
Manuscrito – Rev. Int. Fil. Campinas, v. 40, n. 1, pp. 241-278, jan.-mar. 2017. 

Einstein’s physical chronogeometry 
 
Mario Bacelar Valente 
 

Universidad Pablo de Olavide 
Department of Philosophy 
Sevilla 
Spain 
mar.bacelar@gmail.com 
_________________________________________________________________ 
Article info 
CDD: 530.11 
Received: 21.03.2017; Accepted: 23.03.2017 
DOI: http://dx.doi.org/10.1590/0100-6045.2017.V40N1.MV 
____________________________________________________________________________________________________ 

Keywords 
physical geometry 
Einstein 
synchronization of clocks 
____________________________________________________________________________________________________ 

ABSTRACT  
In Einstein’s physical geometry, the geometry of space and the uniformity of time are 
taken to be non-conventional. However, due to the stipulation of the isotropy of the 
one-way speed of light in the synchronization of clocks (or definition of simultaneity), as 
it stands, Einstein’s views do not seem to apply to the whole of the Minkowski space-
time. In this work we will see how Einstein’s views can be applied to the Minkowski 
space-time. In this way, when adopting Einstein’s views,  chronogeometry is a physical 
chronogeometry. 
___________________________________________________________________________________________________ 

 
 

1. Introduction 
 
The purpose of this work is to show that Einstein’s views regarding 

geometry as a practical or physical geometry1, 2 can be applied to the 

                                                 
1 Einstein distinguishes axiomatic geometry from practical or physical geometry. 
We start with the idea of geometry as “pure” mathematics: “[Euclidean] 
geometry means originally only the essence of conclusions from geometric 
axioms; in this regard it has no physical content” (Einstein 1914, 78). However, 
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whole of the Minkowski space-time.3 Contrary to Poincaré’s 
conventionalism, the Euclidean spatial geometry and the uniform time 
are not conventional according to Einstein. However, Einstein did not 
address the whole of the chronogeometry in this respect. In fact, to 
Einstein the notion of coordinate time is related to a stipulation based on 

                                                                                                         
geometry can be “amended” so that it becomes a physical science: “[Euclidean] 
geometry becomes a physical science by adding the statement that two points of 
a “rigid” body shall have a distinct distance from each other that is independent 
of the position of the body” (Einstein 1914, 78). This leads to the view that: 
“After this amendment, the theorems of this amended [Euclidean] geometry are 
(in a physical sense) either factually true or not true” (Einstein 1914, 78). In 
“geometry and experience”, from 1921, Einstein argues that more than 
“amended”, axiomatic geometry has to be “completed”. According to Einstein, 
“geometry must be stripped of its merely logical-formal character by the 
coordination of real objects of experience with the empty conceptual schemata 
of axiomatic geometry … Then the propositions of Euclid contain affirmations 
as to the behavior of practically-rigid bodies. (Einstein 1921a, 210-1). In this 
way, “geometry thus completed is evidently a natural science … We will call this 
completed geometry “practical geometry”” (Einstein 1921a, 211).  

2  Instead of using the term “practical geometry” we will adopt, following Paty 
(1992), the term “physical geometry”. In our view it gives a more direct sense of 
Einstein’s view of geometry as a physical science, or, using his words, as “the 
most ancient branch of physics” (Einstein 1921a, 211). Also, the term “physical 
geometry” gives a more direct sense of the very direct relation of geometry and 
experimental measurements, since it is a physical science with a clear 
experimental counterpart. Accordingly, “the concept of distance corresponds to 
something that can be experienced. Geometry then contains statements about 
possible experiments; it is a physical science directly subjected to experimental 
testing” (Einstein 1924, 326). 

3 This work is circumscribed to this objective. It is not an argument to endorse 
Einstein’s views on geometry. It is important to notice that Einstein considers 
that his idea of practical or physical geometry applies to the “practical geometry 
of Riemann, and therefore the general theory of relativity” (Einstein 1921a, 
213). The semi-Riemannian space-time is locally Minkowskian. This means that 
if we cannot apply Einstein’’s views to the Minkowski space-time we also 
cannot apply them in the context of general relativity. 
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the “light postulate” (see, e.g., Einstein 1905, 141-2; Dieks 2010, 231-3). 
This might give the impression that the issue of the conventionality of 
the one-way speed of light (or the conventionality of simultaneity) is 
unrelated to the conventionality of geometry, and that, independently of 
this, Einstein’s views on geometry do not apply to the totality of the 
geometrical structure of the theory.  

In part 2, we will review Einstein’s version of Poincaré’s 
conventionality of geometry and see why Einstein considers that the 
spatial geometry and the uniform time are not conventional. In part 3, 
we will see that the conventionality of the one-way speed of light is a 
case of Einstein’s conventionality of geometry. In this situation we 
would be facing a conundrum. On one side, Einstein argues that the 
spatial Euclidean geometry and the uniform time are non-conventional. 
On the other side, the whole of the Minkowski space-time would have a 
conventional element, since the light cone structure (corresponding to a 
particular definition of the one-way speed of light) – or, equivalently, the 
determination of the coordinate time – would be conventional. This 
would mean, after all, that in part the geometrical structure of the theory 
is determined conventionally. In part 4, we will see that Einstein’s views 
on geometry as physical geometry can be extended to the whole of the 
Minkowski space-time. We will consider a synchronization procedure 
that does not rely on light propagation, which is necessary if we want to 
consider derivations of the Lorentz transformations that do not depend 
on the “light postulate”. By taking into account Einstein’s views related 
to the non-conventionality of the (spatial) Euclidean space and the 
uniform time, it is possible to show that this synchronization procedure 
does not have any implicit conventional element.4 This leads to a non-

                                                 
4  As we will see in section 4, the synchronization procedure being considered, 
which falls in the category of synchronization by clock transport, is non-
conventional in a, certainly for some, philosophically weak sense that does not 
contradicts the conventionalists criticism of similar synchronization procedures: 
if we take the philosophical stance that the length congruence and the time 
interval congruence are physical and non-conventional in Einstein’s sense, then 
it follows that distant simultaneity is also physical and non-conventional (which 
can be shown by adopting a clock transport synchronization procedure).  
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conventional coordinate time, which implies that, when adopting 
Einstein’s view of geometry as physical geometry, the whole of the 
chronogeometry is non-conventional.  

 
 

2. Einstein and the non-conventionality of geometry and uniform 
time 

 
Let us consider a gedanken experiment: we take several (straight) rods 

that experimentally are always congruent (i.e. rods that when compared 
always have the same length).5 Let us consider the disposition 
(placement) of the rods within an inertial reference frame,6 making for 

                                                 
5 We can even consider these rods to give our adopted metrological unit of 
length. In fact, the unit of length was metrologically defined in terms of a 
platinum-iridium bar until 1960 (see, e.g., Giacomo 1984). 

6 As Barbour mentioned, “Einstein never gave much serious thought to the 
issue of the determination of inertial frames of reference” (Barbour 2007, 588). 
In fact, according to Einstein, “[we assume] that an observer attached to a 
coordinate system is able to determine by experiment whether the system is or is 
not in accelerated motion” (Einstein 1910, 123). More than this, Einstein 
basically gave cursory definitions of inertial reference frames, in terms similar to 
that of classical mechanics. According to Einstein, “[special relativity] takes 
from earlier physics the assumption of the validity of Euclidean geometry for 
the possible positions of rigid bodies, the inertial frame, and the law of inertia” 
(Einstein 1923, 76). In this way, “the inertial frame and time in classical 
mechanics are best defined together by a suitable formulation of the law of 
inertia: It is possible to determine time in such a way and to assign to the 
coordinate system such a state of motion (inertial frame) that, with reference to 
the latter, force-free material points undergo no acceleration” (Einstein 1923, 
75). Another definition along these lines is: “it is possible to choose a [inertial 
reference frame] that is in such a state of motion that every freely moving 
material point moves rectilinearly and uniformly relative to it” (Einstein 1915, 
249).  

