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Similarity between the Association Factor of Ribosomal Subunits
and the Protein Stm1p from Saccharomyces cerevisiae
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A ribosome association factor (AF) was isolated from the yeast Sacchharomyces cerevisiae.  Partial amino acid
sequence of AF was determined from its fragment of 25 kDa isolated by treating AF with 2-(2-nitrophenylsulfenyl)-
3-methyl-3’-Bromoindolenine (BNPS-skatole). This sequence has a 86% identity to the product of the single-copy
S. cerevisiae STM1 gene that is apparently involved in several events like binding to quadruplex and triplex nucleic
acids and participating in apoptosis, stability of telomere structures, cell cycle, and ribosomal function. Here we
show that AF and Stm1p share some characteristics: both bind to quadruplex and Pu triplex DNA, associates
ribosomal subunits, and are thermostable. These observations suggest that these polypeptides belong to a family of
proteins that may have roles in the translation process.
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The ribosomal subunits, once released at peptide chain
termination, may either bind initiation factors that allow
them to associate in active 80S complexes which are able
to reinitiate another round of synthesis or couple to form
inactive 80S monomers which have been suggested that
represent non-translating subunits in vivo (Hershey &
Merrick 1996). The accumulation of monomer ribosomes
takes place when cells are subjected to different metaboli-
cally adverse conditions (Jagus et al. 1991, Hinnebusch
1997). These two different situations may occur normally
in the eukaryotic cells and may be regulated by the avail-
ability of factors that act on the dissociation or associa-
tion of the ribosomal subunits.

The association of 60S ribosomal subunits to the 40S
complex to form the functional 80S initiation complex is an
essential step in the initiation of protein synthesis. Two
GTPase factors, eIF-5 and eIF-5B, are required for this
reaction (Pestova et al. 2000, Majumdar et al. 2002).  We
have isolated and characterized a thermostable protein of
about 43 kDa from Saccharomyces cerevisiae, that con-
trary to eIF5, associates ribosomal subunits to form 80S
ribosomes without the need of energy (Herrera et al. 1991).
Here we show that the partial amino acid sequence of this
ribosomal subunits association factor called association
factor (AF) has significant similarity to the one of the
protein Stm1p of yeast.
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Stm1p, also called G4p2, was first  identified and char-
acterized as a yeast protein that shows a specific binding
activity for quadruplex DNA (G4-DNA) (Frantz & Gilbert
1995) and, more recently, for purine motif triple-helical DNA
(Pu triplex) (Nelson et al. 2000). The G4 nucleic acid struc-
tures are formed under certain ionic in vitro conditions,
when DNA or RNA, rich in guanine tracts, associate into
four-stranded right-handed helices stabilized by a gua-
nine base tetrad (Williamson 1994, Parkinson et al. 2002).
These quadruplex structures might have important cellu-
lar roles including telomere function, control of replica-
tion and transcription processes (Fukuda et al. 2002, Patel
2002, Siddiqui-Jai et al. 2002), and evidence for their exist-
ence in vivo in the nuclei of some protozoans has been
presented (Schaffitzel et al. 2001).  The formation of Pu
triplex is a thermodynamically favored process that origi-
nates a duplex DNA with an additional purine-rich DNA
strand. The triple helical structures have also been impli-
cated in several cellular mechanisms such as transcrip-
tion, replication, and recombination (Musso et al. 2000,
Rustighi et al. 2002). While there is no direct evidence for
the formation of these quadruplexes and triplexes in vivo,
cellular proteins, like Stm1p, that specifically recognize
them have been described and may be involved in the
regulation of the possible biological roles of these struc-
tures. Other role that has been suggested for Stm1p is in
the control of the apoptosis-like cell death in yeast (Ligr
et al. 2001). In addition, a protein from Candida maltosa
that has significant homology to S. cerevisiae Stm1p is a
ribosome-associated protein whose release from the ribo-
somes might allow leaky translation under translation-in-
hibitory conditions (Takaku et al. 2001). The significance
of all these possible functions of Stm1p and its homo-
logues proteins is not yet understood.

In this paper, we  show that besides the sequence
similarity between AF and Stm1p, both proteins share
activities: AF is able to bind quadruplex and Pu triplex
DNAs while Stm1p associates ribosomal subunits.



