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Abstract: This paper investigates the question “when is a
logic more expressive than another?” In order to approach
it, “logic” is understood in the model-theoretic sense and,
contrary to other proposals in the literature, it is argued
that relative expressiveness between logics is best framed
with respect to the notion of expressing properties of mod-
els, a notion that can be captured precisely in various ways.
It is shown that each precise rendering can give rise to a for-
mal condition for relative expressiveness that has appeared
in the literature. Five such conditions are exposed, tested
for some properties and compared to each other. As the
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formal conditions for relative expressiveness have various
levels of stringency, some results on lifting some conditions
to stricter ones are explored. Finally, a discussion on the
properties of these formal conditions is presented. Special
attention is given to notion of meaning equivalence, and
how one may consider that it holds or not, depending on
the weight attributed to logical and non-logical constants
in expressiveness comparisons.

1 Introduction

1.1 E, the main intuition for expressiveness relations

This paper will study the relation “the logic L2 is at
least as expressive/strong as (or includes) L1”, whose
intuitive basis could be said to be

(E)
Everything that can be said in L1 can also
be said in L2.

A logic L will be understood here as a “model-
theoretic logic”, that is, as defined by a class of models,
a class of sentences and a satisfaction relation on them.
Moreover, all logics will be defined on the same class
of models.

Formal comparisons of such logics in terms of E ex-
ist at least since Lindström’s famous characterization
results for first-order logic (LINDSTRÖM, 1969).1 In
his works on expressive characterization, some formal
conditions for E were given, one of them is

(≼DC)

Every L1-definable class of structures is also
L2-definable or, equivalently, for every L1-
sentence, there is an L2-sentence having the
same models.

1One of Lindström’s results is that first-order logic has max-
imal expressiveness among the countably compact logics having
a downward Löwenheim-Skolem theorem. For more, see (LIND-
STRÖM, 1974) and (BARWISE; FEFERMAN, 1985).

Manuscrito – Rev. Int. Fil. Campinas, v.46, n.4,
e-2022-0054.R3.



On the comparisons of logics in terms of expressive power 3

Another condition requires additionally that there is
an effective mapping from L1-sentences to L2-sentences.

Less stringent conditions have also been given to
capture E. Makowsky (1980) considers a condition
based on the concept of projective definability (≼PC).
His motivation is to allow for a more flexible approach
on the role of non-logical symbols in expressiveness
comparisons. For him, ≼PC can eventually be a more
natural notion for comparing expressiveness than ≼DC .
Ebbinghaus (1985), besides the above ones, also con-
sidered a condition based on L-equivalence (≼EQ), that
is, based on the ability of logics to distinguish mod-
els. Shapiro (1991) pointed out the strictness of ≼DC

and argued for the reasonableness of ≼PC and an even
wider condition, constructed in terms of the notion of
relative-projective definability.

In the above works, the comments on relative ex-
pressiveness are brief and the investigation E deserves
is not given. To the best of our knowledge, the first
such investigation appeared in (PETERS; WESTER-
STÅHL, 2006). The authors study the various aspects
involved in expressiveness comparisons, e.g. the re-
lated items, the maps between logics and some no-
tions of synonymy that could be employed to base such
comparisons. However, their approach is founded on a
certain refinement of E, which may be adequate when
one is interested in comparing natural languages, but
it is not adequate for comparisons of expressiveness
between logics, specially of the model-theoretic sort
studied here. Another limitation of Peters and West-
erståhl’s work on expressivity is that it does not allow
for comparisons neither involving L-equivalence, nor
projective definability.

Fernandes (2017) distinguishes three frameworks for
expressiveness comparisons according to the kind of
logics to be compared: for model-theoretic logics de-
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fined within the same class of models, for those de-
fined within possibly different classes of models and for
Tarskian or abstract logics. Though the above men-
tioned conditions, defined within the first framework,
are exposed, the author focuses on those defined on
the latter frameworks.

Kocurek (2018) explores these three frameworks.
Formal conditions based on L-equivalence and defin-
ability are studied and given brief explanations in terms
of operations on classes of models. However, as in (PE-
TERS; WESTERSTÅHL, 2006), comparisons involv-
ing projective definability are also absent and, more-
over, would not even fit properly in the explanatory
approach on expressiveness based on operations on
classes of models.

The main purpose of this paper is to address the
limitations of the above mentioned works. We will
do this by providing a more inclusive and also co-
herent understanding of E for model-theoretic logics.
It will be seen that this proposal accommodates ade-
quately the various formal measures of expressiveness
that have appeared in the literature. Five such for-
mal measures, including the one based on projective
definability, will be compared to each other and tested
with respect to some prima facie reasonable proper-
ties on expressiveness relations. The analysis of how
each formal measure of expressiveness relate to each
other and the verification of the properties each one
satisfies will hopefully help clarifying the landscape of
expressiveness comparisons.

1.2 Properties of expressiveness relations

Given there are many formal conditions capturing E
precisely, it is of interest to compare them and check
what properties relevant for expressiveness they sat-
isfy. It is rather clear that an expressiveness relation
should be a pre-order on logics (i.e. transitive and
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reflexive). All the formal conditions considered here
satisfy this requirement. It is not clear what other
properties they should satisfy, perhaps this could be
properly answered only within some context of appli-
cation. Rather than settling this, some prima facie
reasonable properties are proposed for comparisons of
expressiveness, and the formal conditions will be tested
for them.2 The properties are:

1. If L2 is at least as expressive as L1, then there
is a fragment L∗

2 of L2 such that L∗
2 and L1 are

equally expressive,

2. If L2 is at least as expressive as L1, and the same
expressive tools are added both to L2 and L1,
respectively obtaining Le

2 and Le
1, then it holds

that Le
2 is at least as expressive as Le

1.

3. If L2 is at least expressive as L1, then L1-sentences
have corresponding L2-sentences with equivalent
meanings.

The proposition of property 1 was motivated by the
discussion in (KOCUREK, 2018). It would seem to be
equivalent with 3, but it is arguably stricter. Prop-
erty 2 was motivated by the discussion in (FRENCH,
2019), concerning the notion of notational variance.
Given the closeness of this concept with the intuitive
concept of expressive equivalence, it is of interest to
check how the various formal conditions on expressive-
ness fare with respect to it. As regards the property
3, whether or not it holds will depend on what “mean-
ing equivalence” is to mean. It will be seen that this
may hinge on how one deals with the relation between
logical and non-logical terms in expressiveness com-
parisons.

2Their order should not be taken as an importance rank.
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1.3 Overview of the paper

This paper is structured as follows. Firstly, a refine-
ment E∗ of E will be proposed, so as to be closer to
the notion of logic to be employed here. Next, it will
be shown that the key term “expressing properties of
models” contained in E∗ can be formally captured in
various ways. Five such ways are explored in sequence,
each of them giving rise to a distinct formal condi-
tion for relative expressiveness. Each such condition is
then analysed with respect to the properties presented
above, and then compared to each other. The proofs
of the main remarks concerning satisfaction of prop-
erties and comparison of the conditions are placed in
the appendix.

As there are cases where a condition ≼X is stricter
than another ≼Y (i.e. if L1 ≼X L2, then L1 ≼Y

L2 but not vice-versa), a natural question arises: are
there properties Θ of logics such that whenever L1 ≼Y

L2 and L1,L2 have some combination of properties
Θ, then it holds that L1 ≼X L2? Makowsky (1980)
proposed an answer to the above question as regards
≼PC and ≼DC , but later pointed out (MAKOWSKY,
1981) that it was mistaken. It also will be shown that
the positive results proposed in (KOCUREK, 2018)
for this question as regards ≼EQ and ≼DC are mis-
taken. Finally, we show that a slight modification of
Makowsky’s proposal still gives an interesting such re-
sult.

1.4 Notation

As said above, in this paper, “logic” is to mean a model-
theoretic logic i.e.

Definition 1.4.1 (Model-theoretic Logic). A model-
theoretic logic L is a sequence (ML,SL,⊩L), where
ML and SL are classes and ⊩L ⊆ ML × SL.