For the purpose of this work we will address briefly two issues. As it is, these 
“definitions” of inertial reference frame seem to be inconsistent in the context 
of special relativity (that they are incomplete has been noticed by Torretti (1983, 



  Einstein’s physical chronogeometry 245 

Manuscrito – Rev. Int. Fil. Campinas, v. 40, n. 1, pp. 241-278, jan.-mar. 2017. 

example identical planar figures. These figures are the same (congruent) 
independently of the chosen plane and their position and orientation in 
the plane. We find out that the placement of the rods corresponds to the 
Euclidean geometry when identifying the rods with line segments. 

According to Poincaré this conclusion would be wrong. In his view 
the (mathematical) congruences in a geometrical space can be such that 
correspond to Euclidean geometry or, e.g., Lobatschewsky’s geometry 

                                                                                                         
51)). One is defining the inertial reference frame using the law of inertia. 
However, the law of inertia, in its standard formulation, seems to require first a 
definition of distant simultaneity in the inertial reference frame (see also 
footnotes 11, 12, and 17). To say that a free body travels equal distances in equal 
times presupposes the synchronization of the clocks of the reference frame that 
will measure the time gone by the free body when moving rectilinearly. But to 
synchronize the clocks we first consider them to be part of the inertial reference 
frame (see, e.g, Einstein 1905, 141-2; Einstein 1907, 255-7; Einstein 1910, 125-
8). It seems that we would have a circularity in this definition. This can be 
avoided, following Einstein’s own views, by defining the inertial reference frame 
in relation to the rectilinear motion of free bodies and the rectilinear 
propagation of light rays (Torretti 1983, 51-2). This avoids, at this point, any 
mention to the uniformity of time, as it is made in the law of inertia. The 
“inertial motion” is just characterized, e.g., in terms of the rectilinear motion of 
free bodies (without any reference to the uniformity of time). The other aspect 
we want to mention is that these definitions rely on the notion of free body 
(“force-free material points”). It seems that we are relying on a notion that is 
only meaningful in the context of the whole theory, after dynamics is developed. 
In a way similar to Friedman (1983, 118) we can make the case that the early 
reference to the notion of “free body” is not inconsistent, since the theory in its 
completion provides, so to speak, a self-consistent improved or complemented 
definition, in which a free body is characterized as a body not subjected to 
(dynamical) interactions. The early reference to “free body” in the context of the 
definition of inertial reference frame is consistent with the notion of free body 
arising from the whole theory, i.e. the theory enables a meaningful notion of 
free body (in particular in the case of special relativity it is a body not subjected 
to any electromagnetic interaction or applied forces). We have however to be 
careful, when referring to “free body” in its early elusive meaning, not to 
presume aspects that are only meaningful in the context of the whole theory 
(see also footnote 23). 
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(Poincaré 1902, 92-3). There is in Poincaré’s view no relation between 
the concrete material congruence that one can observe and the 
congruence of geometrical figures. In particular, one cannot relate a 
concrete material congruence to a mathematical congruence (see, e.g., 
Paty 1992, 11). Experimentation does not preclude any geometry, since a 
theory of physics can be reformulated when changing the adopted 
geometry in a way that it still agrees with experimental results. This does 
not mean that to Poincaré geometry and physical theories are on an 
equal footing. As Paty writes, to Poincaré there is no interdependence of 
geometry and physical theory, what we have is “a dependence of the 
physical formulation on the geometrical definitions” (Paty 1992, 12). 

To Einstein, even if Poincaré’s ideas are appealing, the special and 
general theories of relativity do not conform to the conventionality of 
geometry (see, e.g., Einstein 1921a; Einstein 1949b, 685-6). In this way, 
in the present stage of development of physics,  it is necessary to 
“overrun” provisionally geometric conventionalism, even if,  according 
to Einstein,  conventionalism is ultimately the “right” philosophical 
position (see, e.g., Einstein 1949b; Paty 1993, 300-7; Friedman 2002, 
200-1; Ryckman 2005, section 3.3; see also Giovanelli 2014). To 
Einstein, Euclidean geometry is not, like to Poincaré, an abstract 
geometry (i.e. pure mathematics), it is a practical geometry: the geometry 
of the disposition (placement) of practically rigid bodies (that are, 
implicitly, inertial). As such it is a physical science.7 The crucial point that 
warrants this view of geometry as physical geometry, is Einstein’s 
realization that, at the present stage of development of mathematical 

                                                 
7 As Einstein mentions, Poincaré takes the fact that real solid bodies in nature 
are not rigid to advocate for a view of geometry in which geometrical objects do 
not correspond to real bodies (Einstein 1921a, 212). As Paty stresses, 
“geometry, in Poincaré’s conception is completely disconnected from 
measurable properties of physical bodies” (Paty 1992, 11). However, as Einstein 
calls the attention to, “it is not a difficult task to determine the physical state of 
a measuring-rod so accurately that its behaviour relatively to other measuring-
bodies shall be sufficiently free from ambiguity to allow it to be substituted for 
the “rigid” body. It is to measuring-bodies of this kind that statements as to 
rigid bodies must be referred” (Einstein 1921a, 237). 
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physics, the notion of rod (like the notion of clock) enters the theory’s 
construction as an independent concept that is theoretically self-
sufficient, and not as a complex physical system that is described by the 
theory (see, e.g., Einstein 1921a, 212-3; Einstein 1949a, 59-61; see also 
Giovanelli 2014). Einstein considers that ideally mathematical physics 
should be constructed in accordance to Poincaré’s conventionalism;8 let 
us say, by adopting a simple geometry G (e.g. Euclidean geometry) on 
top of which the physical theory P is built. The rods should not be 
related directly to G but to G + P, e.g. as a solution of mathematical 
equations. In Einstein’s reinterpretation of Poincaré’s conventionality of 
geometry (see, e.g., Paty 1992, 7-8), one could choose a different 
geometry Gnew that when taken together with a reformulation of the 
physics Pref would give exactly the same prediction of experimental 
results. Using mathematical symbols in a heuristic way the idea is that G 
+ P = Gnew + Pref  (Einstein 1921a, 236). 

Einstein calls the attention to the fact that what should be a 
theoretical construct enters the theory as a self-sufficient concept already 
at the level of a physical geometry Gp, since it is established a 
correspondence between the concrete rod and a mathematical element 
of length dr (see, e.g., Einstein 1913b, 157; Einstein 1949a, 71; Einstein 
1922, 322-3). In this way, the issue of what is the appropriate geometry 
becomes an experimental matter. One finds out that, in the case of rods 
in inertial motion, the experimental laws of disposition of rods 
correspond to the Euclidean geometry.9 

Equivalently to the case of the conventionality of geometry there is 
the view that in chronometry (as mathematically conceived), there is a 
freedom to adopt or not the equality (congruence) of consecutive time 

                                                 
8 According to Howard (2014), Einstein’s view that a “completed fundamental 
theory” would be such that conforms to the conventionality of geometry is 
much more the view that such a theory conforms to Duhemian holism (see also 
Ryckman 2005, section 3.3). 

9 In Einstein’s words, “solid bodies are related, with respect to their possible 
dispositions, as are bodies in Euclidean geometry of three dimensions” (Einstein 
1921a, 235). 
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intervals.10 As Poincaré called the attention to, experimentally there is no 
way to determine if two consecutive time intervals are identical (Poincaré 
1898, 2-3). In this way the adoption of a uniform time (in which we take 
successive time intervals to be equal) would be conventional.11 

There seems to be also a freedom to stipulate how we might consider 
distant clocks (of the same inertial reference frame) to give the same time 
reading simultaneously. This was noticed, e.g., by Poincaré, who 
mentioned that “we have not even direct intuition of the simultaneity of 
two [distant] events” (Poincaré 1902, 111). This means, in the context of 
special relativity, that when synchronizing distant clocks of an inertial 
reference frame, e.g., by adopting the Poincaré-Einstein synchronization 
procedure in terms of the exchange of light signals (see, e.g., Darrigol 
2005), one would be implementing a convention. In fact in Poincaré’s 
view, one “admits that light has a constant velocity, and in particular that 
this velocity is the same in all directions. This is a postulate without 
which no measure of this velocity can be tried” (Poincaré 1898, 11). This 
would imply that there would be a conventional element in the 
determination of the coordinate time. 