734734734734734 Similarity between AF and Stm1p • Heriberto Correia et al.

MATERIALS AND METHODS

Preparation of ribosomes and high-salt ribosomal
wash - The strain A364A of S. cerevisiae was grown to
late-log phase in media as previously described (Hartwell
1967). Cells were homogeneized according to (Herrera et
al. 1991) and polysomes, prepared following the method
previously reported (Gallis et al. 1975), were treated with
0.5 M KCl to obtain the ribosomal pellet and the high salt
ribosomal wash (Herrera et al. 1991).

Purification and assay for AF activity - The ribosome
association factor AF was purified and assayed for ribo-
somal subunits association activity according to the meth-
odology described by Herrera et al. (1991). The Stm1p
was also assayed for association activity.

Peptide sequencing - Purified AF (5-10 µg) was treated
with 2-(2-nitrophenylsulfenyl)-3-methyl-3’-Bromoin-
dolenine (BNPS-skatole) as described in (Fontana 1972).
The generated peptides were fractionated on a 15% SDS-
PAGE gel, electrotransferred to a PVDF membrane and
visualized by staining with Amido Black (Aebersold 1989).
Peptides were excised and sequenced. The sequence of a
25 kDa fragment was obtained.

Purification of Stm1p or G4p2 - E. coli strain BL21DE
was transformed with the plasmid pGEXG4p2 bearing the
gene for the yeast protein G4p2 fused to glutathione S-
transferase. A bacterially expressed G4p2 was obtained
after proteolytic clevage of the glutathione S-transferase
domain with factor Xa. These procedures were performed
as described by Frantz and Gilbert (1995).

High temperature treatment of Stm1p - Five µg of
purified Stm1p suspended in 35 µl of 20 mM K2HPO4 pH
7.2, 100 mM KCl, 10 mM 2-mercaptoethanol, 0.5 mM
PhMeSO2F, 1.0 mM iodoacetic and 25% glycerol was
heated at 90ºC for 15 min and then centrifuged at 30, 000 x
g for 10 min to eliminate precipitated proteins. The super-
natant (3 µg) was immediately subjected to  a PAGE.

Polyacrylamide gel electrophoresis - The proteins
were analyzed by 10% SDS/PAGE according to Laemmli
(1970) in the presence of 4 M urea. After electrophoresis
the gels were stained with Coomasie Blue.

Protein concentration determination - Protein con-
centration was determined as described (Lowry et al. 1981).

Preparation of G4-DNA and triplex DNA - G4-DNA
structures were prepared under conditions specified pre-
viously (Frantz & Gilbert 1995). Preparation of Pu triplex
DNA was performed following the procedure described in
(Nelson et al. 2000).

Electrophoretic mobility shift assays (EMSA) and
competition experiments - G4 DNA or Pu triplex DNA were
5’-labeled with [γ32P] with T4 polynucleotide kinase and
precipitated twice with ethanol. Labeled G4 DNA (33,000
cpm; 8 fmol) or labeled Pu triplex DNA (22,000 cpm; 4
fmol) was incubated with Stm1p or AF in a final volume of
10 µl at room temperature for 10 min according to Frantz
and Gilbert (1995). The reactions for G4 DNA.AF complex
formation were loaded on 7.5% polyacrylamide gel and
electrophoresed  at room temperature in TBE buffer (50
mM Tris borate, 1 mM EDTA, pH 8.2) at 30 mA for 2 h. The
reactions for Pu triplex DNA.AF complex formation were
run in similar conditions but in the presence of 0.5 TBE

buffer. The gels were dried and exposed for several hours
to Imaging screen  and analyzed in a Molecular Imager 
FX (Bio Rad, Hercules, CA).

Competition experiments were carried out as above
with saturating amounts of G4 DNA probe. Ten-fold serial
dilutions of competitor nucleic acids were premixed with
AF and incubated following (Frantz & Gilbert 1995). Rela-
tive mass number of competitor to probe ranged from 0.1
to 1000 and were determined by absorbance at 260 nm.
Single-stranded competitors were fully denatured by treat-
ment with 100 mM NaOH at 100°C just prior to use.

RESULTS

Earlier report from our laboratory suggested that AF
was related to the elongation factor EF-1α (Herrera et al.
1991). However, using purified antiserum against EF-1α, it
was determined that AF does not cross react with the
antibody to EF-1α  (data not shown). Therefore, we wanted
to determine the gene responsible for AF activity though
we obtained aminoacid sequence information from the
purified protein. Partial amino acid sequence of AF was
obtained from its fragment of 25 kDa isolated by treating
AF with BNPS-skatole as described in experimental pro-
cedures. The sequence, in the single letter amino acid
code is WGDDKKELSAEKEAQADAXXXIAQDAAE,
where X indicates no positive identification of the amino
acid residue at these positions.  A BLASTP search of the
Yeast Proteoma Data Base at the National Center for Bio-
technology Information identified one protein, the prod-
uct of the STM1 gene, with 86% identity to AF. The Stm1
protein was originally reported to bind  quadruplex nucleic
acids (Frantz & Gilbert 1995) and has been shown  to  bind
triplex DNA  (Nelson et al. 2000).