Here, ML is intended to be the class of models for
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L, SL the class of well formed sentences of L in ev-
ery vocabulary, and ⊩L the corresponding satisfaction
relation. The words “model” and “structure” will be
used interchangeably. For the sake of simplicity, only
single-sorted vocabularies will be considered.

The expressions SL[τ ] and also L[τ ] refer to the col-
lection of L-sentences in the vocabulary τ , and ML[τ ]
refers to the class of τ -models belonging to ML. Given
that only logics defined within the same class of mod-
els will be dealt with in this paper, we shall drop the
subscript “L”.

The property 2 uses the notion of adding the same
expressive tools to a pair of logics. This notion is cap-
tured here by what will be called an uniform extension,
which requires SL and ⊩L to be specifiable inductively
by a collection CL, containing clauses for sentence for-
mation and satisfaction. For the sake of brevity, only
an informal definition will be provided.

Definition 1.4.2 (Uniform extensions). Let the log-
ics L1 and L2 be generated by the collection of clauses
C1 and C2, respectively. Let e be a collection of sen-
tence formation clauses (only total ones are allowed)
and semantic clauses for a set of logical operators. Let
Ce

1 and Ce
2 be, respectively, the extension of C1 and

C2 with e. Then, the logics Le
1 = (M,Se

1 ,⊩Le
1
) and

Le
2 = (M,Se

2 ,⊩Le
2
), generated by Ce

1 and Ce
2, respec-

tively, are said to be uniform extensions of L1 and L2.

Whenever Le
1 and Le

2 are mentioned together, it
is assumed they uniformly extend L1 and L2, respec-
tively. The following notation will also be used:

• P(X) — the power-set of X,

• τ, τ ′, τ ′′, ... — arbitrary signatures,

• A,B,C are arbitrary models, whose signatures
will be specified by the context.
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• Modτ
L(ϕ) and Thτ

L(A) — the class of τ -models
satisfying ϕ in L, and the class of τ -formulas
satisfied by A in L, respectively.

• A↾τ and ⊩↾S — the reduct of A to τ , and the
restriction of ⊩ to S, respectively.

• A′ — for a τ -model A, A′ is an expansion to
additional vocabulary τ ′ ⊇ τ , so that A′↾τ = A,

• L-fragment — for a logic L = (S,M,⊩), an
L-fragment is any L↾S∗

= (S∗,M,⊩↾S∗
), where

S∗ ⊆ S,

• ≡L, ≼X and ∼∼∼X — equivalence of models under
L, expressiveness relation on logics with respect
to condition X, and equivalence of logics modulo
≼X , respectively.

It will be assumed that in every logic considered, in-
terchange of logically equivalents does not change the
meaning of resulting formulas. All systems L consid-
ered in this paper are supposed to satisfy the usual
basic properties for model-theoretic logics, as listed in
(EBBINGHAUS, 1985, p. 28).

2 First refinement of E

Peters and Westerståhl (2006) were, as far as we know,
the first to investigate the comparisons of logics in
terms of expressive power. Their approach is based
on the following refinement of E (ibid, p. 383):

(Epw)

the basic concept [for expressiveness com-
parisons] is really that of an [L1]-sentence
ϕ being translatable into [L2], in the sense
that there is an [L2]-sentence saying the
same thing.

Though perhaps sufficient when the intention is the
application to natural languages, Epw does not fit well
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with the model-theoretic perspective on logic which is
predominant in expressive comparisons. The inade-
quacy is readily seen in the fact that Epw cannot ac-
count for the already common practice of relating the
expressive power of logics in terms of the ability of
distinguishing models.3 There are logics L1 and L2

such that, despite the fact that every pair of mod-
els distinguishable by L1 is also distinguishable by L2,
it happens that there is an L1-formula not translat-
able to any L2-formula (see remark 3.3.6). Moreover,
the most common inexpressibility results for logics,4

contrary to Peters and Westerståhl’s position (ibid, p.
413), is relative to the ability of distinguishing mod-
els. Thus such inexpressibility results are relative to
an expressiveness relation that is not captured in their
framework.

Another author that worked on expressivity with
respect to model-theoretic logics is Kocurek. In (2018)
his general perspective could be framed as the follow-
ing refinement of E:

(Ek)

Every way of carving the class of models
that can be done by L1, can also be done
by L2

Then, “way of carving” could be further refined either
as meaning “splitting” (ibid, p. 125), or as meaning
“partitioning” (ibid, p. 131). These refinements would
be the basis for the formal conditions mentioned above
≼DC and ≼EQ, respectively. The problem of refining
E in terms of operations like splitting and partition-
ing the class of models is that there is no straight-
forward and reasonable way to base on them expres-
siveness comparisons using projecive definability and
its derivates. This limitation would leave out of the

3For a recent example, see (Van De Putte; KLEIN, 2022, p.
501)

4E.g. (AGOTNES et al., 2010), (ARECES et al., 2011) and
(TAMMINGA; DUIJF; PUTTE, 2021)
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framework ways of comparing logics in terms of ex-
pressiveness that were used and defended by several
authors since the beginnings of abstract model the-
ory.5 Hence, another understanding such comparisons
must be sought.

Let us take a step back to see how some brief ob-
servations on expressivenes comparisons can lead us to
a better refinement of E. A great number of expres-
siveness related results in the literature, e.g., in finite
model-theory or in modal logics, have as their main
motivation the verification of what logics can “say”
about a given collection of structures. For example,
if they are able or not to “say” that a certain structure
is finite, that it has an even number of elements, that
there is a path between any of its elements, etc. Thus,
one may reasonably hold that an expressive capacity
of a logic consists in its ability to express properties of
its models, where by “property of models” it is meant
the following.

Definition 2.0.1 (Property of models). Let M be a
class of models. A property P of models will be taken
to be a subclass of M.

Given this, we are now in position to offer another and
more adequate refinement of the relation E:

(E∗)
Every property of models expressible in L1,
is also expressible in L2.

E∗ squares nicely in the model-theoretic point of view
of logic, where one starts with a certain collection of
structures of interest and takes a logic as a tool to
describe and study them.6

Now there are certain ways in which one can under-
stand when a property of models is expressible, and

5See references in subsection 3.5.
6One could also obtain a restricted relative measure of expres-

siveness, by selecting a set P of relevant properties of a model.
However, in this paper we only analyse the unrestricted version.
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thus to refine E∗ further. We start from the most
straightforward and clear one, based on the notion of
definability.

3 Further refinements

3.1 The condition ≼DC

Consider the following definition:

Definition 3.1.1 (Definability). A class P of τ -models
is definable in L, if and only if there is an L[τ ]-sentence
ϕ such that P = Modτ

L(ϕ). Call the collection of all
such classes “DCL”.

A definable class is also known in the literature (e.g.
(BARWISE; FEFERMAN, 1985)) as an elementary
class. Now, definability can clearly be taken as suf-
ficient for expressing properties:

Proposal 3.1.2 (Expressing properties: Definability).
A property of models P is expressible in L if P ∈ DCL

Thus we have the first formal condition capturing
E∗, which turns out to be the one employed in Lind-
ström’s seminal paper (1969):

Definition 3.1.3 (≼DC). L1 ≼DC L2 if and only if
DCL1 ⊆ DCL2.

3.1.4 On the properties of ≼DC

The following result is due to Kocurek (2018, p. 128):

Remark 3.1.5 (Kocurek). Property 1 is satisfied by
≼DC .

In order to check whether property 2 holds, some
definitions will be given. It is assumed that formu-
las of the compared logics are built recursively from
atomic formulas and logical operators, and that their
semantics are compositional.
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Definition 3.1.6 (Schema). For 1 ≤ i ≤ n, let Ri

be a relation symbol of arbitrary arity and let x⃗i be
an appropriate sequence of variables for Ri. Then, a
schema θ(R1x⃗1, ..., Rnx⃗n) is any formula having only
the atomic formulas shown. Whenever it is clear from
the context what is the schema at issue, the expression
θ(ϕ1, ..., ϕn) stands for the simultaneous substitution in
the schema of ϕi for the respective Rix⃗i, 1 ≤ i ≤ n.