In terms of Einstein’s approach to the conventionality of geometry, 
when adopting different chronometries by choosing a different 
congruence relation between successive time intervals and/or a different 
synchrony convention (in case we can see this convention as a case of 

                                                 
10 In this work we treat at an equal footing the physical space (interval) 
congruence and physical time (interval) congruence, which is the natural thing 
to do when adopting Einstein’s views (see, e.g., Einstein 1921a; Giovanelli 2014; 
Ryckman 2005, section 3.3). In the case of conventionalist accounts we also find 
authors that also treat the conventional space and time congruences at the same 
level (see, e.g., Grünbaum 1968). 

11 That there might be something conventional in the notion of uniform time, 
which, e.g., is part of Newton’s notion of absolute time, is something recurrent 
in treatments of the law of inertia. For example, d’Alembert considered that the 
rectilinearity of the inertial motion is observable while its uniformity is not 
(nevertheless being possible to deduce it), Neumann simply postulated, like 
Newton, the uniformity of time, and Lange considered that the law of inertia 
has conventional elements in it (see, e.g., Coelho 2007).  
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geometrical convention), the differences in the chronometries can be 
compensated for by a change in the physical part of the theory. The 
different versions of the theory would by experimentally 
indistinguishable. 

Any dynamical system (inertial or not) or group of dynamical systems 
in interaction (constituting an “isolated” system) can be used as a clock 
since from their motion (or motions) we can determine a time variable 
that corresponds to the inertial time scale. One example of this is the 
determination of the so-called ephemeris time, which corresponds to the 
inertial time (Barbour 2009).12 More straightforward examples are the 
inertial motion of free bodies, the rotation of the Earth (taken to be 
uniform), and so on (Reichenbach 1927, 117). Besides relying on 
dynamical systems corresponding to the inertial time scale there seems to 
be two other methods of time reckoning, which might be considered 
independent in the present stage of development of physics: light clocks 
and atomic (natural) clocks (Reichenbach 1927, 117). As Reichenbach 
called the attention to, “it is an empirical fact that these three [methods] 
lead to the same measure of [time]” (Reichenbach 1927, 117). 

                                                 
12 According to the law of inertia (which is part both of classical mechanics and 
the “completed” theory of special relativity), equal times are those in which a 
free body, moving in relation to any adopted inertial body of  reference, travels 
equal distances.  The free body becomes a clock giving, in Lange’s words, the 
inertial time scale (see, e.g., Torretti 1983, 16-7). For an analysis, in the context 
of classical mechanics, of the related issues of the role of the law of inertia in the 
definition of an inertial reference frame, the definition of the time scale, and its 
dependence on the notion of free body, see, e.g., Barbour (1989, 645-88); 
Barbour (2007, 578-89), Torretti (1983, 9-20), DiSalle (1990, 140-1), DiSalle 
(2009). The situation in special relativity might be more complex, since 
following Einstein we might need to consider the clocks of an inertial reference 
frame as atomic clocks giving the atomic time scale (see main text). The relation 
between these two time scales in the foundation of the theory is unclear. We will 
consider that it might still make sense in special relativity to speak of inertial 
time in relation to a free body or to address the ephemeris time as an inertial 
time. As we will see in the two final paragraphs of this section (and footnote 19) 
this does not seem to bear on Einstein’s reasons for taking time to be uniform 
non-conventionally. 
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Regarding light clocks, it is not clear that we might consider them as 
related to a time scale independent from an “underlying” time scale. A 
light clock can be idealized, e.g., as two mirrors with light bouncing 
between them. There are simple models of light clocks in which they are 
independent of the particularities of matter (Ohanian 1976, 192-3).13 
These models can be seen ultimately as relying on Maxwell-Lorentz 
electrodynamics, in this way depending on the coordinate time of an 
inertial reference frame.14 

A different situation seems to arise with atomic clocks (atoms). Being 
made of matter, an atomic clock can be in inertial or non-inertial motion. 
As such, it might be the case that, from its motion we might “retrace” 
the inertial time. However it is clear that there is something more: atoms 
emit and absorb radiation at particular frequencies – each have a 
particular “signature” of spectral lines (atomic spectra). According to 
Einstein: 

 
Since the oscillatory phenomena that produces a spectral line 
must be viewed as intra-atomic phenomena whose frequencies 
are uniquely determined by the nature of the ions [(atoms)], we 
can use these ions [(atoms)] as clocks. (Einstein 1910, 124-5) 
 

The “intra-atomic phenomena” of atoms enable another method of 
time reckoning. This gives rise to a new time scale based on a 
metrological definition of the second in terms of the “internal 
oscillations” of cesium atoms (Jespersen and Fitz-Randolph 1999, 53-
61). Experimentally, the atomic time of atomic clocks is universal, i.e. 
shared by all  atomic systems. Also, it turns out that, the inertial time 

                                                 
13 In fact, the light clock can be described in a very general way in terms of light 
bouncing between free particles. These are described in terms of timelike 
geodesics of the Minkowski space-time (which correspond to an inertial 
motion), while the light is described simply in terms of null worldlines (Ohanian 
1976, 192-5; see also Fletcher 2015). 

14 As mentioned in footnote 12, it might not seem possible to identify the 
coordinate time with an inertial time. Adopting Einstein’s views the coordinate 
time is determined by the atomic time (see main text). 
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scale and the atomic time scale coincide. When comparing the rates of an 
atomic clock and an “ephemeris clock” (defined in terms of the motions 
of celestial bodies), the deviation between the clocks/scales is less than 2 
x 10–10 per year (Ohanian 1976, 187-8).  However, this does not mean 
that we can consider the two time scales to be identical, i.e. we cannot 
consider that an atomic clock is merely one particular type of “inertial 
clock”, since in relation to its “intra-atomic phenomena” it is not 
described as a dynamical system in the context of special relativity. The 
“intra-atomic phenomena” giving rise to the atomic time lies outside the 
domain of application of the theory. In fact, even general relativity does 
not provide a field theory of matter, which might describe the 
“workings” of atoms – whose best description at the present time is 
given by quantum mechanics. Already by 1925, while working on a 
tentative unified field theory, Einstein wrote regarding general relativity 
that he became “convinced that Rik – gikR/4 =  Tik is not the right thing” 
(Einstein 1925, 449). Einstein expected to be able to develop an 
extension of the theory unifying gravitation and electromagnetism and 
eventually providing a field description of matter (including the elusive 
quantum aspects. See, e.g., Goenner 2004). An atom (a clock) is not 
described as a solution of general relativity or special relativity. 
According to Einstein: 

 
[The concepts of rod and clock] must still be employed as 
independent concepts; for we are still far from possessing such 
certain knowledge of the theoretical principles of atomic structure 
as to be able to construct solid bodies and clocks theoretically 
from elementary concepts. (Einstein 1921a, 213)15  

                                                 
15 In relation to this issue we must notice that to Einstein, e.g. a light clock could 
not be taken to represent the concept of clock as a solution of the theory in the 
sense given by him. While Einstein mentioned light clocks and other type of 
“inertial clocks” (see, e.g., Einstein 1911, 344; Einstein 1913a, 207), which at 
first sight we might take to be described by special relativity, the theory does not 
provides a theory of matter. We might speculate that from Einstein’s point of 
view we might consider that more than a dynamical theory of light clocks, what 
we have, as mentioned above, are “just” simplified models consisting in timelike 
worldlines taken to represent mirrors and null worldlines representing light rays.  
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The independence of the atomic time scale from the inertial time 
scale enables us to take the time coordinate of an inertial 
reference frame as defined in terms of the atomic time: the 
conceptual change from the inertial time scale to the atomic time 
scale, which is experimentally justified by the identity of the 
scales, results from considering the clocks of the inertial reference 
frame directly as atomic clocks (see, e.g., Einstein 1907, 263; 
Einstein 1910, 134).16  
 

Regarding the atomic time scale given by atomic clocks, it might seem 
that it is possible to make a conventional choice of the time congruence. 
Since the atomic time is common to all atomic systems, one might 
choose a time congruence corresponding, e.g., to a non-uniform time 
(making also a change in the physical part of the theory). Adopting 
Einstein’s views this is not the case. To adopt a conventionalist position 
regarding the uniformity of time,  clocks as physical systems must be 
described as solutions of G + P. This is not the case in special or general 
relativity. According to Einstein, clocks (and rods) are not  “represented 
as solutions of the basic equations” (Einstein 1949a, 59-61). As 
mentioned, in the theory, clocks (and rods) are treated as “theoretically 
self-sufficient entities” (Einstein 1949a, 59-61). In fact, clocks and rods, 
as independent self-sufficient concepts, are related directly to the 
chronogeometry, or more precisely to the line element ds =  – dx2 – dy2 
– dz2 + c2dt2 of the Minkowski space-time. According to Einstein: 

 
the quantity [ds] which is directly measurable by our unit 
measuring-rods and clocks … is therefore a uniquely determinate 
invariant for two neighboring events (points in the four-
dimensional continuum), provided that we use measuring-rods 
that are equal to each other when brought together and 

                                                 
16  In fact, in the actuality the time scale adopted is not the inertial time scale but 
the atomic time scale. It turns out that atomic clocks are much more accurate 
and practical than, e.g., the implementation of the inertial time scale in terms of 
the ephemeris time, which is based on astronomical observations (see, e.g., 
Jespersen and Fitz-Randolph 1999, 110). 



