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Abstract: Dung’s argumentation frameworks are forma-
lisms widely used to model interaction among arguments.
Although their study has been profusely developed in the
field of Artificial Intelligence, it is not common to see its
treatment among those less connected to computer science
within the logical-philosophical community. In this paper
we propose to bring to that audience a proof-theory for
argument justification based on tableaux, very similar to
those the Logic students are familiar with. The tableaux
enable to calculate whether an argument or subset of ar-
guments are accepted or rejected in accordance to Dung’s
preferred and grounded extension-based semantics. Sound-
ness and completeness results regarding those semantics are
provided.

1 Introduction: Abstract argumentation

Argumentation is a process in which arguments are ad-
vanced by contending parties, each one trying to de-
feat the arguments of the other. The abstract model
by Dung [23] is a widely used tool for the represen-
tation of attacks among arguments and the study of
argument justification. The model is abstract in the
sense that there are no considerations about the nature
of arguments or the attack relation: all that matters
is what arguments have been presented and the at-
tacks between them. Several semantics have been pro-
posed in terms of this model. Extension semantics, as
proposed by Dung and other authors, define subsets
of the arguments in the framework that can be de-
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fended together, according to some specific conditions
for defense. The subject is widely studied in the field
of Artificial Intelligence and several algorithms have
been proposed to compute the status of arguments
in correspondence with different extension semantics
[28, 29, 24, 15]. Those developments presuppose the
knowledge of computational techniques that can result
in discouraging Logic students in the field of Philoso-
phy. For this reason, the aim of this work is to give
that audience a formalism of familiar traits to access
the study of argumentation frameworks.

We propose a logical representation of proofs for
the acceptance/rejection of arguments. Our idea is in-
spired partly by dialogue games [28] and partly by the
analytic tableaux method for logics [6, 34]. The latter
is a familiar decision method for logicians, and it is
widely used for teaching because of its simplicity and
intuitiveness. It consists of a procedure for deciding
the satisfiability of a formula or a set of formulae by
developing a tree (the tableau) through the applica-
tion of rules that “expand” each formula according to
the truth table of its main connective and its valuation
(true or false). In a sequence of steps the procedure
ends and an answer is found: satisfiable or not satis-
fiable. Similarly, we want a method to decide if sen-
tences like ‘argument x is in’ (in meaning acceptable)
or ‘argument x is out ’ (out meaning rejectable) are
satisfiable. From dialogue games [37, 13, 37] we take
the idea of developing a tree with root in a focus argu-
ment and following the paths traced by the arguments
on the attack line. But unlike dialogue games, the root
is not an argument to be defended by a player Pro but
a sentence claiming that the argument is either in or
out. This last option introduces a novelty, since dia-
logues always begin by advancing an acceptance the-
sis, not a rejection thesis. Then, we can calculate the
status of the attackers. To represent that, arguments
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are attached with a label I or O (for in and out, re-
spectively), and two scheme-rules are used to attach
labels to the attackers, inspired by labeling semantics
[27, 7]. If an argument x is assumed to be out, then
-according to the argumentation framework- some of
its attackers y1, . . ., yk must be in. Then, a rule tak-
ing as premise the sentence xO yields k branches, each
headed by a sentence yIi (1 ≤ i ≤ k). This repre-
sents the fact that at least one accepted attacker yi
of x is enough to reject x. On the other hand, if x is
assumed to be in, then all its attackers must be out.
So, the rule that takes as premise the sentence xI does
not open new branches, but puts in a sequence all the
sentences yO such that y is an attacker of x, meaning
that all of them must be true at the same time. The
method proceeds by applying these rules, expanding
each new sentence. If at the end, that is, when no fur-
ther rules can be applied, some of the branches remain
“open” (i.e. without contradiction), then we say that
the root sentence is satisfiable. We define argumenta-
tion versions of the notions of satisfiability and valid-
ity with respect to an argumentation framework, and
show how the method can be applied to the problem of
determining credulous/skeptical acceptance/rejection
for Dung’s preferred and grounded semantics. On the
other hand, the method is not intended to compute
whole extensions. Nevertheless, particular sets of ar-
guments can be checked for weak and strong admis-
sibility, i.e. their inclusion in preferred and grounded
extensions, respectively [3].

Related works comprehend dialectical trees [17, 16]
and dialogue games [37, 13, 37] for argument justifica-
tion. Our work is also related to logical proof-theoretic
approaches to argument justification, like those of [1],
who proposed a sequent-based formalism, and that of
[4, 5], who also take into account logically structured
arguments. These and other works will be discussed
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in Section 6.
The text is organized as follows. In Section 2 we

recall the basics of Dung’s argumentation frameworks
and extension semantics. In Section 3 the tableaux
method is introduced, defining the rules and the key
concepts of argument satisfiability and validity. Sec-
tions 4 and 5 show soundness and completeness results
in terms of the correspondences of specific outcomes of
the tableaux, as proof-theoretic formalisms, with argu-
ment justification according to extension semantics: in
Section 4 we deal with credulous and skeptical justi-
fication with respect to preferred semantics, while in
Section 5 we deal with (skeptical) justification with re-
spect to grounded semantics. In Section 6 we discuss
related work and in Section 7 we give our conclusions.

2 Background: Dung’s argumentation
frameworks

Dung’s argumentation frameworks are very simple struc-
tures for modeling attack among arguments:

Definition 2.1 An abstract argumentation framework
is a pair AF = ⟨A, R⟩, where A is a set of abstract
entities called ‘arguments’ and R ⊆ A × A represents
an attack relation among arguments. We will say that
x attacks y iff (x, y) ∈ R. Moreover, we will also say
that, for any subsets S, S′ ⊆ A, and for any argument
x ∈ A, S attacks (is attacked by) x iff there exists
y ∈ S such that (y, x) ∈ R (resp., (y, x) ∈ R), and S
attacks (is attacked by) S′ iff there exists x ∈ S′ such
that S attacks (resp., is attacked by) x.

The following simple examples show how argument
situations can be modeled through argumentation frame-
works, abstracting every element which is not recog-
nized as either an argument or an attack, including in-
ternal structure, evidence, strength of the attack, etc.
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Example 2.1 Consider the two arguments involved
in Tweety’s famous example of non-monotonic reason-
ing:
a: Tweety is a bird. Birds usually fly. Then, Tweety
flies.
b: Tweety is a penguin. Penguins do not fly. Then,
Tweety does not fly.
Assuming that b attacks a1, we represent the situation
through the argumentation framework ⟨A,R⟩, where
A = {a, b} and R = {(b, a)}. The model can also be
diagrammed by a digraph: Figure 1.

Figure 1: Example 2.1.