In view of the fact that the result presented imply that
AF is similar to Stm1p, we determined whether AF is able
to bind G4 nucleic acids. Fig. 1 shows using mobility shift
assays with an excess of parallel G4 DNA oligomer probe
that different amounts of AF form complexes with G4 DNA
(B, lanes 8-12) and the complexes are detectable even at
the lower AF concentration used. As controls Fig.1 also
shows the complexes of parallel G4 DNA with variable
amounts of protein Stm1p (A, lanes 3 to 7) fused to glu-
tathione S-transferase (GST- Stm1p) as described in Ma-
terial and Methods. The glutathione S-transferase domain
neither interferes with the formation of the complex nor
forms a complex by itself (data not shown).  In addition,
Fig. 1 shows that the structure of G4 DNA (C, lane 1)
which is denatured by treatment with NaOH at high tem-
perature (D, lane 2) is required for both proteins to form
the complex (lanes 13 and 14). This implies that AF, similar
to Stm1p, binds specifically to a G4 DNA structure.

To ascertain the affinity of AF to different DNAs, a
series of competition experiments were carried out.  Fig. 2
shows that AF has high affinity for G4 DNA as increasing
concentration of competitor G4 DNA inhibits the forma-
tion of AF.G4 DNA radioactive complex up to 85-90% with
1000 relative mass competitor over the probe.  In addition,
AF shows practically no affinity for single-stranded DNA
and DNA oligomer probe which are not participating in
quartet or triplex formation.
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We also verified whether AF binds to Pu triplex DNA.
For this, AF was incubated with labeled Pu triplex as de-
scribed in experimental procedures. EMSA was performed
to analyze the formation of the AF.Pu triplex DNA com-
plex. As shown in Fig. 3, a significant amount of the com-
plex AF.Pu triplex DNA is formed (A, lane 2) indicating
that AF recognizes an intact purine motif triplex.

Since AF is able to bind G4 DNA, it was determined
whether Stm1p has any activity for joining ribosomal sub-
units. The results are represented in Fig. 4. S. cerevisiae
dissociated ribosomes sediment mainly as 40S and 60S
subunits (Fig. 4A). Stm1p was tested for its ability to join
ribosomal subunits. Fig. 4B shows that, in the presence
of the protein, the majority of the subunits remains asso-
ciated, sedimenting as 80S monomers. This result is simi-
lar to the one obtained with AF as control (Fig. 4C).

AF is a thermostable factor, therefore, we wanted to
see if Stm1p was also resistant to the temperature. G4p2
was purified and then analyzed by SDS gel electrophore-
sis according to experimental procedures. Fig. 5B shows
the presence of only one protein band  of 32 kDa in the
Stm1p preparation.  Stm1p was incubated at 90ºC for 15
min. Fig. 5C shows that the band of Stm1p stains with the
same intensity indicating that this polypeptide is thermo-
stable. As a control, Fig. 5A shows the thermostable band
of 43-kDa of preheated AF.

Fig. 2: binding specificity of purified association factor (AF) for G4
DNA. Complexes of purified AF (0.93 pmol) with [γ-32P] G4 DNA
(8 fmol, 33,000 cpm) or with serial dilutions of unlabeled competi-
tor nucleic acids were resolved by EMSA. Bound probe was visual-
ized by autoradiography and quantitated as described in experimen-
tal procedures. Competitor nucleic acids are indicated. G4 DNA:
unlabeled tetrameric parallel structure; DNA(ss): single-stranded
salmon sperm DNA; GL (ss): single-stranded GL oligomer

Fig. 3: binding of association factor (AF) to [γ-32P] Pu triplex
DNA. Purified AF (0.93 pmol) was incubated with [γ-32P] Pu tri-
plex DNA (4 fmol, 22,000 cpm) and complex formation was ana-
lyzed by EMSA according to experimental procedures.  A: complex
Pu triplex DNA.AF (lane 2); B: unbound Pu triplex DNA (lane 1
and 2); C: unbound duplex DNA (lane 1 and 2)