  Einstein’s physical chronogeometry 253 

Manuscrito – Rev. Int. Fil. Campinas, v. 40, n. 1, pp. 241-278, jan.-mar. 2017. 

superimposed, and clocks whose rates are the same when they are 
brought together. In this the physical assumption is essential that 
the relative lengths of two measuring-rods and the relative rates 
of two clocks are independent, in principle, of their previous 
history. (Einstein 1922, 323; see also Einstein 1921a, 213-4; 
Einstein 1921b, 225; Einstein 1918a, 529) 

 
Atomic clocks do exactly that. As Einstein wrote in a letter to Weyl: 

 
If light rays were the only means of establishing empirically the 
metric conditions in the vicinity of a space-time point, a factor 
would indeed remain undefined in the distance ds      (as well as 

in the g’s). This indefiniteness would not exist, however, if the 
measurement results gained from (infinitesimal) rigid bodies 
(measuring rods) and clocks are used in the definition of ds. A 
timelike ds can then be measured directly through a standard 
clock whose world line contains ds. 
Such a definition for the elementary distance ds would only 
become illusory if the concepts “standard measuring rod” and 
“standard clock” were based on a principally false assumption. 
This would be the case if the length of a standard measuring rod 
(or the rate of a standard clock) depended on its prehistory. If 
this really were the case in nature, then no chemical elements with 
spectral lines of a specific frequency could exist, but rather the 
relative frequencies of two (spatially adjacent) atoms of the same 
sort would, in general, have to differ. (Einstein 1918b, 533) 

 
The two issues, the assumption of the independence from the past 

history and the privileged position in the theory of the concepts of 
measuring rod and measuring clock are linked together and sustained by 
the existence of atoms. Two atoms of the same chemical element always 
have the same spectral line when side by side, independently of their past 
history – they are stable. As such, the atoms, which are not described as 
a complex solution of special or general relativity, provide a standard for 
time (and  length) that can be used in the physical interpretation of the 
invariant ds (and in the physical justification of this invariance). 

At this point we can apply to the case of (part of the) chronometry an 
argument equivalent to Einstein’s argument for taking Euclidean 
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geometry to be a physical geometry. Like the rod is “transcribed” into 
the theory as the spatial element dx, dy, or dz (to simplify we will 
consider a generic dr), the clock is associated directly with a time element 
dt at a point:  “the time difference t2 – t1 of two events taking place at 
the same point of the coordinate system can be measured directly by a 
clock (of identical construction for all points) set up at this point” 
(Einstein 1915, 262). In the same way that we identify dr directly with 
the length of a rod, which “fixes” the (spatial) geometry non-
conventionally, we identify dt directly with the reading of an atomic 
clock, implying a non-conventional uniform time.  

There is however an oversimplification on Einstein’s part regarding 
this issue. In relation to the line element ds2 = c2dt2 – dr2, Einstein 
mentions that it is “directly measurable by our unit measuring rods and 
clocks” (Einstein 1922, 323). This statement is general enough to be 
correct even if it is not being spelled out an important point regarding 
time intervals: only when considering a particular location in the inertial 
reference frame is dt associated to a measurement made by just one 
clock. However, in several places, Einstein writes statements like the 
following: “[dr] is measured directly by a measuring rod and [dt] by a 
clock at rest relatively to the system” (Einstein 1922, 351; Einstein 
1913a, 211; Einstein 1914, 33).  Only when dr = 0 is dt associated to a 

measurement made by just one clock. In general, when dr  0, dt must 
be related to measurements made by two clocks. In this case we are 
dealing with the coordinate time and, e.g. adopting Einstein’s approach, 
the synchronization of clocks must be taken into account. As Einstein 
noticed, “only the times of events occurring in the immediate vicinity of 
[a] clock can be ascertained directly by means of the clock” (Einstein 
1915, 253). In this way, “to determine the time at each point in space, we 
can imagine it populated with a very great number of clocks of identical 
construction” (Einstein 1910, 125). At this point, the clocks' readings are 
unrelated. We have a coordinate time after we establish a relation 
between the individual time readings of all the clocks. As it is well-
known, Einstein arrives at the coordinate time by considering the clocks 
to have been synchronized, such that the time light takes to travel from a 
point A to a point B (as measured by two identical clocks located at A 
and B) is the same in both directions (see, e.g., Einstein 1910, 126-7). 
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When dr  0, we are considering two points A and B of the inertial 
reference frame at a distance dr = rB – rA. To these points, it is 
associated the same time coordinate t (as defined by the synchronization 
of each clock “located” at each point). In this way, dt is not a (pre-
synchronization) time interval of an individual clock but the (post-
synchronization) time interval of the two clocks (at a distance dr). To 

measure dt (with dr  0) we need to consider the time reading of each of 
the two clocks, i.e. dt = tB – tA.  

In relation to the first case (dr = 0) we can adopt Einstein’s views and 
consider a theoretically self-sufficient conceptual clock as the 
counterpart of the concrete atomic clock. In this way, we can identify the 
time element dt (with dr = 0) directly with the time measurement of an 
atomic clock. According to Einstein, this situation precludes any 
conventionality in the mathematical congruence of successive dt (with dr 
= 0; i.e. corresponding to the same clock, but valid for all clocks), and 
the uniformity of time follows. However, this is not enough to make a 
case for a physical chronogeometry, since in the chronometric part of 
the chronogeometry G is “included” not only the congruence of 
successive time intervals but also the setting of the notion of same-time-
at-a-distance, i.e. the synchrony of distant clocks. Einstein did not 
mention, in the context of his writings on physical geometry, if this 
relation might be set in a non-conventional way. Right now, based on 
Einstein’s arguments, we can only consider that the (local) atomic time is 
taken to be uniform non-conventionally. We cannot arrive at the same 
conclusion regarding the coordinate time.17 

When considering the case of the inertial time scale, Einstein’s 
argument for a physical uniform time seems not to apply. It seems that 
we do not need an independent, theoretically self-sufficient, concept – 

                                                 
17 At this point it is still unclear the exact meaning of the “uniformity” of the 
inertial motion in the law of inertia, since so far we have not considered how the 
synchronization of clocks might affect the form of the law of inertia. If it turns 
out that the synchronization is a conventional element in the mathematical 
structure of the theory G, then, according to Einstein’s views, the physical part, 
including the law of inertia, might be affected by the implementation of a 
different Gnew due to the adoption of a different synchronization procedure. 
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the clock – in this case. Time is already being expressed directly in the 
motions – e.g. as the ephemeris time. As mentioned, any dynamical 
system, be it an inertial body or e.g., a mechanical clock, has its motion 
described in terms of the inertial time, at least in classical mechanics. If 
this also holds in special relativity (even if partially), this might mean that 
from the motion(s) of some dynamical system one could determine the 
inertial time. The existence of the inertial time would be already 
“implemented” in the theory without the need of any further concept 
like “clock” – at least not as an independent concept.18 In this approach 
the time congruence is not settled.  