Example 2.2 Consider the arguments:
a: The government of X cannot negotiate with the gov-
ernment of Y because the government of Y does not
even recognize the government of X.
b: The government of X does not recognize the govern-
ment of Y either.
Assuming that a and b attack each other, we repre-
sent the situation through the argumentation frame-
work ⟨A,R⟩, where A = {a, b} and R = {(a, b), (b, a)}
(Figure 2).

Intuitively, the acceptance of an argument depends
on the way it can be defended from attacks. Argument

1Here we are assuming that b is an undercutting defeater of
a, i.e., a is a reason not to believe b’s conclusion (Tweety flies)
on the basis of b’s premise (Tweety is a bird), but not vice versa
[30]. Indeed, from a common sense point of view, since a uses
more specific information than b, it is impractical to use b as an
attacker of a. Note that Dung’s model is purportedly nonspecific
about the nature of ‘attack’, hence we have to resort to external
criteria when representing argumentative situations.
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Figure 2: Example 2.2.

defense is understood in this framework as counterar-
gument: an argument a attacked by an argument b can
be defended by an argument c that attacks b. But dif-
ferent requirements on this intuition lead to different
notions of justification or warrant. A substantial differ-
ence between the different types of semantics that we
will discuss is whether or not self-defense is enabled.
A justification criterion can be defined as an exten-
sion semantics S that yields, for every argumentation
framework AF , a family ES(AF ) ⊆ 2A of extensions of
AF (under S) (notation taken from [3]). An argument
is said credulously justified under a semantics S if and
only if it belongs to some extension E ∈ ES(AF ), and
is said to be skeptically justified if and only if it be-
longs to every extension E ∈ ES(AF ). Dung defines
“grounded” and “preferred” semantics as ways of cap-
turing skeptical and credulous behaviors, respectively.

Definition 2.2 [23] Given an argumentation frame-
work AF = ⟨A, R⟩, an argument x ∈ A and a subset
S ⊆ A, we say that

• x is acceptable w.r.t. S iff for every argument
y ∈ A such that (y, x) ∈ R, there exists some
argument z ∈ S such that (z, y) ∈ R,

• S is conflict-free iff, for every pair of arguments
x, y ∈ S, (x, y) ̸∈ R, i.e., the attack relation does
not hold for any pair of arguments belonging to
S,

• S is admissible iff each x ∈ S is acceptable w.r.t.
S and S is conflict-free,
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• S is a preferred extension iff S is maximally (w.r.t.
⊆) admissible,

• S is a complete extension iff S is conflict-free and
is a fixed point of F (·), where F (S) = {x : x is
acceptable w.r.t. S} (every preferred extension
is a complete extension),

• S is the grounded extension iff S is the least
(w.r.t. ⊆) complete extension (the grounded ex-
tension is well-defined and unique, for every ar-
gumentation framework).

The grounded extension is contained in the inter-
section of all the preferred extensions, but they do not
always coincide. Hence, grounded semantics defines
a more skeptical criterion than preferred semantics.
Credulous acceptance in preferred semantics lies in the
arbitrary choice of one of the preferred extensions, in
case there are more than one. In grounded semantics,
credulous acceptance reduces to skeptical acceptance
since there can only be one grounded extension. In Ex-
ample 2.1, {b} is the only extension for all the above
defined semantics (hence, b is justified both skeptically
and credulously under those semantics). In Example
2.2, ∅ is the grounded extension and {a} and {b} are
preferred extensions, while all ∅, {a} and {b} are com-
plete extensions, i.e. no argument is skeptically jus-
tified under any semantics, but both {a} and {b} are
credulously justified under preferred and complete se-
mantics. For a case where the grounded extension does
not coincide with the intersection of all the preferred
extensions, see AF in Figure 13, Section 4, where the
grounded extension is ∅ but the intersection of all the
preferred extensions is {a}.
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3 Tableaux for argumentation frameworks

We will define the tableaux scheme rules of a generic
argumentation framework AF = ⟨A,R⟩. Consider a
language L whose formulae are of the form xV, where
x ∈ A and V ∈ {I, O}.2 The formula ‘xI’ is understood
as ‘x is in’ and ‘xO’ is understood as ‘x is out’. Then
the rules will be such that, given xI, we can deduce
yO for every argument y which is an attacker of x and,
given xO, we can deduce yI for some argument y which
is an attacker of x. To formally introduce the rules we
will refer to the set of attackers of an argument x as:
Attackers(x) = {y : (y, x) ∈ R}.3

Definition 3.1 (Scheme rules) Given an argumen-
tation framework AF = ⟨A, R⟩, for every argument
x ∈ A let {y1, . . ., yk} be an arbitrary (but fixed) enu-
meration of Attackers(x). We define the scheme rules
as follows:

If Attackers(x) ̸= ∅ then

(In x)

xI

yO1
...
yOk

(Out x)

xO

yI1 . . . yIk

otherwise

2Strictly, ‘x’ in a formula ‘xV’ stands for the name of argument
x. For the sake of simplicity, we use the same symbol for an
argument and its name.

3We will also refer to the attackers of a set of arguments
S ⊆ A as Attackers(S) =

⋃
x∈S Attackers(x).
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(In x)

xI

−

(Out x)

xO

×

The rule (In x) yields a list of formulae, each one la-
beling with O an attacker yi of x. This list must be
interpreted as a conjunction. If x has no attackers
then the rule yields − (dash), meaning that xI is true
(i.e., it is correct that x is in, since it has no attack-
ers). The rule (Out x) splits the proof into as many
branches as attackers have x, each one labeled with I.
The meaning of this rule is that the assumption that
x is out implies that at least one of its attackers must
be in, i.e., branches denote inclusively disjunct possi-
bilities. If x has no attackers then the rule yields ×,
meaning that xO is false (i.e., x cannot be out since it
has no attackers).

Before formally introducing the notion of tableau,
let us informally describe the intended procedure. The
method will proceed by applying the (In ...) and (Out
...) rules on unexpanded sentences until no further rule
can be applied. Take, for instance, the argumentation
framework AF = ⟨{a, b, c, d, e}, {(b, a), (c, a), (d, b),
(e, c)}⟩ (Figure 3, left), and let us develop a tableau
for aI (Figure 3, right), as a way of finding if a can be
successfully defended. Then we first obtain bO and cO

after applying the rule (In a) over aI. Next we expand
the formulae bO and cO, one at a time. This can be
done non-deterministically but, as we will see, it can
be done strategically in order to shorten the proof. If
we choose bO, then we apply the rule (Out b). This rule
yields dI in the fourth line. In the fifth line we obtain
− (dash), as a consequence of applying (In d) in the
previous line. This is so because d has no attackers.
Then we go back to line 3 to expand cO, obtaining eI

in the sixth line. The tableau is finished after applying
(In e), which yields a dash, since no formula remains
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to be expanded. The meaning of this tableau is that
a can be successfully defended, since the only branch
shows -without contradiction- that every attack (i.e.,
those of b and c) can be responded by unchallenged
arguments (i.e., d and e, respectively). The tableaux
are formally defined as follows:

Figure 3: Tableau for aI in AF .