Fig. 1: binding of GST-Stm1p and association factor (AF) to G4
DNA. Different amounts of purified AF or GST-Stm1p were incu-
bated with [γ-32P]G4 DNA (8 fmol; 33,000 cpm) and complex
formation was analyzed by EMSA according to experimental pro-
cedures. A: complex G4 DNA.GST-Stm1p formed with radioactive
G4 DNA plus GST-Stm1p at 6.5 pmol (lane 3); 3.25 pmol (lane 4);
1.63 pmol (lane 5); 0.82 pmol (lane 6); 0.41 pmol (lane 7); B:
complex G4 DNA.AF formed with radioactive G4 DNA plus AF at
0.93 pmol (lane 8); 0.41 pmol (lane 9); 0.23 pmol (lane 10); 0.12
pmol (lane 11); 0.06 pmol (lane 12); C: G4 DNA (lane 1); D:
denatured G4 DNA alone (lane 2) or with 0.93 pmol AF (lane 13) or
with 6.5 pmol GST-Stm1p (lane 14).

Fig. 4:  association of ribosomal subunits by Stm1p. Equal amounts of dissociated ribosomes (1.2 A260 units) were incubated at 3 mM Mg2+

as described in experimental procedures, with (A) none protein, (B) 6.23 pmol Stm1p, and (C) 6.23 pmol association factor. At the end of
the incubations, the samples were layered over 10-32% linear sucrose gradients as described.

1  2  3  4  5  6 7  8  9 10 11 12 13 14
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DISCUSSION

Given that the yeast S. cerevisiae has its genome com-
pletely sequenced (Goffeau et al. 1996), we demonstrated
that a peptide from AF has a sequence 86% identical to
sequences within the protein encoded by the single-copy
S. cerevisiae STM1 gene. Also, it was recognized that AF
binds specifically to quadruplex and Pu triplex DNA simi-
lar to Stm1p. The  protein Stm1p associates ribosomal
subunits as AF does. Although this indicates that the
structural similarity between these two proteins is enough
to generate a sharing of their activities, these proteins
have still a significant difference in their relative molecu-
lar weights.  AF gene encodes a 43-kDa protein and STM1
gene encodes  a 32-kDa protein.

A piece of information that will be very important to
understand the nature of the dissimilarity between these
two proteins is the determination of the complete se-
quence of AF. This will allow computer-assisted align-
ment of the protein sequence of Stm1p with AF sequences
that will show which region of the AF is absent in the
Stm1p. This difference of about 11 kDa could not repre-
sent simply post-translational modifications of the AF
protein. This point is supported by the fact  that AF is not
a glycoprotein (data not shown). The variation in molecu-
lar mass could be explained by several alternatives: a)
Stm1p could result from proteolytic cleavage of the full-
length AF protein. This is a common post-translational
modification; b) Stm1p could be originated by alternative
initiation of translation of the AF message. This mecha-
nism has been reported for other proteins (Han & Zhang
2002, Prats & Prats 2002); c) the two proteins could be
synthesized from mRNA isoforms generated by alterna-
tive splicing. Several related proteins are produced using

this post-transcriptional control (Auboeuf et al. 2002,
Waltzer et al. 2002) which is known to be related to changes
in intracellular pH, cell cycle or tissue specificity (Vallano
et al. 1999, Dahme et al. 2002, Xu et al. 2002). To clarify this
last possibility oligonucleotide primers designed to the
Stm1p sequence could be used to screen a yeast cDNA
library. If two cDNA clones are found, one should encode
AF and the other Stmp1. Sequence analysis of these clones
will reveal the difference between the isoforms.

At this point, we should ask one important question:
are the biological functions of these proteins related? Our
data strongly suggest that AF acts in the protein synthe-
sis process whereas the information obtained in the lit-
erature about the function of Stm1p is very diverse. One
of the activities reported for Stm1p is related to the pro-
tein synthesis process. That is: STM1 acts as a multicopy
suppressor of temperature-sensitive mutants which are
defective in ribosome synthesis by affecting several early
steps in the rRNA processing pathway (Tabb et al. 2001).
Therefore, this data suggest that Stm1p may have an ef-
fect on the ribosomal function, vital for the mRNA trans-
lation, which may be a functional link between AF and
Stm1p.

Another unsolved aspect is whether a concerted ac-
tion between the two activities (quadruplex and Pu triplex
DNA binding and association of ribosomal subunits)
present in both proteins exists or not, when these polypep-
tides are fulfilling their biological functions. Additional
experiments are necessary to clarify these issues.
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