We could be facing a puzzling situation here. If we develop special 
relativity in terms of the inertial time scale without taking into account 
the atomic time scale (and for the sake of the argument we will take for 
granted that this can be done), we arrive at least at one conventional 
element in the time scale: the congruence of successive time intervals. By 
adopting Einstein’s approach we arrive at a non-conventional uniform 
time scale (for each clock individually; not for the time coordinate of the 
inertial reference frame, for which it is necessary to take into account the 
synchronization of the clocks). Since in the present stage of development 
of physics these time scales are at least to some point independent, this 
seems to be a possibility. However, experimentally, we already know that 
the time scales are identical. If the congruence of successive time 
intervals is not conventional in the case of the atomic time then we are 
not free to choose conventionally the time congruence of the inertial 
time.19 

                                                 
18 A (inertial) clock could be in this case a dynamical system that “manifests” or 
is “lock onto” dynamically described processes (motions) “directly and 
exclusively governed by the local inertial frame of reference” (Barbour 2007, 
581; see also Barbour 2009).     

19 In this part we are rephrasing Einstein’s views in terms of the atomic time 
scale. While Einstein explicitly associated the notion of conceptual clock to that 
of atomic clocks (see, e.g., Einstein 1918b, 533; Einstein 1921a, 214; see also 
Giovanelli 2014),  obviously he did not develop his views in terms of the related 
atomic time scale, only established in 1967 (see, e.g. Jespersen and Fitz-
Randolph 1999, 110). Also, since when adopting Einstein’s views, we need 
clocks to give a physical meaning to the line element, in the context of special 
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3. The conventionality of simultaneity as a case of Einstein’s 
version of the conventionality of geometry  

 
In Einstein’s approach, the “light postulate” is an essential element in 

the deduction of the Lorentz transformations. According to Einstein, 
Maxwell-Lorentz electrodynamics implies that there is at least one 
inertial reference frame in which light propagates with a velocity c that is 
independent of the motion of the emitting body. This “postulate” 
together with the principle of relativity implies according to Einstein that 
light also propagates with velocity c in any other inertial reference frame 
(see, e.g., Einstein 1905; Einstein 1912-1914, 21-2; see also Brown and 
Maia 1993). One way in which Einstein arrives at the Lorentz 
transformations is by considering the equations describing the 
propagation of a spherical wave in two inertial reference frames in 
relative motion. The equations have the same form (with the same 
constant c) in the two inertial reference frames. From these equations 
Einstein deduces the Lorentz transformations (see, e.g., Einstein 1907). 

The propagation of light enters Einstein’s approach at an even more 
basic level, that of determining the time coordinate of an inertial 
reference frame. According to Einstein, to “spread” time in an inertial 
reference frame it is necessary to synchronize (i.e. set the phase of) 
identical clocks of the inertial reference frame. Like Poincaré, Einstein 
proposes a protocol to synchronize the clocks based on the propagation 
of light, according to which “the “time” needed for the light to travel 
from A to B is equal to the “time” it needs to travel from B to A” 
(Einstein 1905, 142). 

                                                                                                         
relativity the idea of an inertial time scale developed independently of any notion 
of clock does not seem to be feasible. Going a bit beyond the scope of this 
work we have tried to show the plausibility that even if this was the case it might 
still be possible to endorse Einstein’s view of a physical time congruence. 
However this is not strictly necessary for the purpose of this work, which as 
mentioned is simply to explore the possibility of extending, within Einstein’s 
physical geometry, the physical space congruence and physical time congruence 
to establish a physical distant simultaneity.  
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Einstein’s approach leads to the view that there is an element of 
conventionality in the synchronization procedure. This approach is 
supposed to suffer from a problem of circularity: to have clocks in phase 
in an inertial reference frame we need to exchange light signals. It is 
presupposed that the speed of light in each direction (the one-way speed 
of light) is the same. However the determination of the one-way speed 
of light is only possible after we have a time coordinate associated to the 
inertial reference frame (in Einstein’s terms, after we set the phase of the 
clocks). This situation leads to the view that the equality of the one-way 
speed of light in different directions and the synchronization of distant 
clocks of an inertial reference frame is a matter of convention (see, e.g., 
Anderson, Vetharaniam, and Stedman, 1998, 96). 

There is a view according to which a synchronization procedure 
presupposing an anisotropic speed of light (i.e. a different one-way speed 
of light depending on the direction) corresponds to a coordinate system 
different from the one arising from a synchronization in which one 
adopts the convention of an isotropic speed of light. That is, different 
synchronization conventions correspond to a recoordinatization within 
the same inertial reference frame (see, e.g., Weingard 1985; Giannoni 
1978, 23). Since any physical theory can be formulated in a generally 
covariant way, one might have the impression that the so-called 
conventionality of the one-way speed of light is but a trivial example of 
general covariance (see, e.g., Norton 1992).  

A somewhat different way to look at this situation is to take the 
choice of a different one-way speed of light (and corresponding 
coordinate system) as an example of a gauge freedom in special relativity. 
Some authors mention the gauge freedom simply as meaning the 
possibility of a recoordinatization (see, e.g., Anderson, Vetharaniam, and 
Stedman, 1998, 98). It is simply a different way to say the same thing. 
However, there are different interpretations of gauge freedom that go 
beyond that. According to Rynasiewicz (2012), in simple terms, the 
Minkowski space-time is only determined up to a diffeormophism of the 
metric. What this means is that the Minkowski space-time does not have 
a defined light cone structure; depending on the stipulation of the one-
way speed of light there is a tilting of the light cone (Rynasiewicz 2012, 
92; see also Edwards 1963). These different light cone structures are 
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physically equivalent and correspond to different conventional choices 
of a criterion for distant simultaneity. In Rynasiewicz’s view this situation 
does not correspond to a passive transformation of the coordinate 
system of the Minkoswki space-time to another coordinate system. What 
we have is an active transformation of the “Minkoswki spacetime to a 
new Minkoswki spacetime” (Rynasiewicz 2012, 93). Thinking about the 
Minkoswki space-time in terms of a manifold E4 in which is defined a 

metric , when applying a diffeomorphism d to the Minkoswki space-

time E4, , one is so to speak implementing a new Minkoswki space-

time E4, d*. We can say that the diffeomorphisms “comprise the 
gauge freedom” of the theory (see, e.g. Wald 1984, 438) 

At this point one might think that this situation is different from the 
so-called conventionality of geometry. We will see next that this is not 
the case. Adopting Einstein’s view in terms of a physical geometry, the 
space and time congruences are the ones corresponding to the 
homogeneous and isotropic case (i.e. the spatial Euclidean geometry and 
the uniform time). This might give the impression that the 
chronogeometry is settled, and that when adopting a different synchrony 
convention one is simply changing the coordinate system. However to 
make a recoordinatization one needs a coordinate system in the first 
place. The conventional choice of the one-way speed of light does not 
enter at the level of changing from a coordinate system to another, but in 
setting up the coordinate system in the first place. To have a global time 
coordinate it is necessary to relate in a meaningful way the time reading 
at different spatial locations of the inertial reference frame. In Einstein’s 
terms, we are considering identical clocks (i.e. clocks that have the same 
rate), which correspond mathematically to congruent time intervals for 
each clock (i.e. to a uniform time). At this point it is not yet settled the 
relation between their phases (i.e. the clocks are not yet synchronized 
and because of this one does not have a global time coordinate defined 
in the inertial reference frame). In Einstein’s approach, the time 
coordinate (that he also calls the physical time) is determined by the 
synchronization procedure (see, e.g., Einstein 1910, 125-8). If this 
procedure is a conventional choice then it is the chronogeometry 
associated to the inertial reference frame that is being chosen 
conventionally. 
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This sheds new light on the view of the setting of the one-way speed 
of light as an example of gauge freedom of the theory. The gauge 
freedom of the theory arises from the possibility of choosing different 
metrics (that are transformable via a diffeomorphism into the Lorentz 
metric), i.e. the setting of different but physically equivalent geometries. 
As such the gauge freedom refers to something prior to the 
recoordinatization; it is related to a partial freedom in implementing a 
coordinate system prior to any change to another coordinate system. In 
this way, what Rynasiewicz calls the active transformation of a 

Minkowski space-time with a metric  into a new Minkowski space-time 

with a metric d*, results from the “gauge freedom” of having the 
possibility of choosing different initial settings of the distant simultaneity 
relation in an inertial reference frame, which corresponds to different 
choices/implementations of a Minkowskian chronogeometry.20 The 
difference between these geometries is in the stipulation of different 
one-way speeds of light.  