Definition 3.2 Given an argumentation framework
AF = ⟨A,R⟩ and an argument x ∈ A, a tableau (on
AF ) for a formula xV, where V ∈ {I, O}, is a labeled
tree T(xV) where:

• the labels are formulae of the language,

• the root of T(xV) is labeled with xV,

• for any non-root node n, the label of n is the
result of the application of (In ...) or (Out ...)
over the label of some ancestor node of n that
has not been expanded before.

When the symbol × is introduced in some branch
of a tableau, that means that the branch is closed (no
further developments are needed) as a result of an in-
consistency. The derivation of a sentence xO yields
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contradiction whenever x has no attackers, since it
should be deemed in, hence, in those cases the rule
(Out...) yields ×. But another reason for closure is
the occurrence of two formulae of the form xI and xO,
respectively, in the same branch. This can happen be-
cause of the presence of odd-length cycles in R. The
following meta-rule closes the branch in those cases, as
it involves contradiction:

(Closure)

xV
...

x−V

×

where V ∈ {I, O} and −V ∈ {I, O} \ {V} (the branch
should not be developed further).

As a result, we can characterize the tableaux ac-
cording to their branches as follows:

Definition 3.3 A branch of a tableau is:

• closed iff × occurs in it,

• open iff it is not closed, and

• grounded iff it is open and ω does not occur in
it.

A tableau is:

• closed iff every branch is closed,

• open iff it is not closed, and

• grounded iff it has a branch that is grounded.
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The first two properties in the above definition are
obviously exhaustive and exclude each other. Also,
the third one implies the second one, but the reciprocal
does not hold.

a

b

c

d

e

f

g

I1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a

b

d

c

b

e

f

g

-

I

I

I

O

O

O

O

(In a, 1)

(In a, 1)

(Out b, 2)

(In c, 4)

(Loop, 2, 5)

(Out d, 3)

(In e, 7)

(Out f, 8)

(In g, 9)

1. a

2. b (Out a, 1) 3. d (Out a, 1)

4. c (In b, 2) 7. e (In d, 3)

5. b (Out c, 4) 8. f (Out e, 7)

6. (Loop, 2, 5) 9. g (In f, 8)

 10. (Out g, 9)

O

O O

O

I I

I I

AF

Is a in? Is a out?

×

� � (Cycle, 2, 5)(Cycle, 2, 5)

Figure 4: Example 3.1.

Example 3.1 (Figure 4) Let AF = ⟨{a, b, c, d, e, f, g},
{(b, a), (b, c), (c, b), (d, a), (e, d), (f, e), (g, f)}⟩. Then
both the tableaux for aI and aO are open but not
grounded. This can be interpreted as the answer for
both the questions Is a in? and Is a out? being ‘cred-
ulously, yes’. As we will see later, this means that a
belongs to some preferred extension while it does not
belong to some other preferred extension.

a

b c

d

I1.

2.

3.

4.

a

b

c

O

O

(In a, 1)

(In a, 1)

(Out b, 2)

                 1.  a

2. b   (Out a, 1)     3.  c   (Out a, 1)

4.      (In b, 2)        5.  d   (In c, 3)

                              6.       (Out d, 5)

O

O

I I

AF

Is a in? Is a out?

× −

×

Figure 5: Example 3.2.

Example 3.2 (Figure 5) Let AF = ⟨{a, b, c, d}, {(b, a),
(c, a), (d, c)}⟩. The tableau for aI has only one branch
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which is closed, hence the tableau is closed. The tableau
for aO is open, but we have two branches, one headed
by bI, which is grounded, and another one headed by
cI, which is closed. So, the answer for Is a in? can be
interpreted as ‘skeptically (i.e. certainly), no’; while
the answer for Is a out? can be interpreted as ‘skepti-
cally, yes’. As we will see later, this means that a does
not belong to any extension.

Definition 3.4 Given AF = ⟨A,R⟩ and x ∈ A, a
formula xV, where V ∈ {I, O}, is:

• satisfiable (in AF) iff the tableau T(xV) for xV is
open, and

• valid (in AF) iff the tableau T(xV) for xV is groun-
ded.

Obviously, all valid formulae are satisfiable, but not
vice versa. The argumentative meaning of satisfiabil-
ity and validity is related to credulity and skepticism,
respectively, as it will be formally established in the
next sections. In the meantime, we can informally
note the following. An open tableau for xI (i.e., xI

being satisfiable) means that x can be accepted by
adopting an admissible set of arguments to which x
belongs (and that admissible set exists). A grounded
tableau for xI (i.e., xI being valid), moreover, means
that there is no admissible set of arguments attacking
x. An open tableau for xO means that x can be re-
jected by adopting an admissible set of arguments that
attacks x (and that admissible set exists). A grounded
tableau for xO, moreover, means that there is no ad-
missible set of arguments to which x belongs. Finally,
closed tableaux are indicative of arguments that can-
not be accepted/rejected on any rational basis.

Example 3.3 (Example 3.2 revisited). aI is not sat-
isfiable, while aO is satisfiable and valid. This means
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that argument a will not be accepted (i.e., it will be
rejected) even by credulous agents.

Example 3.4 (Example 3.1 revisited). Both aI and
aO are satisfiable but not valid. This means that cred-
ulous agents may accept or reject a (since both aI and
aO are satisfiable), but skeptics will reject it (since aI

is not valid).

The following result is immediate:

Proposition 3.1 For every tableau T , xV occurs in
an open (grounded) branch of T iff xV is satisfiable
(valid).

Note that different tableaux can be obtained for
the same argument, since the order in which the rules
expand a tree is not always determined. However, it
is easy to see that, for two different tableaux T1(x

V)
and T2(x

V) of a given sentence xV (V ∈ {I, O}), there
exists an open/grounded/closed branch in T1(x

V) iff
there exists an open/grounded/closed (resp.) branch
in T2(x

V). This clearly leads to an equivalence relation
among tableaux. For this reason, from now on we will
take the license to speak of “the tableau” of a given
sentence, understanding that we speak of any tableau
of its equivalence class.