If the source logic contains (generalized) quantifiers,
they, together with an appropriate sequence of vari-
ables, will be treated as single operators of the appro-
priate arity.

Definition 3.1.7 (Definitional translation). A trans-
lation T : F1 −→ F2 is definitional iff

• For every n-ary relation symbol R and terms t1,
..., tn, it holds that T (Rt1...tn) = Rt1...tn;

• For every n-ary operator ⋇ of L1 and formulas
ϕ1, ..., ϕn in F1, there is an L2-schema θ⋇(R1x⃗1,
...,Rnx⃗n) for which we have T (⋇(ϕ1, ..., ϕn)) =
θ⋇(T (ϕ1),...,T (ϕn)).

The following restriction of property 2 holds for
≼DC . The remark is a version for model-theoretic log-
ics and uniform extensions, of an analogous remark for
tarskian logic found on (FRENCH, 2019, p. 329):

Remark 3.1.8. Suppose that L1 ≼DC L2 and that Le
1,

Le
2 are uniform extensions. Let F1,Fe

1 ,F2,Fe
2 be their

respective collections of well-formed formulas. Then, if
there is a definitional translation T : F1 −→ F2, there
is a definitional translation T + : Fe

1 −→ Fe
2 such that

Le
1 ≼DC Le

2.

As regards property 3, the criterion ≼DC can be
said to embody a particularly strong interpretation of
what is it for L1 to have corresponding L2-sentences
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with equivalent meanings. Being thus, ≼DC satisfies
it straightforwardly.

The condition ≼DC is very frequent in comparisons
of logics in terms of expressive power, though it is a
rather strict measure of relative expressiveness. As
pointed out in the introduction, since the 1980s sev-
eral authors considered broader conditions. In the se-
quence, some possible relaxations are studied, checked
with respect to the satisfaction of the proposed prop-
erties and compared to each other.

3.2 The condition ≼DC∆

Consider the following wider notion of definability:

Definition 3.2.1 (∆-definability). A property of τ -
structures is ∆-definable in L if and only if, for some
∆ ⊆ L[τ ] it holds that P = Modτ

L(∆) (for short P ∈
DC∆

L ).

Now one could consider ∆-definability as sufficient
for expressing properties:

Proposal 3.2.2 (Expressing properties: ∆-definability).
A property P is expressible in L if P ∈ DC∆

L

Then, the respective formal condition capturing E∗

is:

Definition 3.2.3 (≼DC∆). L1 ≼DC∆ L2 if and only
if DCL1 ⊆ DC∆

L2
.7

3.2.4 On the properties of ≼DC∆

Remark 3.2.5. Property 1 is not satisfied by ≼DC∆ .

Remark 3.2.6. Property 2 is not satisfied by ≼DC∆ .

7A definition using DC∆
L1

⊆ DC∆
L2

is also viable, but will
not be analysed here.
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The condition ≼DC∆ embodies a arguably reason-
able interpretation of the property 3. However, apart
from very simple systems,8 it will be difficult in prac-
tice to relate the systems in this way. This may ex-
plain the absence of comparisons using ≼DC∆ in the
literature. It seems more appropriate for comparing
expressibility of logics with respect to a restricted set
of properties.

Another direction of weakening ≼DC can be pur-
sued, by trying to capture expressibility of properties
not in terms of definability. This is explored in the
sequence.

3.3 The condition ≼EQ

In this section, the expressibility of properties is ap-
proached in terms of the ability to distinguish pairs of
structures having or not the property at issue:

Proposal 3.3.1 (Expressing properties: distinguish-
ing capacity). A property P of τ -structures is express-
ible in L if, for all τ -structures A and B, whenever
A ∈ P and B ̸∈ P , then there is an L-sentence ϕ that
can distinguish A and B, i.e.: A ⊩L ϕ and B ̸⊩L ϕ.

In this manner, another condition for capturing E∗

can be defined:

Definition 3.3.2 (≼EQ). L1 ≼EQ L2 iff for all τ and
all A,B ∈ M[τ ], if A ̸≡L1 B then A ̸≡L2 B.

3.3.3 On the properties of ≼EQ

Kocurek (2018, p. 133) provides a counterexample for
property 1, thus:

Remark 3.3.4. (Kocurek) Property 1 is not satisfied
by ≼EQ.

8E.g. the case of L(Q0)
w∗ and Lωω (proof of remark 3.2.5)

and the case of Latom
ωω and Lconj

ωω (proof of remark 4.0.13).
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Moreover, it holds that:

Remark 3.3.5. Property 2 is not satisfied by ≼EQ.

Remark 3.3.6. Property 3 is not satisfied by ≼EQ.

3.4 The condition ≼EQs

Kocurek (2018, p. 138) proposes a stronger version of
≼EQ which is based on distinguishing possibly larger
groups of structures. This stronger version can be said
to embody the following stricter rendering of the no-
tion of expressing properties of models.

Proposal 3.4.1 (Expressing properties: strong distin-
guishing capacity). Let C,D ⊆ M[τ ], for some τ , and
define C ≡L D as

⋂
A∈C

Thτ
L(A) =

⋂
B∈D

Thτ
L(B).

A property P of τ -structures is expressible in L if,
for all collections C,D, whenever every member of C
has P , and some member of D does not have P , then
C ̸≡L D.

From this, a new condition for E∗ can be defined:

Definition 3.4.2 (≼EQs). L1 ≼EQs L2 iff for every τ
and all C,D ⊆ M[τ ], if C ̸≡L1 D, then C ̸≡L2 D.

3.4.3 On the properties of ≼EQs

As with ≼EQ, the condition ≼EQs does not satisfy any
of the properties:

Remark 3.4.4. Property 1 is not satisfied by ≼EQs.

Remark 3.4.5. Property 2 is not satisfied by ≼EQs.

Remark 3.4.6. Property 3 is not satisfied by ≼EQs.

The above weakenings of ≼DC require the signature
to remain the same when comparing logics. However,
it often happens that, in order to match the expressiv-
ity of a given logic, one has to expand the non-logical
vocabulary of the other one. In the sequence this sort
of relaxation of ≼DC will be studied.
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3.5 The condition ≼PC

To motivate the introduction of a wider rendering of
the notion of expressing properties of models, consider
the class of infinite structures I ∈ M[∅].9 As re-
gards L(Q0), that is, first-order logic (Lωω) extended
with the quantifier Q0, meaning “there are infinitely
many ...”, the class I is straightforwardly definable
with Q0x(x = x). Concerning Lωω, it is ∆-definable
but not definable.

However, if one expands the signature to τ = {R}
where R is a binary relation symbol, it is easy to find a
Lωω[τ ]-sentence ϕ such that every structure in I can be
expanded into a model of ϕ (for example “R is a non-
reflexive, transitive and serial relation on the domain”).
Thus, I projective in Lωω. Let us consider a precise
definition of this concept:

Definition 3.5.1 (Projective definability). A prop-
erty P of τ -structures is projectively definable in L (for
short P ∈ PCL) if, for every τ -structure A ∈ P , there
is a τ ′-extension A′ with τ ′ ⊇ τ , and an L[τ ′]-formula
ϕ, such that A ∈ P iff A′ ⊩L ϕ.

Several authors have defended projective definabil-
ity as a means to compare expressiveness.10 The pro-
posal here is to interpret them as claiming that this
wider notion of definability could be used as a way to
express properties of models:

Proposal 3.5.2 (Expressing properties: projective de-
finability). A property P of τ -structures is expressible
in L if P ∈ PCL.

Thus, a corresponding relative measure of expressive-
ness is obtained:

9A structure A ∈ M[∅] iff A = (A) for some domain A.
10E.g. see (MAKOWSKY, 1980, p. 420), (TARLECKI, 1986,

p. 358), (MESEGUER, 1989, p. 299), (SHAPIRO, 1991, p. 232)
and (BRESOLIN; MUÑOZ-VELASCO; SCIAVICCO, 2016, p.
90).
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Definition 3.5.3 (≼PC). L1 ≼PC L2 iff DCL1 ⊆
PCL2.