Let us recall, at this point, Einstein’s version of the conventionality of 
geometry, which we mentioned in section 2. According to Einstein:  

                                                 
20 There are other authors that, from a different perspective, implicitly, make of 
the conventionality of distant simultaneity a case of conventionality of geometry.  
In these views the anisotropy of light propagation is not a feature of light 
“itself” but of the underlying mathematical space (see, e.g., Budden 1997; Ungar 
1986). In the case of special relativity we would not have anymore a spatial 
Euclidean geometry corresponding to the four-dimensional Minkowski space-
time. Due to the anisotropy of the three-dimensional space we would have a 
Finsler space-time. This would make the conventionality of the one-way speed 
of light (or equivalently the conventionality of distant simultaneity) a case of the 
conventionality of (spatial) geometry, to be addressed as such. Einstein’s view 
that implies taking the spatial Euclidean geometry to be the physical spatial 
geometry of the theory excludes taking the choice of a Finsler geometry as a 
possible conventional choice of the geometry, even if it turns out to be 
mathematically an option in the case of special relativity. Taking for granted that 
this might be done, its justification would not arise as a possible conventional 
choice but, e.g., to enable to take into account eventual observable anisotropic 
phenomena corresponding to a violation of Lorentz invariance (see, e.g., 
Bogoslovsky 2006). Ultimately, this would imply a change of special relativity.  
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Geometry (G) predicates nothing about the behavior of real 
things, but only geometry together with the totality (P) of physical 
laws can do so. Using symbols, we may say that only the sum of 
(G) + (P) is subject to experimental verification. Thus (G) may be 
chosen arbitrarily, and also parts of (P). All these laws are 
conventions. All that is necessary to avoid contradictions is to 
chose the remainder of (P) so that (G) and the whole of (P) are 
together in accord with experience. (Einstein 1921a, 212) 
 

The conventionality in the synchronization procedure – or gauge 
freedom in the setting of the metric, leads to physically equivalent 

isotropic or anisotropic Minkowski space-times, E4, or<E4, '> = 

. The difference is in the adopted isotropy or anisotropy of the 
one-way speed of light. How does the change in G affects the physical 
part P? This issue has been addressed (not in these terms) by, e.g., 
Edwards (1963), Winnie (1970) and Giannoni (1978). Edwards (1963) 
obtained the generalized Lorentz transformations for the case of 
anisotropic Minkowski space-times, Winnie (1970) generalized the 
kinematics of special relativity for the case of anisotropic Minkowski 
space-times, and Giannoni (1978) developed a generalization of 
relativistic dynamics and electrodynamics also for the case of anisotropic 
Minkowski space-times. Giannoni showed, in particular, that a 
generalization of Maxwell-Lorentz equations is possible that is consistent 
with the anisotropic Minkowski space-time and its corresponding one-
way speeds of light. To simplify let us say that we have a one-way speed 
of light c+  in the positive direction of the x-axis and a one-way speed of 
light c– in the negative direction of the x-axis, as determined by the 

adopted anisotropic Minkowski space-time <E4, '> = E4, d*. 
Giannoni showed that, while isotropic electrodynamics has solutions 
corresponding to a plane wave traveling in free space with a speed c in 
any direction, anisotropic electrodynamics predicts a wave traveling in 
the positive direction of the x-axis with a speed of c+ and a wave 
traveling in the negative direction of the x-axis with a speed of c– 
(Giannoni 1978, 33-8). The anisotropic electrodynamics is consistent 
with the anisotropic Minkowski space-time, and they are physically 
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equivalent to the isotropic formulation, i.e. Ganisotropic + Panisotropic = 
Gisotropic + Pisotropic. 

This means that depending on the particular Minkowskian geometry 
adopted, one also adopts a particular formulation of electrodynamics, the 
“standard” isotropic electrodynamics, or an anisotropic electrodynamics. 
What we have then, when adopting a gauge interpretation of the 
conventionality of distant simultaneity, is a case of Einstein’s version of 
the conventionality of geometry. In one case we have the standard 
metric corresponding to an isotropic light speed described by the 
standard isotropic electrodynamics (Gisotropic + Pisotropic); in the other case 
we have a non-standard anisotropic Minkowskian geometry with an 
anisotropic electrodynamics (Ganisotropic + Panisotropic ).21  

 
 

4. Einstein’s physical geometry and the non-conventionality of the 
Minkowski space-time 

 
It seems that we are facing a limitation in Einstein’s view of geometry 

as physical geometry. According to Einstein we can adopt the spatial 
Euclidean geometry as a physical geometry. Also we can make a similar 
case regarding the congruence of successive time intervals (associated to 
any clock at any location in the inertial reference frame). This means 
taking time to be uniform. However, we still have left out the definition 
of a global time coordinate in the inertial reference frame for which it is 
necessary to synchronize the clocks. It is here that we would find an 
element of conventionality due to the physical equivalence of 
diffeomorphically related Minkowski space-times. The exact definition of 

                                                 
21 It is not the purpose of this work to engage directly in the issue of the 
conventionality of simultaneity. In this way we will not address aspects like, e.g., 
simultaneity as an invariant equivalence on space-time, or the uniqueness of 
Einstein’s standard simultaneity (see, e.g., Janis 2014). The only objective of this 
section is to show that Rynasiewicz’s view of the conventionality of simultaneity 
(conventionality of the one-way speed of light) in terms of a gauge freedom in 
the choice between diffeomorphically related space-times can also be seen as an 
example of Einstein’s conventionality of geometry. 
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the light cone structure would be stipulated in terms of a particular 
(conventional) gauge choice. In this way the chronogeometry of space-
time would not be a completely physical chronogeometry.    

This might not be the case. As it is well-known there is a “tradition” 
that goes as far as 1910 when Ignatowski proposed a deduction of the 
Lorentz transformations relying only on the principle of relativity and 
other assumptions but not on electrodynamics (see, e.g., Brown 2005, 
105-6). This type of approach has been presented, with some variations, 
by different authors (see, e.g., Schwartz 1962; Levy-Leblond 1976; 
Mermin 1984). Its main virtues would be: (1) independence from 
electrodynamics, (2) showing that Galilean and Lorentz transformations 
are the only options compatible with the principle of relativity. 

In all cases one starts with the notion of inertial reference frame and 
then considers several other assumptions. The most important are: (1) 
the principle of relativity, (2) the homogeneity of space and time, (3) the 
isotropy of space. There is an agreement regarding the necessity of these 
assumptions but there are differences regarding other possible 
assumptions and on important details.22  

In this type of approach, it is considered that from the notion of 
inertial reference frame plus this set of assumptions it is possible to 
arrive at general transformation functions relating the coordinate systems 

                                                 
22 According to different authors there would be different assumptions at play. 
For example Levy-Leblond (1976) considers that the group structure of the set 
of all transformations between inertial reference frames is implicit in the 
definition of inertial reference frame when taking into account the “basic” 
assumptions. Sardelis (1982), on the other hand, considers the group structure 
as an extra assumption. Mermin (1984) focus on the smoothness of the 
transformation as a mathematical assumption. Feigenbaum (2008) takes the 
existence of a space-time point relationship to be mandatory.  Berzi and Gorini 
(1969) consider that taking the transformation functions to be real and 
continuous is a mathematical assumption. Baccetti, Tate, and Visser (2012) 
consider the description of space and time using real numbers as an assumption. 
Levy-Leblond (1976) also calls the attention to a causality assumption related to 
the notion of flow of time, differentiating clearly time from space. According to 
him, this is fundamental to reject mathematically possible transformations that 
physically would entail, e.g., the possibility of interchanging time with space. 
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of two inertial reference frames. These functions depend on a constant 
K (with the dimension of the inverse of the velocity, i.e. [K] = m–1 s). If 
K is set to zero one arrives at the Galilean transformations. If K is taken 
to be positive, one arrives at the Lorentz transformations. The decision 
between the two possibilities can be made by reference to physical 
phenomena, in particular the existence or not of a limiting velocity (see, 
e.g., Lee and Kalotas 1975, 436).  