3.1 Shortening the tableaux

Attack cycles of even length do not yield contradic-
tion, but lead to infinite computations. To avoid that,
repetitions in the same “thread” of reasoning can be
aborted. With “thread” we refer the sequence of in-
ferences within the same path of attacks, which can
be traced through the line numbers of the ancestors of
the line at stake. To make this explicit, we can put
the ancestors’ line numbers in a set on the right of
each relevant line as, for instance, in the tableau for
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aI, where AF = ⟨{a, b, c}, {(b, a), (c, b), (b, c)}⟩ (Fig-
ure 6). The following “cycle-breaking” meta-rule will
stop the cycling inferences:

Figure 6: Cyclical attacks yield infinite tablaux.

(Cycle xV)

xV < ancestors1 >
...
xV < ancestors2 >

ω

where V ∈ {I, O}, < ancestors1 > and < ancestors2 >
are the sets of line numbers of the respective ancestors
and < ancestors1 >⊆< ancestors2 > (xV should not
be developed further).

The symbol ‘ω’ is introduced after the repeated for-
mula as a signal of the aborted cycle. In the above
example, ‘ω’ would be placed in line 5 after the repe-
tition of bO in line 4, given that the ancestors of line 2
are a subset of those of line 4:
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1. aI ∅
2. bO (In a, 1) {1}
3. cI (Out b, 2) {1, 2}
4. bO (In c, 3) {1, 2, 3}
5. ω (Cycle b, 2, 4) {1, 2, 3, 4}

Placing this symbol does not prevent for eventual fur-
ther developments of the branch, contrarily to the case
of ‘×’. More specifically, rules can continue to be ap-
plied on previous lines that remain to be expanded (see
Figure 4, left tableau, lines 6 et seq.).

Moreover, since one argument can attack several ar-
guments, we can have repetitions even without cycles,
as in the following case.

a

 
b1

 

b2

 

b3

 

c1

 

c2

 

c3
 

d

 

Figure 7: Example 3.5.

Example 3.5 [8] Let AF = ⟨{a, b1, b2, b3, c1, c2, c3, d},
{(b1, a), (c1, a), (b2, b1), (c2, c1), (b3, b2), (c3, c2), (d, b3),
(d, c3), (c3, b2), (b3, c2)}⟩ (Figure 7). We get the fol-
lowing tableau for aI:

1. aI ∅
2. bO1 (In a, 1) {1}
3. cO1 (In a, 1) {1}
4. bI2 (Out b1, 2) {1, 2}
5. bO3 (In b2, 4) {1, 2, 4}
6. cO3 (In b2, 4) {1, 2, 4}
7. dI (Out b3, 5) {1, 2, 4, 5}
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8. − (In d, 7) {1, 2, 4, 5, 7}
9. dI (Out c3, 6) {1, 2, 4, 6}
10. − (In d, 9) {1, 2, 4, 5, 9}
11. cI2 (Out c1, 3) {1, 3}
12. bO3 (In c2, 11) {1, 3, 11}
13. cO3 (In c2, 11) {1, 3, 11}
14. dI (Out b3, 12) {1, 3, 11, 12}
15. dI (Out c3, 13) {1, 3, 11, 13}
16. − (In d, 14) {1, 3, 11, 12, 14}
17. − (In d, 15) {1, 3, 11, 12, 15}

Lines 12 to 17 repeat lines 5 to 10. Several repetitions
of sentences (bO3, cO3, dI) are not due to cycles but corre-
spond to new “threads”, as can be seen from the sets of
ancestors. So, for example, although it is necessary to
expand bO3 from its appearance in line 5, we must avoid
expanding it again from the appearance in line 12. To
stop such redundant replay of sequences we introduce
the following meta-rule:

(Replay xV)

xV < ancestors1 >
...
xV < ancestors2 >

−

where V = {I, O}, < ancestors1 > and < ancestors2 >
are the sets of the line numbers of the respective ances-
tors and < ancestors1 ≯⊆< ancestors2 > (xV must
not be expanded from its last appearance).

Example 3.6 (Example 3.5 revisited) Applying the
Replay rule we can get:
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1. aI ∅
2. bO1 (In a, 1) {1}
3. cO1 (In a, 1) {1}
4. bI2 (Out b1, 2) {1, 2}
5. bO3 (In b2, 4) {1, 2, 4}
6. cO3 (In b2, 4) {1, 2, 4}
7. dI (Out b3, 5) {1, 2, 4, 5}
8. − (In d, 7) {1, 2, 4, 5, 7}
9. dI (Out c3, 6) {1, 2, 4, 6}
10. − (Replay d, 7, 9) {1, 2, 4, 5, 6, 7, 9}
11. cI2 (Out c1, 3) {1, 3}
12. bO3 (In c2, 11) {1, 3, 11}
13. − (Replay b3, 5, 11) {1, 2, 3, 4, 11}

The application of the Replay rule in line 13 avoids
further expansions from bO3 from line 12. In line 10,
the application is correct but useless, since d has no
attackers (it does not introduce any difficulties any-
way).

Checking the ancestors through the (Cycle) and
(Replay) rules prevents superfluous computations, as
is common in some tree-based dialogue procedures [8].
From here on, we will omit the numbers of the ances-
tors in the tableaux for clarity and simplicity.

a

b

c

d

e

f

g

I1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

a

b

d

c

b

e

f

g

-

I

I

I

O

O

O

O

(In a, 1)

(In a, 1)

(Out b, 2)

(In c, 4)

(Loop, 2, 5)

(Out d, 3)

(In e, 7)

(Out f, 8)

(In g, 9)

1. a

2. b (Out a, 1) 3. d (Out a, 1)

4. c (In b, 2) 7. e (In d, 3)

5. b (Out c, 4) 8. f (Out e, 7)

6. (Loop, 2, 5) 9. g (In f, 8)

 10. (Out g, 9)

O

O O

O

I I

I I

AF

Is a in? Is a out?

×

� � (Cycle, 2, 5)(Cycle, 2, 5)

Figure 8: Two tableaux for aI.
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In order to avoid other futile computations, all the
meta-rules (Closure), (Cycle), and (Replay) will al-
ways have priority over the rules (In ...) and (Out
...). Moreover, (Closure) will always have priority over
(Cycle) and (Replay). Other strategies to gain effi-
ciency include applying (In ...) rules with priority
over (Out ...) rules. For example, Figure 8 shows two
tableaux for the same sentence, the one on the right
being shorter due to the application of (In f) on line
4, anticipating the bifurcation that the rule (Out b)
would yield. Repeated subtrees or branches can also
be conveniently pruned, though we will not specify fur-
ther rules here.

3.2 Extending tableaux for sets of arguments

The notion of tableau can be easily extended to sets
of sentences with the purpose of checking if all the
sentences of the set are jointly satisfiable.

