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Mechanisms of Cell Accumulation Induced by
Mycobacterium bovis BCG
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Mycobacteria, specially Mycobacterium  tuberculosis are among the micro-organisms that are in-
creasing dramatically the number of infections with death, all over the world. A great number of animal
experimental models have been proposed to investigate the mechanisms involved in the host response
against these intracellular parasites. Studies of airway infection in guinea-pigs and rabbits, as well as,
in mice intravenously infected with BCG have made an important contribution to our understanding of
the virulence, pathogenesis and the immunology of mycobacterial infections. Although, there are few
models to study the mechanisms of the initial inflammatory process induced by the first contact with the
Mycobacteria, and the relevance of the acute generation of inflammatory mediators, cytokines and
leukocyte infiltration to the development of the mycobacterial infection. In this work we reviewed our
results obtained with a model of M. bovis BCG-induced pleurisy in mice, describing the mechanisms
involved in the leukocyte influx induced by BCG at 24 hr. Different mechanisms appear to be related
with the influx of neutrophils, eosinophils and mononuclear cells and distinct inflammatory mediators,
cytokines and adhesion molecules are involved in the BCG-induced cell accumulation.
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Over a century ago, Robert Koch identified
Mycobacterium tuberculosis as the causative agent
of tuberculosis in humans. He was the first to realise
that the efficacy of his early therapies with soluble
extracts of M. tuberculosis depended largely on the
patient’s immune-cell response.

Mycobacteria, specially M. tuberculosis are
among the micro-organisms that are increasing dra-
matically the number of infections with death, all
over the world (Chrétien 1995).

Mycobacteria are small, aerobic, gram-positive,
acid-fast, nonmotile and nonspore-forming bacilli.
They consist of a large group including pathogenic,
non-pathogenic, and saprophytic species that com-
monly are of environmental origin (Hines II 1995).
Characteristically, mycobacteria presents a com-
plex cell wall associated to the membrane. The cell
wall structure and composition (Fig. 1) is related
to the ability of the intracellular parasitic species
of mycobacteria to survive in the hostile environ-
ment of the phagossome of macrophages, as well
as with the cytotoxic and immunological effects
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of these micro-organisms. (Fenton & Vermeulen
1996).

Tuberculosis infection is caused by M. tuber-
culosis, M. bovis or M. africanum. Because of its
close phylogenetic and pathogenic relationship,
they were grouped as the M. tuberculosis complex
(MTC) and are considered to be interchangeable
as etiologic agents of human and animal tubercu-
losis (Griffin et al. 1995).

While tuberculosis represents nowadays the
most threatening disease caused by intracellular
bacteria, our understanding of the cellular and
molecular interactions between mycobacteria and
host cells is far from complete.

The initial events during a primary pulmonary
infection with MTC are poorly understanding and
there are few models to evaluate the sequence of
events that follows the first contact of the host with
the mycobacteria.

In this article, we review the current state of
understanding of the early events that happen dur-
ing the primary contact with mycobacteria.

ANIMAL MODELS

Studies with laboratory animals (guinea-pigs
and rabbits) have significantly enhanced our un-
derstanding of the aetiology and pathogenesis of
tuberculosis. Humans, cattle, deer, guinea-pigs and
rabbits have similar pathology, but differ in their
susceptibility to tuberculosis (Smith & Wiegeshaus
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1989). Although studies in guinea-pig and rabbit
have made an important contribution to our un-
derstanding of the virulence and pathogenesis of
tuberculosis, they have limited use for the study of
the protective immune response (Dannemberg
1991, Griffin et al. 1995).

Since 1970, mice have largely replaced guinea-
pigs and rabbits as the animal model to study the
immunology of mycobacterial infections. Most of
the studies on the role of macrophages and mono-
cytes and its interaction  with T cells were done in
mice intravenously infected with BCG (Kaufmann
1993).

THE EARLY EVENTS

The initial events during a primary pulmonary
infection with MTC are poorly understood and
there are few models to evaluate the sequence of
events that follow the first contact of the host with
the mycobacteria. We have recently described the
experimental model of mouse pleurisy induced by
M. bovis BCG. We used the pleural cavity of the
mouse because is a straightforward and well-es-
tablished model (Henriques et al. 1990, 1996,
Bozza et al. 1994).