With a few exceptions (see, e.g., Mermin 1984, 124 endnote 5; 
Feingebaum 2008, 15; Schwartz 1962, 698), proponents of this approach 
do not take into account the setting of the coordinate time, which in 
Einstein’s approach is made by considering the synchronization of 
clocks. Since, in this case, the coordinate time is established without any 
reference to the light postulate, then the synchronization of clocks must 
be made without resort to light. We are deducing the inertial relativistic 
transformations in the general form between two inertial reference 
frames in relative motion, previous to the determination of what are the 
actual transformations that one must adopt, Galilean or Lorentzian. In 
this way the synchronization must be independent from electrodynamics 
and also compatible with classical mechanics and special relativity.  

One example of a synchronization procedure independent of the 
exchange of light that seems to fit this requirement was proposed by 
Feigenbaum (2008, 15). It is based on the inertial motion of free bodies 
and the Euclidean nature of space (in particular the isotropy of space). 
One takes two identical bodies compressing a spring, located midway 
between two identical clocks. To simplify one can consider that the 
clocks are disconnected with an initial phase set to zero. When released 
the two bodies will move inertially in opposite directions, traveling equal 
distances at equal times. This means that they will arrive, each one, at 
each of the clocks at the same time. The clocks are turned on when the 
bodies arrive, in this way being synchronized with the same phase.  

To synchronize another clock, one considers again a pair of identical 
bodies compressing a spring located midway between the clock to be 
synchronized and a clock of the pair already synchronized. Let us 
consider that initially the clock has its phase set to zero and is turned off, 
and is set on upon arrival of the material body. The material bodies are 
released and one records the time of arrival to the clock of the 
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synchronized pair. Let us say, e.g., that the clock reads 22s. Since the 
clocks have the same rate, the difference of the time readings, i.e. their 
phase difference, will always be 22 – 0 = 22s. One simply has to advance 
the time reading of the clock being synchronized by 22s to synchronize it 
with the other clocks (of the pair already synchronized). By repeating this 
procedure with all the clocks of the inertial reference frame one 
synchronizes all the clocks. In this way we could implement a 
synchronization procedure without any reference to light.  

We must take into account that in his synchronization procedure, 
Feigenbaum makes reference to the law of inertia in its “standard” 
formulation.  If it turns out that the synchronization is related to a 
conventional element in the mathematical structure  of the theory (G), 
then, according to Einstein’s views, the physical part (P), including the 
law of inertia, might be affected by the implementation of a different 
Gnew due to the adoption of a different synchronization procedure. This 
implies that the exact formulation of the law of inertia might depend on 
the particularities of the adopted synchronization procedure, and that 
there is an eventual problem of circularity in this approach. As we will 
just see with a small change in Feigenbaum’s synchronization procedure 
it is possible to avoid any eventual conventionality in the synchronization 
of distant clocks. 

Instead of considering the synchronization in terms of inertial 
material bodies making reference to the law of inertia (which might 
imply some conventional element due to the application of the law of 
inertia in its standard form previous to having synchronized clocks), we 
will consider atomic clocks in inertial motion.23 

                                                 
23 As mentioned in footnote 6, we can have a notion of inertial motion or 
motion of a free body previous to the completion of the law of inertial (in this 
way avoiding any reference, at this point, to the uniformity of time). We 
defended the view that the use of the notion of “free body” at this point of the 
“reconstruction” of special relativity is not inconsistent. Also we want to call the 
attention to the fact that this notion is implicit in the assumption of 
transportable rods and clocks (independent of their past history). The rods and 
clocks are taken not to interact with each other, neither, e.g., with an extended 
material body constituting an inertial frame: they are isolated physical systems. If 
we have an inertial reference frame made up of a grid of rods and clocks and we 



266 Mario Bacelar Valente 

Manuscrito – Rev. Int. Fil. Campinas, v. 40, n. 1, pp. 241-278, jan.-mar. 2017. 

For our synchronization procedure instead of just one spring we will 
use two identical springs, attached to each other (we basically take the 
spring of Feigenbaum’s procedure as being a “composite” of two 
identical springs). How can we make sure that the two springs are 
identical without resort to dynamical notions that can only be formalized 
after defining a coordinate time (i.e. after completing the setting of the 
Minkowski space-time)? Let us consider the following gedanken 
experiment. Let us consider two springs attached to the origin O of our 
inertial reference frame, side by side, along the same direction. We have 
two identical atomic clocks compressing each spring. We release the two 
springs at the same time (as given by a clock at O), jettisoning the two 
atomic clocks. We check if they arrive at a particular point at the same 
time (as given by the time readings of both clocks). If this is the case 
then the two springs are identical. Here we do not have to worry about 
the state of motion of the clocks; it could even be non-inertial. For our 
purpose it is enough that they remain side by side. That the springs 
behave in a reliable and regular way can be confirmed by repeated 
experiments. This procedure gives us assurance that the springs behave 
identically without any resort to formal notions like, e.g., the 
conservation of momentum. 

Let us consider two atomic clocks compressing two identical springs 
attached to each other at the origin O (located midway between two 
clocks A and B to be synchronized). The springs are placed along the 
line connecting A and B, one of them in the direction OA, the other in 
the direction OB. All the clocks are initially turned off. Upon releasing, 

                                                                                                         
have an electromagnetic field, this field cannot affect the rods and clocks of the 
reference frame, otherwise we would consider space-time to be curved. The 
rods and clocks are not strictly free bodies only when being moved (e.g., by 
applying a “contact” force). However, the “independence from past history” 
guaranties that the length of the rods and the rate of the clocks are not affected 
during transport from an inertial state into another. If we consider that we boost 
a clock into a state of (inertial) motion in relation to an adopted inertial 
reference frame, as in the case of the synchronization procedure we are 
considering, its rate is the same as that of the clocks “at rest” in the frame (i.e. 
they all have the same proper time. See footnote 25), and we can consider that it 
is a free body in inertial motion in relation to the inertial reference frame. 



  Einstein’s physical chronogeometry 267 

Manuscrito – Rev. Int. Fil. Campinas, v. 40, n. 1, pp. 241-278, jan.-mar. 2017. 

the atomic clocks are set on. We find out that when arriving at the clocks 
to be synchronized, the atomic clocks read the same time. The clocks at 
rest in the inertial reference frame are turned on when the atomic clocks 
arrive, in this way being synchronized with the same phase. The identical 
time interval measured by the atomic clocks in inertial motion is taken to 
be non-conventional, since we are considering the atomic time to be 
uniform in a non-conventional way (i.e. as a physical uniform time). This 
implies that when turning on the clocks at rest in the inertial reference 
frame (i.e. when synchronizing the clocks) this is made without any 
conventional element at play. In this approach the “uniformity” of the 
inertial motion (i.e. the standard formulation of the law of inertia) results 
from a non-circular synchronization procedure in which the physical 
uniform time of atomic clocks in inertial motion is the only relevant 
element taken into account.24 The other clocks of the inertial reference 
frame are set in phase with this pair of synchronized clocks following 
Feigenbaum’s procedure described above, using atomic clocks as our 
inertial bodies (and using two attached identical springs). In this way, we 
avoid any possible circularity.  

