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Abstract 
This paper focuses on a metamodel-based design optimization 
algorithm. The intention is to improve its computational cost and 
convergence rate. Metamodel-based optimization method intro-
duced here, provides the necessary means to reduce the computa-
tional cost and convergence rate of the optimization through a 
surrogate. This algorithm is a combination of a high quality approx-
imation technique called Inverse Distance Weighting and a meta-
heuristic algorithm called Harmony Search. The outcome is then 
polished by a semi-tabu search algorithm. This algorithm adopts a 
filtering system and determines solution vectors where exact simu-
lation should be applied. The performance of the algorithm is eval-
uated by standard truss design problems and there has been a 
significant decrease in the computational effort and improvement 
of convergence rate. 
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1 INTRODUCTION 

Employing exact simulations are very common in optimizing engineering design. The problem with 
some of the most common and robust optimization algorithms such as Genetic Algorithm, Ant Colony, 
and Harmony Search, is that they entail a large number of iterations for reaching the optimum solution 
[1-4]. This is a significant barrier when applying exact simulations to real life engineering optimization 
problems. It has long been recognized that approximations or metamodeling techniques are most effec-
tive tools for reducing the computational effort in complex problems. The basic approach is to replace 
the computationally expensive simulation with a compatible approximate, which is then used in opti-
mization runs. This inexact model is often referred to as metamodel (model of a model). A survey on 
the use of metamodels in structural optimization has been carried out by Barthelemy and Haftka [5] 
and recently, Jin et al. [6] and Martin and Simpson [7] have reviewed metamodeling techniques for 
some engineering optimizations. 
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 Material density of each truss member 

 Maximum allowable deflection 

 Deflection of each truss member 

 Maximum existing deflection 

 Maximum allowable stress 

 Stress of each truss member 

 Maximum existing stress 

 Search domain of area of each member 
 Lagrange multiplier 

 The minimum allowable area of truss member 

 The maximum allowable area of truss member 
 Cross sectional area of each truss member 

 Cross sectional area of each truss member generated at new steps 

 Normalized cross-sectional area of each member 

 The number of data points included in the circle with radius r  

 Distance between  to  

 Observation point 

 Modulus of elasticity 
 Objective function 

HM Harmony memory 
HMCR Harmony memory consideration rate 
HMS The size of harmony memory 

 Current iteration number of the algorithm 
 Total number of iterations 

 Length of each truss member 

 The number of truss members 
 The number of decision variables 
 Total number of data points 
 Test point 

PAR Pitch adjusting rate 
 The minimum number if sample point entries 
 Radius of the circle containing the data points 

 Sample grid matrix 

 Structure weight 

 Test point 

 Observation point and optimization variable 

 The new value of  

 Set of possible range of each decision variable 

 The maximum value of kth decision variable 

 The minimum value of kth decision variable 

 random variable to be estimated 

 The value at the observation point 

Optimization using metamodels entails [8]: 
 
1. The exact model is replaced by a low order polynomial. This is to reduce the number of exact simu-
lations and smooth out the numerical noise. 
2. Enables separation of the analysis code from the optimization routine and eases the integration of 
codes from various disciplines. 
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3. Provides an overall view of the design search space. 
4. Provides an in depth knowledge of the problem domain and hence makes it easier to adjust im-
portant design parameters during the optimization process. 
The shortcoming of metamodel, especially those using polynomials for their approximations, is that the 
cost of providing precise data for fitting the global approximations increases rapidly with the number 
of design variables, which makes it difficult to construct a good global approximation with low order 
polynomials. 

Some well-known metamodel methods are: Inverse Distance Weighting (IDW) [9]; Polynomial Re-
gression (PR) [6, 8]; Moving Least Squares Method (MLSM) [8]; Kriging (KG) [7, 10-14]; Multivariate 
Adaptive Regression Splines (MARS) [15]; and Radial Basis Function (RBF) [6, 8]. 

The algorithm presented in this paper is a combination of IDW and HS, which provides a more ro-
bust and global search capabilities. An immature version of IDW+HS algorithm has been already pub-
lished by the authors [16]. In this research, the prior algorithm is enhanced by normalizing the results 
and then polishing the final outcome using a semi-tabu search method. IDW is selected for its applica-
bility and ease of use for multidimensional metamodeling problems and HS is selected for its ability to 
support continuous variable functions [3, 17-21]. The numerical results shows that the enhanced 
IDW+HS algorithm (IDW+HS+Tabu), in comparison to the pure HS algorithm as well as the other con-
ventional meta-heuristic algorithms (GA and ACO), leads to a lower computational cost and higher con-
vergence rate. 

 
 
2 APPROXIMATION ALGORITHM SELECTION 

As mentioned above, the IDW model is employed in this research for approximation. The easier extend-
ibility and competitive computational cost of this model compared to the other interpolation methods 
such as Kriging (KG), Polynomial Regression (PR), Multivariate Adaptive Regression Splines (MARS), 
Radial Basis Functions (RBF) caused the IDW to be chosen and employed in this work [6, 22]. The dom-
inant problems of these methods are their high computational cost and dimension limit. 

One serious problem of the KG, for example, is the large number of observation points needed to es-
timate the result [23]. On the other hand, as in the IDW, the kriged estimate is a weighted average of the 
values at the observation points in which the weights are obtained by solving (1). 