Notice that the above definition can be given solely
in terms of projective classes:11

Remark 3.5.4. DCL1 ⊆ PCL2 iff PCL1 ⊆ PCL2.

3.5.5 On the properties of ≼PC

It is easily seen that

Remark 3.5.6. Property 1 does not hold for ≼PC .

As regards property 2, Makowsky (1980, p. 414)
has shown that it holds for a class of dynamic logics
and operators. However, in a general setting, we have
that

Remark 3.5.7. Property 2 does not hold for ≼PC .

Similarly with the other conditions seen above, a rather
weak form naturally still holds:

Remark 3.5.8. If L1 ≼PC L2 and every projective
class in Le

1 is a projective class in L1, then Le
1 ≼PC Le

2.

Let us consider now property 3. Clearly, if two sen-
tences have equivalent meanings only when they have
the same class of models, then the property 3 does not
hold for ≼PC .

However, one might require for equivalence of mean-
ing only that the class of models of one sentence be
an extension of the class of models of the other. The
motivation would be to “distribute” better the role of
logical and non-logical constants in same-saying rela-
tions. Taking again the examples of the beginning of

11However, by defining ≼PC as PCL1 ⊆ PCL2 the result 5.0.2
no longer holds. Given K ∈ PCL1 , one would not be able to
obtain by negation that K ∈ PCL1 , and thus cannot use the
∆-interpolation property of L2.
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the section, if the sentences Q0x(x = x) and “R is
a non-reflexive, transitive and serial relation on the
domain” are considered equivalent, as essentially “say-
ing the same thing”, then one is allowing the logical
strength embedded in Q0 to be counterbalanced with
the addition of the extra non-logical constant R. Thus,
in this sense, the property 3 would still hold for ≼PC .
This point will be discussed further in section 6 below.

4 Comparing the conditions for relative expres-
siveness

Among ≼DC , ≼DC∆ and ≼EQ, the first is the strictest
and the latter is the loosest.

Remark 4.0.1. Both L1 ≼DC L2 and L1 ≼DC∆ L2

imply that L1 ≼EQ L2.

The reverse implication does not hold:

Remark 4.0.2. L1 ≼EQ L2 does not imply that
L1 ≼DC∆ L2.

As regards ≼EQ and ≼EQs , we clearly have that

Remark 4.0.3. If L1 ≼EQs L2, then L1 ≼EQ L2.

A counterexample is provided in Kocurek (2018, p.
138) to show that

Remark 4.0.4 (Kocurek). It is false that if L1 ≼EQ

L2, then L1 ≼EQs L2.

Kocurek (ibid, p. 139) also obtained the following
two results.

Remark 4.0.5 (Kocurek). L1 ≼DC∆ L2 implies that
L1 ≼EQs L2.

Remark 4.0.6 (Kocurek). L1 ≼EQs L2 does not im-
ply that L1 ≼DC∆ L2.
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Thus, we can conclude (also directly by the consid-
erations on remark 3.4.6) that

Remark 4.0.7. L1 ≼EQs L2 does not imply that
L1 ≼DC L2.

As regards the relation between ≼DC and ≼PC , it
clearly holds that

Remark 4.0.8. If L1 ≼DC L2, then L1 ≼PC L2.

The converse does not hold in general. A case where
it does is second-order logic, where DC = PC.12

Remark 4.0.9. It is false that if L1 ≼PC L2, then
L1 ≼EQ L2.

Remark 4.0.10. It is false that if L1 ≼EQ L2, then
L1 ≼PC L2.

By remarks 4.0.3 and 4.0.9 we have that:

Remark 4.0.11. It is false that if L1 ≼PC L2, then
L1 ≼EQs L2.

We have not been able to prove or disprove the
converse of this remark. Finally, there follows the cor-
responding results as regards ≼DC∆ :

Remark 4.0.12. It is false that if L1 ≼PC L2, then
L1 ≼DC∆ L2.

Remark 4.0.13. It is false that if L1 ≼DC∆ L2, then
L1 ≼PC L2.

In the figure 1 all the relations among the condi-
tions are drawn. The arrows obtained by transitivity
are omitted. In connection with a comment made in
section 2, notice that ≼EQ is an interesting measure
with respect to which to prove inexpressibility results.

12This so because whenever the characterization of a class
of structures with the signature τ needs a formula ϕ having
additional relation symbols R1, ..., Rn, one can add existential
quantifiers binding them and thus maintaining the signature of
the resulting formula at τ .
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≼EQ

≼DC

≼PC

≼DC∆≼EQs

Figure 1: Relations between formal conditions for relative ex-
pressiveness.

5 Sufficient conditions for the existence of stricter
relations of expressiveness

When we have a criterion ≼X which is is stricter than
another ≼Y , an interesting question is:

(i)
If L1 ≼Y L2 are there any properties of L1

and L2 that are sufficient to conclude that
L1 ≼X L2?

The case is easy for the pair ≼DC∆ and ≼DC . Suppose
L1 ≼DC∆ L2, then an immediate sufficient condition
for L1 ≼DC L2 to hold, is that L2 has an infinitary
conjunction

∧
.

As an answer to (i) involving ≼EQ and ≼DC , Ko-
curek (2018, p. 134) proposed two properties for L2:
infinitary conjunction and truth-functional negation.13

However, this is incompatible with some of the results
mentioned in the proof of remark 3.3.6, involving the
logics L∞ω and L∞G. In the proof of his claim, the fol-
lowing sentence is used (where

∨
stands for infinitary

disjunction, defined from
∧

and ¬):

13There is a characterization of Lωω in (LINDSTRÖM, 1974,
p.137) amounting to a related result: for a certain property P ,
if Lωω ≼DC L, L ≼EQ Lωω and L has P , then L ≼DC Lωω.
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(ii) ψ =
∨
{
∧

ThL2(A) | A ⊩L1 ϕ}

Keisler (1968) studied the logics L∞G and L∞ω

and had considered sentences such as (ii) above. He
pointed out that the conflict with the results men-
tioned on the proof of remark 3.3.6 is only apparent,
as a sentence of the form (ii) would not be an L∞ω-
sentence, since the class Φ = {

∧
ThL∞ω(A) | A ⊩L∞G

ϕ} cannot in general be taken to be a set. Thus, Ko-
curek’s proposal does not hold unless it is guaranteed
that

∨
Φ will be an L2-sentence.

As regards (i) with respect to ≼PC , ≼DC and L2,
it was proposed by Makowsky (1980) a version of Beth
definability, called “occurrence normality",14 but shortly
afterwards the author pointed out that it would not
work (MAKOWSKY, 1981).

Consider, however, the stronger property15

Definition 5.0.1 (∆-interpolation). If K and K are
PCL, then K is DCL.

Then we have that

Remark 5.0.2. If L1 ≼PC L2, L1 has truth-functional
negation and L2 has ∆-interpolation, then L1 ≼DC L2.

6 Discussion

The concept of expressing or capturing properties of
models can be given many interpretations, as it was
shown. In this sense, the choice of one interpretation
over another is partly stipulative. However, some rea-
sons for preference can be brought into consideration,

14Definition: let τ ′ = τ ∪ {R} and τ ′′ = τ ∪ {S}, where R,S
are relation symbols not belonging to τ and having the same
type. Consider a τ ′-formula ϕ(R) and let ϕ(S) be a τ ′′-formula
obtained from ϕ(R) replacing all occurrences of R by S. Then L
is occurrence normal whenever ⊨L ϕ(R) ↔ ϕ(S) for every R and
S, implies that there is a τ -formula θ such that ⊨L ϕ(R) ↔ θ.

15For more, see (MAKOWSKY; SHELAH; STAVI, 1976).
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such as the properties the generated expressiveness re-
lations have and also judgements of material adequacy.