                                                 
24 We presuppose that the clocks undergo an inertial motion from O to A and 
from O to B. That this motion is of the “same kind” can be further checked by 
the time reading of the clocks when arriving at A and B. If they are the same we 
are confident that we have an inertial motion. At this point a “skeptic” might 
consider that, e.g., a “little devil” created some sort of field or applied forces 
that affected both clocks identically, for example by accelerating them in the 
same way, so that in fact while they both moved rectilinearly along the line 
connecting A to B, and gave the same time reading, they were not actually in an 
inertial motion. This would not be a problem since their non-inertial motion 
would have been equivalent as confirmed by their identical time reading at A 
and B. The important thing is that the atomic clocks in motion from O to A and 
from O to B carry the same (non-conventional) atomic time to A and B. In this 
case we do not have yet the notion of the Minkowski proper time of an 
accelerated clock. However, we do know that if the experiment was made in a 
context where the clocks move inertially their time reading would be uniform; 
any (direct or indirect) effect of the acceleration on the rate of clocks might 
affect this uniformity but not the non-conventional character of it. 
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Let us look at this approach a little more. As it is, just looking at the 
synchronization of A and B we might be facing a circular argument. It 
seems that we are saying that the pair of atomic clocks jettisoned by the 
two attached springs can be seen as traveling equal distances with equal 
velocities in a given inertial reference frame where A and B are at rest. 
We would be falling in the trap of a circular argument. However, this is 
not what is being said here. We still do not have any notion of velocity, 
neither a coordinate time defined in the inertial reference frame. The 
clocks released from the springs travel equal distances because, e.g., with 
two identical rods we located the two attached springs midway between 
A and B (at the origin O). We accept that the distances are equal when 
we accept Einstein’s views on physical geometry – it is not, so to speak, a 
metaphysically neutral position. The same goes with the time reading of 
the atomic clocks jettisoned by the springs. When they arrive at A and B 
they have the same time reading25 (as we can check “experimentally”), 
but it is the supposition of the non-conventionality of the (uniform) 
atomic time, applied independently to each clock, that enables us to 
consider that the time reading (and the way time “unfolded”)  is  
“physically”  the same for each atomic clock when reaching A and B – 
both atomic clocks “carry” exactly the same physical time to A and B, i.e. 
they go through the same “intra-atomic phenomena”.26 From this we 
conclude that A and B are turned on at the same (physical) time, i.e., that 
they are in synchrony (and since they are atomic clocks they will 
“unfold” the same physical uniform time).  

Before considering the rest of the synchronization procedure let us 
see the implication of the synchrony of A and B in relation to the one-
way speed of light. As it is we have already defined a sort of metrological 
unit of equal-time-at-a-distance with the synchrony of the clocks A and 

                                                 
25 Throughout this paper when referring to the time reading of atomic clocks we 
are considering what we might call their empirical proper time, which, it turns 
out, has the same value as their Minkowski proper time (after we have defined 
this notion). See, e.g., Brown (2005, 29 and 115); Arthur (2007, 16); Arthur 
(2010); Bacelar Valente (2016). 

26 It is this assertion that enables us to consider, as an afterthought, that both 
clocks have the same velocity as measured by themselves. 
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B. If we send light from A to B and from B to A when both clocks have 
the same time reading, the light pulses will arrive at B and A with the 
clocks having again an identical time reading. This implies the isotropy of 
the one-way speed of light. This result might seem suspicious because it 
is well-known that time and time again there have been propositions of 
experimental approaches (or thought experiments) taken to measure the 
one-way speed of light that are circular or depend on non-trivial 
assumptions (see, e.g., Salmon 1977; Anderson, Vetharaniam, and 
Stedman, 1998; Jammer 2006; Janis 2014). We do not have this type of 
situation here. The one-way speed of light is taken to be isotropic 
conditioned to accepting a physical Euclidean space and a physical 
uniform time, and only in this case. It depends on adopting a particular 
philosophy of geometry (chronogeometry). In this way we do not 
contradict, e.g., Salmon conclusion regarding the possibility of 
convention-free methods: “the evidence, thus far, favours those who 
have claimed that the one-way speed of light unavoidably involves a 
non-trivial conventional element” (Salmon 1977 288). Strictly speaking 
we do not have conventional elements, but we do have the non-trivial 
strong philosophical presupposition of a physical space congruence and 
a physical time congruence.  

It might still be the case that we have some non-trivial assumption 
that undermines the case being made here. In fact Salmon (1977, 273-4) 
criticizes a very similar method in which two objects are set into motion 
(in relation to the points A and B) by an explosion. Salmon questions the 
triviality of the symmetry of this procedure (similar to the symmetry in 
the release by the two attached springs), since according to him we are 
taking into account the conservation of momentum. This needs the 
“backing”, so to speak, of the whole theory that is supposed to be built 
on top of the notion of inertial coordinate system with its conventional 
distant simultaneity. It would be a circular procedure after all. That is not 
the case of the procedure being considered here, due to the strong stance 
on a physical space and time congruences and associated notions of 
transportable identical rods and transportable identical clocks. We do not 
need any theory of the springs or whatever mechanism that enables a 
symmetrical release of the two clocks.  If we take the length and time 
interval to be physical we can leave finding  springs or some mechanism 
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that enables the symmetrical release of the clocks to the practical 
implementation of an experimental procedure. There is no need of a 
theoretical framework for that. If the two clocks do not read the same 
physical time when arriving each at each of the points A and B (that are 
at the same physical distance from the mid-point where the clocks are 
released) then the springs or mechanism is not well implemented and we 
have to improve it. We do not need any formalized notion, e.g., of 
momentum or force at this point. 

Returning to the issue of the setting of time in an inertial reference 
frame, let us consider the synchronization of the other clocks with A and 
B. Let us consider another clock C. Using rods we locate two attached 
identical springs (with an atomic clock at the extremity of each spring) 
midway between, e.g., C and A.27 The atomic clocks are turned on when 
released by the springs. When they arrive at C and A, C is turned on and 
the time reading of A is registered. At this moment there is a phase 
difference between the time reading of C and A. let us say, e.g., that C 
reads 0 and A reads 22s. C will be in synchrony with A (and B) when we 
adjust the time reading tC of C to tC = tC + 22. It is important to notice 
that we are not setting the time of C to the reading of the atomic clock 
that arrives at C.  The atomic clocks are moving relative to A and C, and 
as we know they experience a time dilation. If we synchronize C with the 
“moving” atomic clock and then we apply the same procedure to check 
the synchrony of C and B we would find that they are not in synchrony, 
i.e. the synchronization approach would not be transitive. That does not 
happen in this case. With this approach C has the same phase as B. We 
can check this again by releasing a pair of atomic clocks compressing  

                                                 
27 Here we follow Einstein’s approach in terms of a (macroscopic) grid of clocks 
(see, e.g., Einstein 1907, 255-6; Wheeler and Taylor 1963; 17-8). We take for 
granted that using rods we can find a midpoint between any clocks of the grid. 
At this point we might even dispense with this synchronization approach using 
the atomic clocks. Since we already have A and B in synchrony (our “unit” of 
distant synchrony), and we take the one-way speed of light to be isotropic, we 
can use light to put the other clocks in synchrony using Einstein’s 
synchronization procedure, or we simple choose A or B as our “master”  clock 
and use radar time (see, e.g., Bondi 1965, 93-7). 
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two attached identical springs located midway between C and B. When 
the clocks arrive at C and B we register the time reading of C and B and 
confirm that they are the same. 

When accepting that we have a Euclidean space and a uniform time it 
follows that the synchrony of clocks is also non-conventional. This 
means that the light cone structure is set in a non-conventional way. In 
this way, in Einstein’s approach,  the chronogeometry of space-time can 
be taken to be a physical chronogeometry.28 

 
 

5. Conclusions 
 
When adopting Einstein’s view of geometry as a physical geometry 

we might expect that the chronogeometry of special relativity, i.e. the 
Minkowski space-time, is non-conventional. Einstein himself mentioned 
that his views apply to the case of the  “practical geometry of Riemann” 
(Einstein 1921a, 213). However, Einstein did not address, in this respect, 
the issue of the conventionality of simultaneity. It turns out that if 
distant simultaneity is conventional then we cannot regard the 
chronogeometry as physical in Einstein’s sense. In this work we have 
made the case that Einstein’s original propositions related to the physical 
Euclidean space and the physical uniform time can be consistently 
extended to the whole of the Minkowski space-time. For this it is 
necessary to show that it is possible to determine the coordinate time in 
a non-conventional way. This was done by adopting an approach similar 
to Einstein’s synchronization procedure. Simply, instead of making 
reference to the light postulate, the synchronization of clocks is made 
using atomic clocks in inertial motion. This approach only relies on 
Einstein’s assumptions of a physical (spatial) Euclidean space and a non-
conventional uniform atomic time. This implies, when accepting 

                                                 
28 Being non-conventional the whole of the chronogeometry means that the 
physical structure is also non-conventional. In particular, the law of inertia 
“codifies” the physical uniform time of the atomic time scale and the inertial 
time scale. 
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Einstein’s views, that the coordinate time is also non-conventional. From 
this it follows that the Minkowski space-time is non-conventional. 
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