Definition 3.5 Given an argumentation framework
AF = ⟨A,R⟩, a tableau (on AF ) for a set of formulae
S = {ϕ1, . . . , ϕn}4 such that for each i, ϕi has the form
xV, where x ∈ A and V ∈ {I, O}, is a labeled tree T(S)
where:

• the labels on the nodes are formulae of the lan-
guage,

• the root is labeled with ϕ1,

• a node labeled with ϕi has as only child a node
labeled with ϕi+1 (1 ≤ i < n),

• for any other node, the label is the result of the
application of (In ...) or (Out ...) over the la-

4Note that the order is arbitrary and does not affect the
outcome.
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bel of some ancestor node that has not been ex-
panded before.

The use of the meta-rules (Closure), (Cycle...) and
(Replay...) can extend this notion of tableaux in the
expected way. Analogously to the case of sentences,
we can define:

Definition 3.6 A set of formulae S is

• satisfiable (in AF) iff a tableau T(S) for S is
open, and

• valid (in AF) iff a tableau T(S) for S is grounded.

Example 3.7 Let AF = ⟨{a, b, c, d}, {(b, a), (c, a),
(d, b), (d, c)}⟩. Assume we want to test if {aI, dI} is
grounded. Figure 9 shows the tableau, where we can
see that the only branch is grounded, hence the set is
grounded (and satisfiable).

Figure 9: {aI, dI} is grounded.

In the next section we deal with tableaux for indi-
vidual arguments in order to check acceptance in pre-
ferred semantics. The notion of tableaux for sets of
arguments will be useful for proving skeptical accep-
tance in preferred semantics.
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4 Tableaux criteria applied to preferred se-
mantics

An argument is credulously justified with respect to
a given semantics when it belongs to some of the ex-
tensions sanctioned by that semantics. The skeptical
justification, instead, is established when the argument
belongs to each one of the sanctioned extensions. We
prove next that xI is satisfiable if, and only if, x is
credulously justified with respect to preferred seman-
tics.

We begin by establishing some facts. First, we
prove that the set of all arguments marked with I in
an open branch form an admissible set.

Definition 4.1 Let B be a branch of a given tableau.
We define BI =def {x : xI occurs in B} and BO =def

{x : xO occurs in B}.

Lemma 4.1 Let T(xV) be the tableau of a formula xV.
For every open branch B of T(xV), BI is admissible.

Proof. Let B be an open branch of T(xV). Observe
that B is open iff BI ∩BO = ∅.
(i) BI is conflict free. For, let u, v ∈ BI. That is, uI

and vI occur in B. Suppose that (u, v) ∈ R. Then
u ∈ BO and u ∈ BI ∩ BO, contradicting the fact that
BI ∩BO = ∅.
(ii) BI accepts all its elements. For, let v ∈ BI and
u be such that (u, v) ∈ R. Then, u ∈ BO. As B is
open, there is w in BI such that (w, u) ∈ R (otherwise,
B would be closed). Thus, every element of BI is
acceptable w.r.t. BI.
From (i) and (ii), BI is admissible.2

An important notion will be that of a “minimal de-
fense” of an argument.

Definition 4.2 Let ⟨A,R⟩ be an argumentation frame-
work. For every argument x ∈ A and for every subset
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S ⊆ A, we say that S is a minimal defense of x iff S
is a minimal (w.r.t. ⊆) admissible set such that x is
acceptable w.r.t. S.

Lemma 4.2 Let ⟨A,R⟩ be an argumentation frame-
work, and let S ⊆ A an admissible subset of argu-
ments. If x ∈ S, then T(xI) has an open branch.

Proof. To see that T(xI) has an open branch, let us
consider any subset S′ ⊆ S which is a minimal defense
of x (since S is admissible, such a minimal defense
exists). Hence, in T(xI) we will have that, for every
y ∈ Attackers(S′), yO can be expanded using (Out yO)
to yield a sentence wI such that w ∈ S′. Moreover,
since S′ is admissible, it is conflict-free, implying that
the branch produced by that procedure will not yield
a closure. Hence, in that way we can only obtain an
open branch.2

Theorem 4.1 An argument x is credulously justified
w.r.t. the preferred semantics iff xI is satisfiable.

Proof. We show that xI is satisfiable iff x belongs to
some preferred extension.
(If) Suppose x belongs to a preferred extension E.
Since E is admissible, by Lemma 4.2 we have that
some branch of T(xI) is open, since E contains some
minimal defense of x. Thus, xI is satisfiable.
(Only if) If xI is satisfiable then its tableau has an
open branch B. By Lemma 4.1, BI is admissible. This
implies that x belongs to an admissible set. Every ad-
missible set is a subset of a preferred extension. Thus,
x belongs to a preferred extension.2

Now we turn to the problem of how to use the
tableaux method for proving preferred skeptical jus-
tifications. First, note the following

Observation 4.1 If x is skeptically justified w.r.t. the
preferred semantics, then xO is not satisfiable.
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Proof. By contraposition: we show that if xO is sat-
isfiable then there exists some preferred extension to
which x does not belong. If xO is satisfiable then there
exists some open branch B in its tableau. Since the
branch is open, by Lemma 4.1, BI is an admissible set.
Then, there must be a preferred extension E such that
BI ⊆ E. But BI includes an argument y such that y
attacks x. Clearly, yI is introduced in the tableau by
the application of (Out x). Now, since BI ∪{x} is not
conflict-free we have that BI ⊆ E and BI ∪ {x} ̸⊆ E.
Therefore x does not belong to E.2

Hence, if T(xO) is open, then we have a prove that x
is not skeptically justified w.r.t. preferred semantics.
But if it is not open we cannot assert the contrary.
The reason is that x can still be outside of some pre-
ferred extension (see the case of a in Example 4.1).
On the other hand, when every preferred extension is
stable the condition is also sufficient (i.e. when the
argumentation framework is coherent [23]).

More importantly, we can still establish a necessary
and sufficient condition for preferred skeptical justifi-
cation, even for non coherent frameworks. In order to
find if a given argument x belongs to every preferred
extension we first want to know if xI is valid. If it is,
then the answer is yes (since the grounded extension
is always included in every preferred extension); oth-
erwise, we want to know if it is satisfiable. If xI is not
satisfiable, then the answer is no; otherwise, we need
to keep searching. We first try to prove that x does
not belong to some preferred extension. The following
result will help us to develop a strategy.

Lemma 4.3 Let E be a preferred extension of ⟨A,R⟩.
For every argument x ∈ A and every minimal defense
D of x, E ∪D is not conflict-free iff x ̸∈ E.

Proof. (If) By contraposition, assume that there exists
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a minimal defense D of x such that E ∪D is conflict-
free. Then, E ∪D is clearly admissible, because both
sets are admissible. Now, since by definition of pre-
ferred extension, E is maximally (w.r.t. ⊆) admissible,
it follows that D ⊆ E. And since x is acceptable w.r.t.
D, then x is acceptable w.r.t. E. Therefore, x ∈ E.