The injection of M. bovis BCG into mouse pleu-
ral cavity induces an intense biphasic inflamma-
tory reaction that peaks at 24 hr and 15 days. At 4
hr occurs an influx of neutrophils that is maximal
at 24 hr. At this time it is also observed an intense
influx of eosinophils and mononuclear cells. An-
other leukocyte influx is observed at 15 days com-
posed by mononuclear cells and some neutrophils
(Menezes-de-Lima-Junior et al. 1997).

Neutrophils are the predominant leukocytes to
arrive at sites of acute inflammation, capable of
defending the host against bacterial infections.
Neutrophils accumulation is also intimately asso-
ciated with oedema formation and the recruitment
of other phagocytic leukocytes such as monocytes
(Nourshargh 1993). The neutrophil influx induced
by i.t. BCG is in accordance to the description of
neutrophil migration to peritoneal cavity of rab-
bits inoculated with BCG (Appelberg 1992) and
to rabbit pleural cavity after BCG instillation
(Antony et al. 1985). Furthermore, neutrophils are
described in pleural exudate of tuberculosis patients
(Montgomery & Lemon 1933).

Eosinophils are also capable of phagocyte and
killing bacteria in vitro, and have a specialised role
in the inflammatory process involved in protec-
tive responses against helmintic parasites
(Nourshargh 1993). Furthermore has been recently
reported that eosinophils accumulate in pleural
cavity after injection of endotoxin (Bozza et al.
1993) suggesting an involvement of these cells in
pulmonary inflammation induced by bacterial
products. On the other hand, eosinophil accumu-
lation induced by mycobacteria is poorly described.
Although eosinophilia is observed sometimes in
broncoalveolar lavage of tuberculosis patients
(Vijayan et al. 1992, Nakamura et al. 1993), eosi-
nophil accumulation  induced by M. tuberculosis
or M. bovis BCG in animal experimental models
has not been described so far. However, Castro et
al. (1991) have described that M. avium or M.
smegmatis are able to induce eosinophil accumu-
lation in mouse air pouch.

Fig. 1: the Mycobacterium tuberculosis cell wall.  Adapted from the structure proposed by Fenton and Vermeulen ( 1996).
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We have analysed the inflammatory mediators
and cytokine involved in eosinophil accumulation
induced by BCG comparing with those involved
in neutrophil accumulation (Fig. 3). Lipoxygenase
products, PAF-acether and interleukin-5 seem to
be involved in eosinophil accumulation (Menezes-
de Lima-Júnior et al. 1996, 1997).

PAF and LTB4 can activate both neutrophils
and eosinophils and are able to induce in vivo eosi-
nophil and neutrophil accumulation in different
models (Wardlaw et al. 1986, Czarnetzki & Csato
1989, Martins et al. 1989, Silva et al. 1991). The
participation of lipid mediators (PAF and
leukotrienes) and cytokines such as IL-8, TNF, IL-
1 and GM-CSF in neutrophil accumulation to in-
flammatory focus It is well known (Nourshargh
1993). However our results show that PAF and
derivative products from cyclo and lipoxygenase
are not involved in neutrophil influx at 24 hr after
BCG i.t.. It is noteworthy that neutrophil influx
presented 4 hr after BCG is inhibited by the PAF
antagonist WEB 2170, suggesting a differential
mechanism of neutrophil migration at 4 and 24 hr
after BCG-induced pleurisy (Menezes-de-Lima-
Júnior et al. 1997).

At 24 hr, only dexamethasone or L-NAME
were able to inhibit the neutrophil accumulation
as well as eosinophil influx (Menezes-de-Lima
Júnior et al. 1997). The participation of NO in leu-
kocyte chemotaxis in vitro has been investigated
(Kaplan et al. 1989, Belenky et al. 1993) although
a few in vivo studies have been performed with
eosinophil (Teixeira et al. 1993, Ferreira et al.
1996). The sources of NO are probably the mac-
rophages from the pleural cavity. It is known that
mouse pleural macrophages can phagocyte M.
bovis BCG in vitro (Zlotnik & Crowde 1982). It
was also described that peritoneal macrophages
from M. bovis BCG-infected mice produces nitric
oxide (Saito & Nakano 1996). We have also dem-
onstrated that pleural macrophages from mice in-
jected i.t. with BCG, produces significant levels
of NO in contrast to resident macrophages
(Werneck-Barroso et al. 1996)