6.1 Property 1

This property will fail whenever the logic L2 is at least
as expressive as L1, and the fragment of L2 required
to express L1 already is capable of expressing proper-
ties of models that are not expressible in L1. When
the notion of “expressing a property of models” is ap-
proached via proposals 3.2.2 and 3.4.1, this situation
may happen with respect to the corresponding formal
condition, as shown in remarks 3.2.5 and 3.4.4.

Requiring satisfaction of property 1 amounts to con-
sider an expressiveness relation akin to an embedding
of models. This would provide a guarantee of some
sort of meaning preservation from one language to the
other. It is, however, not necessary for the existence
of meaning preservation, as it will be argued in sub-
section 6.3.

6.2 Property 2

Requiring an expressiveness condition to satisfy prop-
erty 2 could be motivated by a sort of “modular” view
of expressiveness: adding the same expressive capaci-
ties to a pair of logics should preserve an eventual ex-
pressive equivalence between them. Despite its prima
facie reasonableness, this modular view of expressive-
ness is rather restrictive: none of the studied condi-
tions for expressiveness satisfy it, except for specific
collections of logics and operators, as regards ≼PC , and
a specific kind of associated translation (definitional),
as regards ≼DC . That non-definitional translation can
also be involved in a ≼DC-expressiveness relation is
easily seen.16

16Take e.g. the following simple example from (PETERS;
WESTERSTÅHL, 2006). Consider again the logic L(Q0) and
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6.3 Property 3

There is a rather clear sufficient condition for satisfac-
tion of this property: whenever for every sentence in
one logic, there is a sentence in the other logic with the
same class of models. One could also consider that the
matching of each sentence with a (perhaps recursively
definable) set of sentences with the same models is also
sufficient for meaning equivalence and, thus, sufficient
for the satisfaction of property 3. In both these cases,
the related sentences/set of sentences are required to
share the same class of models. In what follows it is
argued this is not necessary for meaning equivalence.

Naturally, one can hardly hope to render the notion
of meaning equivalence precise without leaving behind
some or other salient feature. As an example of this,
Peters and Westerståhl (2006) explore various “same-
saying relations”, including analytical, logical and cog-
nitive equivalence, each highlighting an important as-
pect of meaning equivalence. The first is equivalence
with respect to meaning postulates, the second is just
the sharing of the same models and the third is the cog-
nitively recognizable sharing of the same models. No
same-saying relations allowing the use of extra non-
logical symbols to express the “same thing” are in-

let L(I) be first-order logic extended with Hartïg’s equicardinal-
ity quantifier I, where Ix(ψ1, ψ2) means “the cardinality of the
set of things satisfying ψ1(x) is equal to the cardinality of the
set of things satisfying ψ2(x)”, the free occurrences of x in both
ϕ1 and ψ2 are bound by I. It is possible to express the infinity
of P in L(I) saying that subtracting one element does not alter
the cardinality of P . This could be done with the translation
T : L(Q0) −→ L(I), whose main case is defined as

T (Q0xψ) = ∃y(T ∗(ψ) ∧ Ix(T (ψ), T (ψ) ∧ x ̸= y)),

where y is new and T ∗(ψ) is the result of applying T to the
formula obtained by substituting y for the free occurrences of x
in ψ, that is, T ∗(ψ) = T (ψy

x). Note that T is not definitional,
as T (Q0xψ) is not defined with respect to T applied to the
sub-formulas of Q0xψ.

Manuscrito – Rev. Int. Fil. Campinas, v.46, n.4,
e-2022-0054.R3.



Diego Pinheiro Fernandes 24

vestigated. Apparently, the reason is that projective
definability is only “a particular form of definition in
second-order logic” (ibid, p. 432).

Cognitively recognizable equivalence is perhaps a
drastic example, but establishing whether two sen-
tences have the same meaning even for much more def-
inite cases can still be context dependent, as Shapiro
(2019) argued. The remarks on projective definabil-
ity by Peters and Westerståhl highlights another axis
of dependence that should be considered: the weight
attributed to logical and non-logical constants in con-
siderations of meaning equivalence and expressive ca-
pacity. A crucial point of taking projective definability
as a same-saying relation is exactly to consider that
prefixing existential second order quantifiers in front
of a formula does not add extra expressive capacity to
it. This is a way to approach the eventual unbalance
between what is already embedded in a logical con-
stant in one logic and what needs to be constructed
with the help of non-logical symbols in the other. On
subsection 3.5 a simple example involving the class of
infinite structures was given to illustrate this. It is
of interest to consider the example used by Shapiro
(1991) to defend the same point.

Let L(A) be an extension of Lωω with the addition
of the ancestor operatorA: for a formula ϕ, Ayz(ϕ)c1c2
means that c1 is an ancestor of c2 in the relation ex-
pressed by the formula ϕ(y, z), being the variables y, z
of ϕ bound by A.17 Let Φ be the usual first-order ax-
ioms for ordered fields, in the vocabulary τ = {+, ·, <
, 0, 1}, for binary +, ·, < and individual constants 0, 1.
Let Φ1 be an L(A)-sentence saying “for every element
x there is a greater one y whose ancestral over the re-
lation w = z + 1 is 1”. Finally, let A be the class of

17That is, there are elements ai1 , ..., ain such that when
assigned, respectively, to variables xi1 , ..., xin , the formulas
ϕ(c1, xi1), ϕ(xi1 , xi2) and ... and ϕ(xin , c2) hold.
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the Archimedean ordered fields.
It holds that A is definable in L(A) by the formula

Φ ∧ Φ1. But A is not definable in L(Q0), and thus,
L(A) ̸≼DC L(Q0). Concerning this (and analogous
cases) Shapiro says

I would suggest that the ‘non-inclusions’
here are artefacts of an unnatural restric-
tion on the non-logical terminology. To il-
lustrate this, we show that L(Q0) can ex-
press the notion of an Archimedean field if
the non-logical terminology is slightly ex-
panded. (SHAPIRO, 1991, p. 232)

Let N be an unary relation symbol, and let Φ2 be an
L(Q0)-sentence saying “0 as well as every of its suc-
cessors are N , and for every x there are only finitely
many y such that Ny and y < x.” Shapiro continues
remarking that every model of Φ ∧ Φ2

is an Archimedean field. Conversely, in ev-
ery Archimedean field F , there is a set P
(namely, the ‘natural numbers’ of F ) such
that if P is made the extension of N , then
P satisfies [Φ ∧ Φ2].(ibid)

Thus, the property of being an Archimedean field,
though not definable, is projective in L(Q0). Now, let
(Φ2)

X
N stand for the substitution of the predicate vari-

able X for N in Φ2. In this manner, Φ ∧ Φ1, Φ ∧ Φ2

and ∃X(Φ ∧ (Φ2)
X
N ), would be deemed to have equiv-

alent meanings, using PC-equivalence as a measure.
Indeed, if L∗ is an extension of L with the addition of
prenex second-order existential quantifiers, naturally
we have that L ∼∼∼PC L∗, so they would be considered
expressively equivalent.

What can be a problem is the fact that PC-equi-
valence would not satisfy substitution salva veritate
even in extensional contexts, such as in L(Q0), since
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¬Q0xx = x and ¬(“R is a non-reflexive, transitive and
serial relation on the domain”) are not PC-equivalent.
This could be used to question the reasonableness of
its use as a same-saying relation.

In any case, other authors also favoured ≼PC as a
measure of expressiveness: Makowsky (1980, p. 414)
makes an analysis similar to Shapiro’s as regards com-
parisons of dynamic logics in terms of expressive power:

The aim of this chapter is to show that
most of them [dynamic logics] are AP-equi-
valent [PC-Equivalent]. This shows us that
differences in the expressive power of most
dynamic logics are “accidental” in the sense
that to show their equivalence one needs
additional predicates. This means intro-
ducing “abbreviations” for certain proce-
dures and is done freely in mathematics
and programming.