(Only if) Assume E∪D is not conflict-free, for every
minimal defense D of x. Since E is admissible, E
attacks every such D. By the absurd, assume that
x ∈ E. This implies that there exists some minimal
defense D of x such that D ⊆ E. In turn, since E
attacks D, we have that E is not conflict-free and,
then, E is not admissible. This contradicts that E is
a preferred extension. Therefore, x ̸∈ E.2
This result implies that if x is not skeptically justi-
fied, then there exists some preferred extension which
is in conflict with every minimal defense of x. So our
strategy consists in finding some admissible set of ar-
guments in conflict with all the minimal defenses of
x. If such a set is found then, since there exists some
preferred extension containing it, there also exists a
preferred extension not inlcuding x.5 To illustrate
the strategy, consider the argumentation framework
of Figure 106, left. a is not skeptically justified since it
does not belong to the preferred extension E = {e, f}.
There exist two minimal defenses of a, {c} and {d},
and E is in conflict with both of them. How can we
relate that fact to what we observe in the tableau (Fig-
ure 10, right)? First, both eO and fO occur each in an
open branch. Each open branch makes reference to
a minimal defense of x, so e and f attack minimal
defenses of a. Second, eI and fI are clearly satisfi-
able (their open tableaux can be trivially constructed
given the cycles (e, c), (c, e) ∈ R and (f, d), (d, f) ∈ R,

5This strategy is similar to that followed in the algorithm
recently proposed in [35].

6This example was provided by a reviewer.
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respectively). Third, {eI, fI} can be proved to be sat-
isfiable, implying that {e, f} is included in an admis-
sible set S. Clearly, x cannot belong to S, nor to any
admissible set containing S (particularly, a preferred
extension). Hence, we can conclude that there exists
some preferred extension to which a does not belong.

a

 

b

c      d

e      f

aI 

bO

cI      dI       bI

eO      fO     x

cI      dI

������� 

AF

Figure 10: a does not belong to the preferred extension {e, f}.

To state the general result, we first introduce some
more auxiliary notions and claims.

Lemma 4.4 Let T (xI) be a tableau. Then: (i) for
every open branch B of T (xI) there exists a minimal
defense D of x such that D ⊆ BI, and (ii) for each
minimal defense D of x, there exists some open branch
B of T (xI) such that D ⊆ BI.

Proof. (i) Assume B is an open branch. By Lemma
4.1, BI is admissible. Moreover, x is acceptable w.r.t.
BI. Then, it is obvious that D ⊆ BI for some mini-
mal defense D of x. (ii) Assume that D is a minimal
defense of x. It is clear that we can choose elements
only from D to obtain BI, for an open branch B. But
then we need to choose every element in D, since D is
minimal. Hence, D ⊆ BI. 2
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Definition 4.3 Let AF = ⟨A,R⟩ and x ∈ A. For
every set of arguments S ⊆ A, we say that S blocks
(or is a blocker of )7 x iff S is admissible and, for every
minimal defense D of x, S attacks D.

Lemma 4.5 Let AF = ⟨A,R⟩ and x ∈ A. Then, S ⊆
A is a blocker of x iff for every open branch B of the
tableau T (xI), BO ∩ S ̸= ∅.

Proof. Immediate from Definition 4.3 and Lemma
4.4.2

Given this fact, and by a little abuse of language,
we will say that SO = {yO : y ∈ S} is a blocker of xI

iff S is a blocker of x.

Theorem 4.2 x is skeptically justified w.r.t. preferred
semantics iff

1. xI is satisfiable, and

2. xI has no blockers.

Proof. (If) Assume that xI is satisfiable and x does
not belong to some preferred extension E. We prove
that xI has a blocker. By Lemma 4.3, E attacks every
minimal defense D of x. Let S ⊆ E be an admissible
set that contains all the arguments y in E such that y
attacks D, for some minimal defense D of x (note that,
since E is maximally admissible, such a set exists). By
Lemma 4.4, it follows that in every open branch B in
the tableau of xI, occurs some sentence yO such that
y ∈ S. Then, clearly, S is a blocker of x, i.e., SO is a
blocker of xI.

(Only if) By contraposition. Let xI be satisfiable
and suppose that SO is a blocker of xI. Then, by
Lemma 4.5, in each open branch B in the tableau of xI

occurs some sentence yO ∈ SO. Hence, S = {y : yO ∈
SO} attacks every minimal defense of x. And since

7We borrow the terms ‘blocks’ and ‘blocker’ from [28].
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S is admissible and every admissible set is contained
in some preferred extension, there exists a preferred
extension E such that S ⊆ E. Then, E attacks every
minimal defense of x. By Lemma 4.3, it clearly follows
that x ̸∈ E.2

Example 4.1 [37] See AF in Figure 11: a is not skep-
tically justified. There are two preferred extensions:
{c, a} and {d} (no argument is skeptically justified
w.r.t. preferred semantics). dO occurs in the only open
branch and SI = {dI} is satisfiable, which implies that
S = {d} is included in some admissible set. Hence, SO

is a blocker of xI, which proves that d belongs to a
preferred extension to which a does not belong.

Figure 11: a is not skeptically justified. {d} blocks a.

Example 4.2 (Figure 12). AF has four preferred ex-
tensions, {d, e, a}, {d, f, a}, {c, e, a}, and {c, f, a}, and
we want to prove that a belongs to all of them. Given
the tableau for aI, we only have one “out” argument
in each open branch: d, e, and f . So, we only have to
prove that {dI, eI, fI} is not satisfiable. That is easy
to see, given that e “refutes” f in B2 and f “refutes” e
in B3, meaning that e and f cannot stand together.

5 Tableaux criteria applied to grounded se-
mantics

Dung’s grounded semantics models a skeptical behav-
ior which does not coincide in general with skeptical
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Figure 12: a is skeptically justified w.r.t. preferred semantics.

preferred semantics: while the grounded extension is
always included in the intersection of all the preferred
extensions, the converse is not always the case.

To prove the correspondence between grounded se-
mantics and validity, let us first consider the following
result.

Lemma 5.1 Let S ⊆ A be a set of arguments such
that for every x ∈ S, xI is valid, and let z ∈ A be
acceptable w.r.t. S. Then zI is valid.

Proof. Assume that, for every x ∈ S, xI is valid, and
z is acceptable w.r.t. S. Let S′ = {y : (y, z) ∈ R}. By
definition, if z is acceptable w.r.t. S then, for every
argument y ∈ S′, S attacks y. Now, since xI is valid
for every x ∈ S and S attacks every y ∈ S′, it follows
that, for every y ∈ S′, yO is valid too. Therefore, zI is
valid.2

Lemma 5.2 Given ⟨A,R⟩ and x ∈ A, let T(x) be the
tableau of x. For every branch B of T(x), let Bargs =
BI ∪ BO. If B is grounded, then the attack relation
among the arguments in Bargs, i.e., R ↾Bargs , has no
cycles.

