1/2 and
. . . JNK46/54 activity were measured using an in-gel renaturation

which in turn _phOSphoryla!tes and activates a S%%say employing myelin basic protein and GST-c-jun, respec-

guence containing MEK kinases, then MEKs andvely, as the substrates whilst p38 phosphorylation was deter-

finally the JNK and p38 MAP kinases. Since themined by western blotting with an anti-phospho-p38 specific

cytosolic component p##°% has been demon- antibody (p38-P).

strated to contain possible MAP kinase phospho-

rylation sites whilst another cytosolic component,

racl is involved in the mechanism of MAP kinase I

activation, this pathway is potentially important in

the mechanism of NADPH oxidase activation. A.
Although there are no studies demonstrating

H,0,production
(1nmol/min/10% cells)

i Time (10sec} g

NADPH oxidase activation by interleukin-5 (IL- Control \ Control
5), this cytokine has been reported to cause activa- vﬁ - iy

tion of the lyn-ras-rafl-MEK-ERK pathway in f%
human eosinophils (Pazdrak et H95, Bates et i

al. 1996). Furthermore, 5-oxo-eicosatetraenoate (5- +100,.M PD098059 +20uM SB203580

0XO0ETE) has been shown to phosphorylate the p42

; ; _Fig. 5: effect of MAP kinase inhibitors upon L}#hduced
and pa4 MAP Kinase (probably ERKl/Z) in hu NADPH oxidase activation in guinea-pig eosinophils. Eosino-

man eosinophils (O'Flaherty et al. 1996) whilst s yere pre-incubated for 10 min and 30 min with PD098059
Araki et al. (1995) have demonstrated PKC-indeg) and SB203580 (B), respectively, stimulated withiLTB .
pendent activation of rafl and ERK followingand the maximum rate of®, generation determined. Control
LTB ,-activation of guinea-pig eosinophils. WeH:0; release was essentially zero.
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A number of inhibitor studies have implicatedesterase (PDE) 4 isoenzymes family also effec-
a possible role for protein tyrosine kinases durintively prevent activation of the respiratory burst
NADPH oxidase activation in eosinophils (Nagataxidase (Dent et al991, 1994, Souness et¥891,
et al.1995, Elsner et al.996). Since these inhibi- Barnette et all995, Hatzelmann et a995).
tors may exert their action through inhibition of
the src-related tyrosine kinases, their affects maybCeO NCLUSION ) o )
secondary to inhibition of the MAP kinases cas- N comparison to neutrophils, little is known
cade. However, our observation that the tyrosingf the mechanism of NADPH oxidase activation
kinase inhibitors, herbimycin A and lavendustinn €0sinophils. As a consequence of the difficul-
A’ can dose dependent'y inhibit the MAP kinaset]es |n.0bta|n|n-g sufficient !’lu.mbers of Ce||S_fOI’ b|9'
independent LTBresponse in guinea-pig eosino_chem[cal studle_s, the majority of the detailed b!o—
phil (Fig. 6), suggests the existence of an additionghemical studies have been performed using
tyrosine kinase dependent pathway(s) responsib#linea-pig peritoneal eosinophils. However, where

for NADPH oxidase activation. detailed studies have been performed, these results
suggest there maybe fundamental difference be-
5 5 tween the mechanism of NADPH oxidase in eosi-
nophils and neutrophils. Thus, increases in intrac-
4] o3 ellular C&* concentration and protein kinase C
activation are not required for NADPH oxidase
] N activation in either human or guinea-pig eosino-

phils. Furthermore, in contrast to fMLP stimula-
tion of neutrophils, LTE-stimulated NADPH oxi-
dase activation in guinea-pig eosinophils appears
to be mediated via a tyrosine kinase dependent
mechanism that is esssentially independent of PLD,
Pl 3-kinase, PLA and MAP kinases. These dis-
parities probably derive from the both the differ-
ences in the stimuli and/or the functional roles of
these two cell types.

Maximal rate of H202 production
(nmol/min/10%cells)

ol S
Control 5 5 El Conitrol ) ! 5
log [Lavendustin A] (M) log [Herbimycin A] (M)

Fig. 6: Effect of tyrosine kinase inhibitors upon LFduced
NADPH oxidase activation in guinea-pig eosinophils. Eosino- REFERENCES
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