Later, (ibid, p. 420) he defends the use of PC-
classes for expressiveness comparisons:

AP-reductibility [≼PC ] is a natural no-
tion to compare expressive power of log-
ics, eventually even more natural than re-
ductibility [≼DC ]

Bresolin, Muñoz-Velasco and Sciavicco (2016, p.
94) also make similar remarks, when comparing ≼DC

and ≼PC and the hierarchy of logics they generate,
weak and strong, respectively:

Adding new propositional letters to fa-
cilitate translations from a fragment to an-
other is a common practice, for example,
to prove that every n-ary clause in propo-
sitional logic can be transformed into an
equi-satisfiable set of ternary clauses. In
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this sense, it can be argued that the weak
hierarchy is less general; nonetheless, both
the weak and the strong hierarchies con-
tribute to the comprehension of the rela-
tive expressive power of sub-propositional
fragments.

As a final consideration, we notice that some au-
thors, e.g. Makowsky, Shelah and Stavi (1976, p. 156),
Barwise and Feferman (1985, p. 18) and Mundici
(1985, p. 216), seem to attribute to ≼PC a measure
of “implicit expressive power”, as against the “explicit”
measure which would be given by ≼DC . The remark
5.0.2 would support this claim, as the satisfaction by
L2 of ∆-interpolation implies a version of Beth de-
finability (MAKOWSKY; SHELAH; STAVI, 1976, p.
163).

7 Conclusion

In this paper it was proposed that, for model-theoretic
logics, the relation (E) “everything that can be said
in L1 can also be said in L2” is best captured by the
(E∗) “every property of models expressible in L1 is also
expressible in L2”. Five possible answers to the ques-
tion “when is a property of models expressible?” were
proposed, and it was argued that formal measures of
expressiveness (or “conditions”, for brevity) that ap-
peared in the literature can be understood as issuing
from each of these answers.

Some properties one might expect of expressiveness
relations were analyzed, and each condition was tested
for them. The table 1 contains the properties satisfied
by each condition. It was seen that properties 1 and 2,
contrary to what might be thought at first sight, were
rather restrictive. Taking French’s approach (2019) to
notational variance a basis, then the results above on
property 2 shows that notational variance and expres-
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sive equivalence are really distinct relations. The dis-
cussion on satisfaction of property 3 has highlighted
the importance of considering the logical/non-logical
divide when thinking about meaning equivalence.

Finally, it was checked how each condition is re-
lated to each other. Among them ≼DC is the strictest
and the two loosest are ≼EQ and ≼PC . There are
other conditions looser than ≼PC , which would be
based on even laxer conceptions of “expressing prop-
erties of models”, e.g., those involving the concept of
relative projective definability and their ∆-variants.18

These conditions based on relative projective definabil-
ity have also has been used in expressiveness compar-
isons by some authors.19 This, as well as further prop-
erties of the conditions analysed here, shall be object
of further investigations.

Condition Property 1 Property 2 Property 3
≼DC ∗ ∗† ∗
≼DC∆ – – ∗†
≼EQ – – –
≼EQs – – –
≼PC ∗ – ∗†

Table 1: List of conditions and properties. The dash indicates
non-satisfaction, the asterisk indicates satisfaction and the su-
perscripted asterisks refer to satisfaction of weak forms of the
respective property.

18That is, variants allowing a set of formulas to express prop-
erties of models.

19E.g. in (EBBINGHAUS, 1985), (KRYNICKI; VÄÄNÄ-
NEN, 1989) and (SHAPIRO, 1991).
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8 Appendix: Proofs of some remarks

8.0 Remark 3.1.5

If L1 ≼DC L2, then there is a fragment L∗
2

of L2 such that L1
∼∼∼DC L∗

2.

Proof. Take the associated mapping T : S1 −→ S2

and let T [S1] be the image of S1 under T . Define L∗
2

to be (T [S1],M,⊩↾T [S1]
2 ). That L1

∼∼∼DC L∗
2 is clear.

8.0 Remark 3.1.8

Suppose that L1 ≼DC L2 and that Le
1, Le

2

are uniform extensions. Let F1,Fe
1 ,F2,Fe

2

be their respective collections of well-formed
formulas. Then, if there is a definitional
translation T : F1 −→ F2, there is a def-
initional translation T + : Fe

1 −→ Fe
2 such

that Le
1 ≼DC Le

2.

Let the hypotheses of the remark be satisfied. De-
fine the following extension of T :

Definition 8.0.1. T + : Fe
1 −→ Fe

2

• If ϕ ∈ F1, then T +(ϕ) = T (ϕ)

• If ϕ ∈ Fe
1 \ F1, then there are some cases:

(a) ϕ is a 0-ary operator. Then T +(ϕ) = ϕ.

(b) ϕ is of the form ⋇(ϕ1, ..., ϕn), where

(i) the operator ⋇ is new. Then
T +(⋇(ϕ1, ...,ϕn)) =

⋇ (T +(ϕ1), ..., T +(ϕn)).

(ii) the operator ⋇ belongs to L1. Then
T +(⋇(ϕ1, ...,ϕn)) =

θ⋇(T +(ϕ1), ..., T +(ϕn)),
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where θ⋇ is the schema associated with
⋇ by T .

Now there follows the proof of remark 3.1.8:

Proof. The proof is by induction on the degree of for-
mulas. Let the assumptions of the remark be satisfied.
Let S1 and Se

1 be the collections of sentences of L1 and
Le
2, respectively. If ϕ ∈ S1[τ ], or is a new 0-ary oper-

ator, the result follows directly. Take ϕ ∈ Se
1 [τ ]\S1[τ ]

and consider the cases:

1. ϕ = ⋇(ψ1, ..., ψn), such that ⋇ belongs to L1.
The inductive hypothesis gives, for every A ∈
M[τ ],

(a)
A ⊩Le

1
ψi iff

A ⊩Le
2
T +(ψi), for 1 ≤ i ≤ n.

Since T is definitional, then for atomic ϕ1, ..., ϕn ∈
F1[τ ] and for every A ∈ M[τ ]:

(b)
A ⊩Le

1
⋇(ϕ1, ..., ϕn) iff

A ⊩Le
2
θ⋇(ϕ1, ..., ϕn).

Using (a) and (b), we have that

A ⊩Le
1
⋇(ψ1,..., ψn) iff

A ⊩Le
2
θ⋇(T +(ψ1), ..., T +(ψn)),

where ⋇(ψ1, ..., ψn) is obtained from ⋇(ϕ1, ..., ϕn)
by substituting ψi for ϕi; the sentence θ⋇(T +(ψ1),
..., T +(ψn)) is obtained from θ⋇(ϕ1, ..., ϕn) by
substituting T +(ψi) for ϕi (1 ≤ i ≤ n). Recall
that, being T + definitional, the free variables of
ψi are the same as those of T +(ψi).

2. ϕ = ⋇(ψ1, ..., ψn) such that ⋇ is new. Then the
result follows directly from the inductive hypoth-
esis.
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8.0 Proof of remark 3.2.5

There are logics L1,L2 such that L1 ≼DC∆

L2, but there is no fragment L∗
2 of L2 such

that L1
∼∼∼DC∆ L∗

2.

Let the logic L(Q0)
w be built from atomic first-

order language plus the quantifier Q0 “there are in-
finitely many". Consider the fragment L(Q0)

w∗ of
L(Q0)

w, where there are no iterated occurrences of
Q0 and, for the sake of simplicity, only unary relations
are allowed. Let Fw∗ be its collection of formulas and
F the collection of first-order formulas.

Lemma 8.0.2. L(Q0)
w∗ ≼DC∆ Lωω.

Proof. Define the translation T : Fw∗ −→ P(F) as

• If ϕ is atomic, then T ∆(ϕ) = {ϕ}

• If ϕ = Q0xRx, then, for some infinite ordinal κ,

T ∆(ϕ) =

{∃x1...xn(
∧

1≤i≤n

(Rx)xi
x

∧
1≤i<j≤n

xi ̸= xj) |n ∈ κ}.

Then, A ∈ ModL(Q0)w∗(ϕ) iff |RA| is infinite iff A ∈
ModLωω(T ∆(ϕ)).

Lemma 8.0.3. For no fragment L† of Lωω, it holds
such that L(Q0)

w∗ ∼∼∼DC∆ L†.