The treatment with a neutralising monoclonal
antibody (mAb) anti-TNF-α has indicated that this
cytokine is involved in neutrophil but not eosino-
phil migration induced by BCG pleurisy (Menezes-
de-Lima-Júnior et al. 1997). A number of cytokines
can regulate the accumulation and activation of
neutrophils and eosinophils. TNF acts on endot-
helial cells to enhance their interaction with neu-
trophils and eosinophils. The dose-response rela-
tionship and kinetics of TNF-stimulated endothe-
lial cell adhesiveness for neutrophils is similar to
that for eosinophils (Nourshargh 1993). However,
in our results with BCG induced-pleurisy, TNF-α

seems to have a more important effect on neutro-
phil migration (Menezes-de-Lima-Junior et al.
1997). It was recently demonstrated that TNF-α
produced by macrophages in response to PPD (the
soluble antigen released from M. tuberculosis) can
regulate NO production by these cells (Saito &
Nakano 1996). This regulation between NO and
TNF-α can be a putative mechanism that is modu-
lating the neutrophil migration induced by BCG in
mouse pleural cavity.

INVOLVEMENT OF ADHESION MOLECULES

An important early event in the recruitment of
leukocytes from the microcirculation to tissues is
their interaction with vascular endothelial cells. In
vitro and in vivo studies have suggested that this
process involves a sequence of discrete events in-
volving different families of cell adhesion mol-
ecules (Springer 1994). In the initial phase, leuko-
cytes marginates to the wall of postcapillary
venules and roll along the endothelial cells and this
process is mediated by the selectin family of adhe-
sion molecules (Ley et al. 1995). Then, leukocytes
must firmly adhere to the vessel wall to migrate to
the site of tissue irritation, a step mediated by an-
other family of adhesion molecules the integrins
(Fig. 2). The role of adhesion molecules during
mycobacterial infection is not clear. We have in-
vestigated the role of integrins and L-selectin in
acute cell migration induced by i.t. BCG (Fig. 3).
The leukocyte integrin, CD11b/CD18 complex
seems to have a role in neutrophil and mononuclear
cell accumulation. Moreover the integrins CD11b/
CD18 and VLA-4, seemed to not be related with
eosinophils migration whereas L-selectin appears
to be responsible for the neutrophil and eosinophil
migration induced by BCG (unpublished results).
The role of CD11b/CD18 and L-selectin in neu-
trophil migration is well demonstrated in vivo with
other inflammatory agents (Rossi & Hellewell
1994).

However, the adhesion receptors involved in
eosinophil recruitment at inflammation in vivo are
less clearly understood. Blocking either CD18 or
ICAM-1 has been shown to reduce eosinophil ac-
cumulation in vivo (Wegner et al. 1990, Teixeira et
al. 1994). In addition, blocking VLA-4 in vivo has
been shown to reduce eosinophil accumulation in
some but not all models (Teixeira et al. 1995). Our
results showed that neither the mAb anti- CD11b/
CD18 nor the anti-VLA-4 were able to inhibit eosi-
nophil accumulation induced by BCG. One possi-
bility is that both integrins should be simulta-
neously blocked to inhibit eosinophil migration as
it is observed  in lung eosinophilia induced by
Sephadex (Das et al. 1995). Another possibility is
the participation of α1β2 or α4β7 integrin, both de-
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scribed to be expressed in eosinophil surface
(Teixeira et al. 1995, Lobb et al. 1996). A recent
study in a xenogeneic mesentery model has dem-
onstrated that the rolling of human eosinophil in
IL-1β-treated rabbit mesenteric venules is reduced
in approximately 40% by anti-L-selectin mAbs
(Sriramarao et al. 1994). However a role for
selectins in mediating eosinophil migration to sites
of inflammation in vivo has only been recently
demonstrated in LPS mouse pleurisy model
(Henriques et al. 1996). Our results in BCG pleu-

risy model have confirmed a role for L-selectin in
eosinophil influx induced by bacterial agents.

Taken together, our results have shown that
mouse pleurisy induced by BCG is a useful model
to study the inflammatory reaction that occurs dur-
ing the primary infection with mycobacteria. This
model should be helpful to improve our under-
standing of the role of leukocytes and cytokines in
the delicate balance between strategies used by
Mycobacteria to survive within a host and con-
comitant efforts of the host to kill it.

Fig. 2: leukocyte migration to the inflammatory focus.

Fig. 3: inflammatory mediators, cytokines and adhesion molecules involved in the leukocyte accumulation induced by BCG in
mouse pleural cavity.
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