Proof. By contraposition, assume there exists a cycle
in R ↾Bargs . Then, ω should occur in B by application
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of the Cycle rule. But then, by definition, B is not
grounded. 2

Theorem 5.1 An argument x is justified w.r.t. the
grounded semantics iff xI is valid.

Proof. (If) Assume xI is valid. Then the tableau of xI

has a branch that is grounded. Then, by Lemma 5.2,
that branch has no cycles. Let xI1, . . . , xIn the sequence
of all the formulae labeled with I in the order in which
they occur (without repetitions) in the branch, where
x1 = x. Since the argument in the leaf node, xn, has
no attackers, we have that xn is acceptable w.r.t. the
empty set of arguments, i.e., xn ∈ F (∅). Then we will
have xn−1 ∈ F (∅), if it has no attackers, or xn−1 ∈
F 2(∅) = F (F (∅)), if it has some attacker (i.e., xn−1 ∈
F (∅)∪F 2(∅) = F 2(∅), due to the monotonicity of F (.)
–see [23]). Then, we inductively have xn−i ∈ F i+1(∅),
0 ≤ i < n, getting x1 ∈ Fn(∅), where Fn(∅) is the least
fixed point of F (.), that is, the grounded extension of
the framework (Example 5.1 illustrates the inductive
process).
(Only if) It suffices to show that for every n and for
every x, if x ∈ Fn(∅) then x is valid. We prove that by
induction on n. For n = 1 the result is obvious, since
every argument in F (∅) is free of attackers. Let now
F k(∅) be such that x is valid, for every x ∈ F k(∅).
Since for every x ∈ F k+1(∅), x is acceptable w.r.t.
F k(∅), by Lemma 5.1 we have that every argument in
x ∈ F k+1(∅) is valid. Therefore, for every n and every
argument x ∈ Fn(∅), x is valid.2

Example 5.1 Figure 13 shows that the I labeled ar-
guments in a grounded branch correspond to succes-
sive applications of the operator F (.). F (∅) = {c, e, g}
is the set of non-attacked arguments, corresponding
to the sentences cI, eI, and gI, which yield − (dash).
Then, F ({c, e, g}) = {c, e, g, a} can be found in the
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a          f           g

b           d

c            e
∅

∅

Figure 13: Example 5.1. For simplicity, we pruned the branch
from dO in 3 to cI, since it would yield the same outcome as in
line 6.

tableau by tracing back the immediate ancestors of cI,
eI, and gI that are labeled with I, i.e., just aI in this
case. Since there are no more sentences to trace back,
{c, e, g, a} is the desired least fixed point of F (.).

6 Related work

The present work is related to various proof-theoretic
and algorithmic approaches to argumentation frame-
works.8 One salient difference between the present ap-
proach and others is that our tableaux method allows
us to check whether an argument is out directly, and
not as a consequence of checking whether it is in. Di-
alogue based approaches, for instance [37, 14, 22], al-
ways begin with a proponent advancing an argument
as a thesis to be defended, but not refused. The labeled
dialectical trees of Chesñevar et al. [17, 16], as our
method, avoid the mention to players, but while our
tableaux proceed by labeling arguments from the root

8We refer the reader to the Handbook of Formal Argumenta-
tion [2] for various approaches, some of which we mention here.
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to the leaves, dialectical trees proceed the other way
round, starting by labeling the non attacked arguments
as undefeated (in) and going bottom-up through the
attack lines to the root. In this way, while dialec-
tical trees proceed by labeling the entire tree, in our
method the labeling goes backwards starting at the fo-
cused argument. The treatment of skeptical preferred
acceptance given through our approach is original and
can be confronted with that of dialogue games. In
[21], the authors define a meta-level dialogue to find
a possible preferred extension conflicting with every
admissible set containing argument candidate to skep-
tical acceptance. In the approach of [28], the players
construct and exchange entire admissible extensions
rather than single arguments. [33] determine skepti-
cal preferred acceptance by defining a two-phase game
with different legal moves and protocols for each phase:
the first phase allows the opponent to identify a label-
ing where the focal argument is not justified, and in the
second phase the proponent tries to show that the pre-
vious labeling is not preferred. Lately, [35] offered an
algorithm to compute skeptical preferred acceptance
that, though not based on dialogue games or dialecti-
cal trees, exploits the same fact expressed in Theorem
4.2 (cf. Theorem 11 in [35]). The algorithm tries to
construct an admissible set that attacks some admissi-
ble set containing the focus argument x. If such a set
cannot be found, then x is skeptically justified. Other-
wise, the procedure continues trying to expand the set
to include x. If this cannot be done, then the process
ends with a negative result. Otherwise, it continues
trying with other sets in the same manner. On the
other hand, our tableaux do not proceed by construct-
ing admissible sets, but by checking membership or
inclusion in some admissible set.

Dung and colleagues’ dispute trees [22] are maybe
closer to our tableaux than other dialogue approaches.
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Dispute trees always begin and end with moves made
by the proponent, so disputes that lead the proponent
to lose are excluded by definition. The difference be-
tween finite or infinite disputes make the difference
between groundedness and simple admissibility. Sev-
eral derivations of dispute trees for assumption-based
argumentation were also developed by Francesca Toni
and colleagues [19, 25, 36, 20].

Much of the work of Martin Caminada is also close
to our approach. Caminada’s Socratic interpretation
of discussions on preferred semantics [12] revolves a-
round the possibility of labeling with in a given ar-
gument, which implies labeling with out its attackers,
and so on. Unlike our approach, admissibility games
always begin with an “in” move. Game trees yield
branches both for “in” and “out” moves, which leads the
author to define a pruning method for different levels
of a tree as a way of finding the winning strategies of
the proponent. In our approach, instead, branching is
only a consequence of “out” hypothesis (corresponding
to disjunctions), and the final result is visually imme-
diate once the tableau is built. In [9, 10], the authors
study strong admissibility. Originally defined in [3], it
refers to the capability of a set of arguments of defend-
ing all its arguments, directly or indirectly, with non
attacked arguments (i.e. no defense is cyclical). Cam-
inada et al. define a grounded discussion game where
four kinds of moves are defined, one for the proponent
to advance a claim, and three for the opponent to ad-
vance a counterargument, concede and retract. The
burden of proof is on the proponent, who is unable to
defend in circles, and the opponent only has to cast
sufficient doubts. Using the so called admbuster ex-
ample [8] (Example 3.5 above), the authors show the
better efficiency of the grounded game in comparison
with other standard games. As we have seen, in our
tableaux method the (Replay...) rule does a similar job
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avoiding the repetition of already computed threads.
Moreover, the validity of xI proves that x belongs to
a strongly admissible set of arguments, and for every
grounded branch B, BI is strongly admissible. We can
also check whether or not any non-empty set H ⊆ A
of arguments is weakly admissible (i.e. simply admis-
sible) or strongly admissible. Let S={xI : x ∈ H}.
Then, H is weakly admissible if S is satisfiable, and
is strongly admissible if S is valid. In consequence, if
S is satisfiable then it is included in some preferred
extension, and if S is valid then it is included in the
grounded extension and, hence, in every preferred ex-
tension.