Proof. In order for it to hold that L(Q0)
w∗ ≼DC∆ L†,

for some fragment L† of Lωω, it must hold that F† ⊆⋃
T ∆[Fw∗]. However, there would be no Γ ⊆ Fw∗,

such that ModL(Q0)w∗(Γ) = ModL†(∃x1x2(Rx1∧Rx2∧
x1 ̸= x2)). Therefore, L† ̸≼DC∆ L(Q0)

w∗.
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8.0 Proof of remark 3.2.6

There are logics L1,L2 with uniform exten-
sions Le

1,Le
2, such that L1 ≼DC∆ L2, but

Le
1 ̸≼DC∆ Le

2.

Proof. Consider the logic L(Q0)
w∗ from the proof of

remark 3.2.5. Let Le be its extension with truth func-
tional negation. Then, there is no Γ ⊆ Lωω such that
ModLe(¬Q0xRx) = ModLωω(Γ).

8.0 Proof of remark 3.3.5

There are logics L1,L2 with uniform ex-
tensions Le

1,Le
2, such that L1 ≼EQ L2, but

Le
1 ̸≼EQ Le

2.

Consider the logic, to be referred as L∃at, consisting
of the atomic fragment of first-order language together
with existential quantification. Let L∃d be an exten-
sion of L∃at with the disjunction operator. Let L∃de

and L∃ate be the extensions of L∃d and L∃at with re-
spect to truth-functional negation.

Some facts about ≼EQ:

1. If A ̸≡L B, then A ̸≡Le B;

2. It is false that if A ≡L B, then A ≡Le B.

The first item is is straightforward. As regards the
second, consider again L∃d and its extension L∃de . For
τ = {P1, P2}, where P1 and P2 are unary relation sym-
bols, set the τ -structures A = ({1, 2, 3}, {1, 2}, {1, 3})
and B = ({1, 2, 3}, {1, 2}, {3}). There are, up to equiv-
alence, four L∃d[τ ]-formulas: ∃xP1x, ∃xP2x, ∃x(P1x∨
P2x) and ∃xP1x∨∃xP2x. Thus it holds that A ≡L∃d B.
However, for the L∃de [τ ]-formula ϕ = ∃x¬(¬P1x ∨
¬P2x) we have that A ⊩L∃de ϕ and B ̸⊩L∃de ϕ.

The remark 3.3.5 follows from the next two lemmas.
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Lemma 8.0.4. L∃de ̸≼EQ L∃ate.

Proof. Consider again the vocabulary τ = {P,Q}. Up
to equivalence, there are eight L∃ate [τ ]-formulas: ∃xPx,
∃x¬Px, ¬∃xPx and ¬∃¬Px and the corresponding
ones for Q. Thus, for the τ -structures A and B defined
above, it holds that A ≡L∃ate B. As it was shown that
A ̸≡L∃de B, it follows that L∃de ̸≼EQ L∃ate .

Lemma 8.0.5. L∃d ≼EQ L∃at.

Proof. Suppose that for A,B ∈ M[τ ], for some τ , it
holds that A ̸≡L∃d B. Then for some ϕ ∈ F∃d[τ ],
A ⊩L∃d ϕ and B ̸⊩L∃d ϕ. Notice that ϕ can be either
of the form (a) Rx1...xn, (b) ∃x1...xnRx1...xn, (c) ψ∨δ
or (d) ∃x1...xn(ψ ∨ δ). Given that L∃d formulas of the
form (d) are equivalent to formulas of the form (c), we
may suppose that all sub-formulas of ϕ are of the form
(a), (b) or (c).

If ϕ is of the form (a) or (b), it is clear that A ⊩L∃at

ϕ and that B ̸⊩L∃at ϕ.
Now consider the case where ϕ is of the form (c)

ψ ∨ δ:

• Given that A ⊩L∃d ψ∨δ, it follows that A satisfies
at least one of them, call it ξ. If ξ is of the form
(a) or (b), then it follows that A ⊩L∃at ξ. If ξ is
a disjunction, the process goes in the same way
until it holds that A ⊩L∃d ξ

′, for a sub-formula ξ′

of ξ, having the form (a) or (b). In such a case,
it also holds that A ⊩L∃at ξ

′.

• Given that B ̸⊩L∃d ψ∨δ, then for all sub-formulas
ξ of ψ ∨ δ having the form (a) or (b), it holds
that B ̸⊩L∃d ξ. Therefore, it also holds that
B ̸⊩L∃at ξ.

Then it holds that A ̸≡L∃at B.
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8.0 Proof of remark 3.3.6

There are logics L1 and L2, with L1 ≼EQ

L2, such that there is an L1-formula for
which there is no L2-formula or set of for-
mulas equivalent to it.

Proof. Let the logic L∞ω be an extension of Lωω, such
that, if {ϕ1, ϕ2, ...} is any set of first-order sentences,
then

∧
{ϕ1, ϕ2, ....} and

∨
{ϕ1, ϕ2, ....} are L∞ω-senten-

ces. The semantics for such operators is the expected
one. Let the logic L∞G be an extension of L∞ω, such
that ∀x0∃x1∀x2∃x3...ϕ is a L∞G-formula whenever ϕ
is a L∞ω-formula. The quantifiers ∀x0∃x1∀x2∃x3, ...
are interpreted in terms of winning strategies.20

It is known that L∞G
∼∼∼EQ L∞ω (BARWISE; FE-

FERMAN, 1985, p. 43). Nevertheless, it is not the
case that every sentence of L∞G has counterparts in
L∞ω with an equivalent meaning. There is an L∞G-
sentence ϕ which is able to capture the common fea-
ture of having a well-ordered relation, that is shared
by all well-ordered structures (KOLAITIS, 1985). On
the other hand, there is no L∞ω-sentence equivalent to
ϕ (LOPEZ-ESCOBAR, 1966), and no set of sentences
either. Therefore, one can conclude that ≼EQ does not
satisfy property 3.

8.0 Proof of remark 3.4.4

There are logics L1 and L2 with L1 ≼EQs

L2, such that there is no fragment L∗
2 of L2

for which it holds that L1
∼∼∼EQs L∗

2.

The following counterexample is a variant of the
one presented by Kocurek (2018) for remark 3.3.4.

Proof. Let M = {A,B,C} and S = {p1, p2, p3}. De-
fine

20For more details, see (KOLAITIS, 1985).
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• ThL1(A) = ThL1(B) = {p1},
ThL1(C) = {p1, p2, p3}.

• ThL2(A) = {p1, p2}, ThL2(B) = {p1, p3},
ThL2(C) = {p1, p2, p3}.

For C,D ⊆ M, recall that C ≡L D is defined as⋂
A∈C

ThL(A) =
⋂

B∈D
ThL(B). It is easy to see that

for all C,D ⊆ M, if C ̸≡L1 D, then C ̸≡L2 D. Thus, it
holds that L1 ≼EQs L2. However, there is no fragment
L∗
2 of L2 such that L1

∼∼∼EQs L∗
2: Setting L∗

2 = L↾{p1}
2 ,

it holds that A ̸≡L1 C, but A↾{p1} ≡L∗
2
C↾{p1}. For

every other S∗ ⊂ S, it will hold that L∗
2 = L↾S∗

2 will
distinguish pairs of structures not distinguished by L1.

8.0 Proof of remark 3.4.5

There are logics L1,L2 with uniform exten-
sions Le

1,Le
2, such that L1 ≼EQs L2, but

Le
1 ̸≼EQs Le

2.

Proof. Consider again the logics defined in the proof of
remark 3.4.4. Let the 0-ary operator ⊛ have its truth
conditions defined as follows, where AtL stands for the
collection of atomic L-sentences:

A ⊩L ⊛ iff |{p ∈ AtL |A ⊩L p}| = 1

Let Le
1 and Le

2 be the uniform extensions of L1 and
L2 with respect to ⊛.

It holds that ThLe
1
(A) ∩ ThLe

1
(B) = {p1,⊛} and

that ThLe
1
(A) ∩ ThLe

1
(B) ∩ ThLe

1
(C) = {p1}. Then,

ThLe
1
(A)∩ThLe

1
(B)∩ThLe

1
(C) ̸= ThLe

1
(A)∩ThLe

1
(B).

However,

ThLe
2
(A) ∩ ThLe

2
(B) ∩ ThLe

2
(C) =

ThLe
2
(A) ∩ ThLe

2
(B) = {p1}.
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8.0 Proof of remark 3.4.6

There are logics L1 and L2, with L1 ≼EQs

L2, such that there is an L1-formula for
which there is no L2-formula or set of for-
mulas equivalent to it.

Proof. Consider the proof of remark 3.4.4: for the for-
mula p2 in L1 it holds that ModL1(p2) = {C} and
there is no L2-formula nor set of formulas equivalent
to it.

8.0 Proof of remark 3.5.4

DCL1 ⊆ PCL2 iff PCL1 ⊆ PCL2 .

Proof. From right to left it is immediate, as DCL ⊆
PCL.

From left to right: suppose that DCL1 ⊆ PCL2 .
For K ⊆ M[τ ], let K ∈ PCL1 . Then, there is an L1[τ

′]-
formula ψ with τ ′ ⊇ τ , such that K = {A′↾τ |A′ ∈
Modτ ′

L1
(ψ)}. By the hypothesis, there’s a L2[τ

′′]-formula
δ, for τ ′′ ⊇ τ ′, such that Modτ ′

L1
(ψ) = {A′′↾τ ′ |A′′ ∈

Modτ ′′
L2
(δ)}. Thus, K = {A′′↾τ |A′′ ∈ Modτ ′′

L2
(δ)} and

K ∈ PCL2 .

8.0 Proof of remark 3.5.6

If L1 ≼PC L2, then there is a fragment L∗
2

of L2 such that L1
∼∼∼PC L∗

2.

The proof is analogous to the one for remark 3.1.5.

8.0 Proof of remark 3.5.7

There are logics L1,L2 with uniform ex-
tensions Le

1,Le
2, such that L1 ≼PC L2, but

Le
1 ̸≼PC Le

2.
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Consider the logic L(Q0)
w from the proof of remark

3.2.5 and the following translation to first-order logic,
T : FL(Q0)w −→ FLωω , where Rϕ is a new binary rela-
tion symbol, and by T (ψ)xi

xj
it is meant the substitu-

tion of xi for the free occurrences of xj in T (ψ). Let
ϕ ∈ L(Q0)

w.

• ϕ is atomic, then T (ϕ) = ϕ.

• ϕ = Q0x1 ψ, then for new variables x2, x3 set
T (ϕ) = ∀x1(T (ψ) → ¬Rϕx1x1) ∧
∀x1x2x3(T (ψ) ∧ T (ψ)x2

x1
∧ T (ψ)x3

x1
∧ Rϕx1x2 ∧

Rϕx2x3 → Rϕx1x3) ∧
∀x1(T (ψ) → ∃x2(T (ψ)x2

x1
∧Rϕx1x2)).

Lemma 8.0.6. L(Q0)
w ≼PC Lωω

Proof. Let τ ′ = τ ∪ {Rϕ1 , Rϕ2 , ...}, where Rϕ1 , Rϕ2 , ...
are new binary relation symbols corresponding to each
formula of L(Q0)

w. Let Dom(A) be the domain of
A, and let Aa

x be a model differing from A at most in
that a ∈ Dom(A) is assigned to the variable x. Then,
for each ϕ ∈ L(Q0)

w[τ ], there is an Lωω[τ
′]-sentence

ψ such that Modτ
L(Q0)w

(ϕ) = {A↾τ |A ∈ Modτ ′
Lωω

(ψ)}.
Take the main case where ϕ = Q0x1 ψ. This formula is
true in a model just in case |{a ∈ Dom(A) |Aa

x1
⊩L(Q0)w

ψ}| is infinite. The same happens with the formula
T (Q0x1 ψ): it is true at A in first-order logic if and
only if |{a ∈ Dom(A) |Aa

x1
⊩Lωω T (ψ)}| is infinite.

This is because there is a non-reflexive, transitive and
serial21 relation on {a ∈ Dom(A) |Aa

x1
⊩Lωω T (ψ)}.

Now there follows the proof of remark 3.5.7:

Proof. Let L(Q0)
we and Lωω

e be the uniform exten-
sions of both logics with respect to truth-functional
negation. Given that Lωω already has it, Lωω

e ∼∼∼EC

21By “serial" we mean the property ∀x1∃x2Rϕx1x2.
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Lωω. As the class of finite structures F is definable in
L(Q0)

we, and given that F is not projective in Lωω,
it is not so in Lωω

e, thus it holds that L(Q0)
we ̸≼PC

Lωω
e.

8.0 Proof of remark 4.0.2

L1 ≼EQ L2 does not imply that L1 ≼DC∆

L2.

Proof. Consider again the logics L∞ω and L∞G. Let
W be the class of well-orderings and let ϕ be the
L∞G[τ ]-sentence such that Modτ

L∞G
(ϕ) = W. We

have that L∞G
∼∼∼EQ L∞ω, but by the result of Lopez-

Escobar (1966), W ̸∈ DCL∞ω , which implies that W ̸∈
DC∆

L∞ω
.

8.0 Proof of remark 4.0.9

It is false that if L1 ≼PC L2, then L1 ≼EQ

L2.

Proof. Let the signature τ to be {0, 1,+, ·, <} and con-
sider two τ -structures A and B which are models of
the first-order axioms for an ordered field, A being
Archimedean and B not. We have that L(A) ≼PC

L(Q0) and that A ̸≡L(A) B (SHAPIRO, 1991, p. 231).
However, by a result of Cowles (1979) we have that
A ≡L(Q0) B.

8.0 Proof of remark 4.0.10

It is false that if L1 ≼EQ L2, then L1 ≼PC

L2.

Proof. Take the logics L∞ω and L∞G mentioned above.
As we saw, we have that L∞G ≼EQ L∞ω, and that
there is an L∞G[τ ]-sentence ϕ such that the class of
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well-orderings W = ModτL∞G
(ϕ). If it were the case

that L∞G ≼PC L∞ω, then W ∈ PCL∞ω , but it is
known that W ̸∈ PCL∞ω (BARWISE; FEFERMAN,
1985, p. 274).

8.0 Proof of remark 4.0.12

It is false that if L1 ≼PC L2, then L1 ≼DC∆

L2.

Proof. Consider L(A) and L(Q0). It is the case that
L(Q0) ≼PC L(A). Suppose that L(Q0) ≼DC∆ L(A).
Take τ to be a monadic vocabulary and consider the
L(Q0)[τ ]-sentence ¬Q0c Pc. Then by hypothesis, there
is a set ∆ of L(A)[τ ]-sentences for which it holds that
Modτ

L(Q0)
(¬Q0c Pc) = Modτ

L(A)(∆). However, by a re-
sult of Shapiro (1991, p. 232), L(A) ∼∼∼DC Lωω under
monadic vocabulary. Thus each sentence in ∆ would
be equivalent to a first-order sentence. By compact-
ness, there is no set of first-order sentences defining
finiteness.

8.0 Proof of remark 4.0.13

It is false that if L1 ≼DC∆ L2, then L1 ≼PC

L2.

Proof. Take the conjunction fragment of Lωω, and the
atomic fragment, to be represented as Lconj

ωω and Latom
ωω ,

respectively. It is clear that Lconj
ωω ≼DC∆ Latom

ωω , but it
is false that Lconj

ωω ≼PC Latom
ωω .

8.0 Proof of remark 5.0.2

If L1 ≼PC L2, L1 has truth-functional nega-
tion and L2 has ∆-interpolation, then L1 ≼EC

L2.

Proof. Let the hypotheses of the remark be satisfied.
Take K ∈ DCL1 . Then, K ∈ DCL1 . Thus, K ∈ PCL2
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and K ∈ PCL2 . By ∆-interpolation, it follows that
K ∈ DCL2 .
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