Caminada and colleagues [11] also proposed a trans-
lation from logic programs to argumentation frame-
works to establish equivalences between logic program-
ming semantics and argumentation semantics. In that
way, the authors consider the possibility of applying
the dialectical proof procedures for argumentation in
the context of logic programming, to determine the
status of a single argument without having to con-
struct an entire logic programming model. Other au-
thors also consider translations of argumentation frame-
works to logic programs. For instance, [32] define
logic programs using special predicates in, out and
und (with the obvious meaning) and specific clauses to
represent different extension semantics. In this line, an
interesting subject to investigate in the future is the
equivalence of our tableaux method with standard de-
duction methods in logic programming like resolution,
via adequate translations.

We argued that our method, similar in nature to
semantic tableaux, can serve as a friendly introduc-
tion to the semantics of argumentation frameworks for
the logical-philosophical audience. In that vein, we can
mention the work of [1], who proposed a sequent-based
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proof-theoretic formalism, exploiting the idea that ar-
guments can be seen as Gentzen-style sequents, and
attacks as sequent elimination rules. An important
antecedent in the logical treatment of argumentation
frameworks is the work of Besnard and Hunter [4, 5].
In their approach, arguments are not taken as abstract
but as logically structured entities defined on a logical
language, and a non-primitive notion of undercut takes
the place of the attack relation. Then, an argument
tree describes the various ways an argument can be
counter-argued, as well as how counter-arguments can
be counter-argued, and so on recursively. The authors
define ‘argument structures’ for a formula α collect-
ing all the argument trees supporting α and all the
argument trees supporting ¬α. In this way, argument
structures can represent Dung’s argumentation frame-
works. However, the specific conditions on undercuts
impose constraints on the attack relation in such a way
that not every Dung’s argumentation framework can
be matched with an argument structure. Clearly, this
limitation implies also a difference between Besnard
and Hunter’s approach and ours. Another interesting
logical turn is given by Grossi [26], who uses a second-
order modal logic language with which all the Dung-
style semantic notions can be expressed. The strat-
egy is that argumentation frameworks can be viewed
as Kripke frames where arguments are modal states
and the accessibility relation is obtained up from the
attack relation. Moreover, the author introduces a
two-player (proponent and opponent) model-checking
game for verifying whether a formula is satisfied in a
given structure. In particular, a game for skeptical
preferred semantics is defined. Interestingly, one can
follow the game tree with an argument-theoretic read-
ing: the claim that argument a is in every preferred
extension can be challenged by pointing a candidate
preferred extension p to which a does not belong, which
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in turn can be challenged by the claim that p is not
a preferred extension or that a belongs to p, and so
on. The author highlights the different structure of
the game compared with “standard argument games”
(a sort to which our tableaux belongs) where nodes
consist only of arguments, and which are played by se-
lecting, at each node, only arguments that attack the
current node.

Finally, among other applications of semantic ta-
bleaux methods to argumentation we can mention [31],
but in this case tableaux are used to prove a conclusion
via refutation through structured arguments for both
deductive and defeasible reasoning.

7 Conclusion

We have proposed a tableaux method for argumenta-
tion frameworks that enables to decide, for any argu-
ment x, whether an assignment of a value in/out is
satisfiable or not (i.e. whether or not there exists a
labeling which assigns that value), and whether it is
valid or not (i.e. whether or not it can only be assigned
that value). We have shown that this method can be
used for deciding credulous and skeptical justifications
with respect to preferred and grounded semantics (this
comprises the subsidiary problems of determining ad-
missibility and complete justifications).

Unlike dialogue games, which are useful for proving
whether an argument is justified or not, the tableaux
method is also useful for showing whether a rejection
of an argument is justified or not. This is because a
dialogue game always begins with Pro advancing an
argument she wants to show that is in, and proves the
rejection as a failure to prove the acceptance; to our
knowledge, there exists no other approach in which
Pro can advance an argument she wants to show that
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is out. Our method, instead, enables to represent both
situations. Moreover, it can easily be applied to test
the acceptability of sets of arguments (introducing lists
of the form xI1, . . . , xIn) and even the joint consistency
of acceptances and rejections (lists of the form xI1, . . . ,
xIi , x

O
i+1, . . . , x

O
n). We have also solved a usual prob-

lem of dialog-based procedures, which present some
anomalies in the treatment of certain cases such as the
admbuster case (Example 3.5), first discussed in [8].
For this we have considered the ancestors of each line
in the tableaux for the application of the replay rule
to avoid irrelevant computations.

Our method shows similar drawbacks as the other
mentioned theories with respect to Dung’s stable se-
mantics (which extensions are admissible sets attack-
ing all the external arguments). In coherent argumen-
tation frameworks, where there exist no odd-length
cycles of attack, stable semantics coincides with pre-
ferred semantics, hence the tableaux proofs for sta-
ble justifications for individual arguments are also lim-
ited to coherent argumentation frameworks.9 But this
would not be a problem for stable extensions, since the
tableaux for a set of arguments sanctioned as preferred
extensions will show all the arguments labeled with O
not belonging to the set. Hence, to check that a pre-
ferred extension is also stable we have to check that all
the arguments in the framework are computed in the
tableau.

Another limitation of our method, like current dia-
logue or dispute games, is that it does not provide an
efficient procedure to compute whole extensions. That
would require an entire series of tableaux to be pro-
duced, implying a lot of work. The grounded extension
can be found by checking validity for each argument

9The same can be said about symmetric argumentation
frameworks [18], i.e., where R is symmetric, irreflexive, and non-
empty, since they are always coherent.
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in the framework, but this is also not efficient from
a computational point of view. On the other hand,
though we cannot find extensions efficiently, we are
able to check given sets of arguments for satisfiability
and validity. This makes our method more closely re-
lated to real-life dialogues, where one or several theses
are advanced in order to justify them, but not to find
all that one can defend.

Finally, the tableaux method that we have proposed
is intuitive, it resembles analytical tableaux that are
familiar to logic students, and for this reason we be-
lieve that it can be a useful tool for teaching semantics
of argumentation frameworks.
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