 (1) 

where  is the fitted semi-variance of  and , y  is a Lagrange multiplier and  

is the fitted semi-variance between  and ,  is the distance from test point  to observa-

tion point ix , and z  is the random variable to be estimated [22]. This weighting formulation signifi-
cantly increases the computational effort, while having a small difference in results compared to IDW 
[24]. 

The other models involve similar drawbacks. For instance, in spite of the quick convergence [25] 
and easy implementation of PR [6], some instabilities may arise when applying this technique to highly 
nonlinear problems with high-order polynomials [6, 26] or it may be too difficult to take sufficient 
sample data to estimate all of the coefficients in the polynomial equation, particularly in large dimen-
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sions. MARS, also did not show a satisfying performance when a scarce set of samples is applied [6]. As 
far as RBF is concerned, although it has performed well in metamodeling problems, when the sample 
points grow up, the performance of the method decreases [8]. Although a Shepard like modification [9] 
seems to be applicable for enhancing the performance, it is not considered in this research because of 
its complexity and high computational effort. On the other hand, the overall accuracy essentially de-
pends on the selected basis function for a given set of data samples in the modified versions [27]. 
 In terms of cross-validation, the accuracy of the approximation is not highly important at the early 
stages. Instead, computational cost must be of a great importance in selecting the approximation meth-
od. On the other hand, while the algorithm closes to the final stages, the predicted values are becoming 
closer to the global optimum (Figure 1). 
 

 
Figure 1   Closeness of the IDW result to the global optimum 

3 INVERSE DISTANCE WEIGHTING MODEL (IDW) 

The IDW is a multivariable model based on an interpolation, which is well suited to irregularly 
spaced data. In two-dimensional space, there are two general types of exact interpolation methods: 
Single global function and a collection of simple and local functions. The former is usually accompa-
nied by an unmanageable complexity, while the latter is well defined and matches appropriately at 
its boundaries and is continuously differentiable even at the local junctions [9]. 
 The value at any point  in a plane is a weighted average of values at the data point  in which 
weighting is a function of distance to those points. Shepard [9] has introduced (2) for interpolating 
values at . The function indicates that the points further away from  will have lower weights. 
 

 (2) 

 
where  is the value at the data point  and  is the Cartesian distance between  and  

( ). As  approaches to a data point ,  approaches to zero. For , both left and right 
partial derivatives exist and for , there is no derivative. Empirical data shows that the higher 
exponents ( ) tend to make the surface relatively flat near all data points with very steep gradi-

P iD

P P

iz iD id P iD

[ , ]id P D P iD id 1u =
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2u >
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ent over a small interval between data points. Lower exponents produce a surface relatively flat with 
short blips. An exponent of  not only gives seemingly satisfactory results for the general sur-
face mapping and description purposes, but also presents the simplest form of calculation as Shepard 
[9] recommended. Figure 2 proves that  leads to the best concurrence with the exact simula-
tion. In Cartesian coordinates the distance between two points can be expressed as (3). 
 

 
Figure 2   Influence of on Chi-Square test function 

 

 (3) 

 
Since Shepard's radius function, does not fit multidimensional problems, it is modified as (4) and 

the rest of the equations remain unchanged. 
 

 

 

 
  

(4) 

 
where = number of decision variables; = total number of data points; = the number of data 
points included in the circle with radius  (Shepard recommended ); and  and = 
maximum and minimum value of decision variable  respectively. To achieve a higher compatibility 
with the exact simulation, Shepard has introduced several improvements to the original function (i.e. 
considering directions, determining the slope, etc.). These extra modifications not only increase the 
computational load, but also are not easily applicable to the multidimensional space hence they are 
not considered in this research. 
 
4 HARMONY SEARCH ALGORITHM 

Harmony Search (HS) algorithm is a replication of a musical performance process. A musician's search 
to find a better state of musical harmony (a perfect state) [3] is similar to optimization process that 
seeks to find a global solution (a perfect state) as determined by an objective function. The pitch of each 
musical instrument determines the aesthetic quality; similarly, the set of values assigned to each deci-
sion variable determines the value of the objective function. The optimization procedure of HS algo-
rithm consists of the following steps: 
 

2u =

2u =

u

n N C
r 7C = max

kx min
kX

k
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1. Initializing the optimization problem and algorithm parameters: The general form of optimization 
problem is specified as follows: 
 

 (5) 

 
where = an objective function; = optimization variable; and = the set of possible range of 
each decision variable. The parameters of HS algorithm, that is, HMS, HMCR, and PAR are also specified 
at this step. HM is a memory space where all the solution vectors (sets of decision variables) are stored 
which is similar to the genetic pool in GA. This will be shared with IDW as its initial points. 
2. Initializing HM: HM matrix shown in (6) is filled with as many solution vectors as the value of HMS. 
These solutions are randomly generated and sorted according to the values of the objective function, 

. 
 

 (6) 
 
3. Improvise a new harmony from HM: Memory considerations and pitch adjustments determine if the 
new harmony vector  should be generated from HM. That is,  (the value of vari-

able for the new vector) is chosen from the values in HM or .The value of HMCR which varies be-
tween 0 and 1 will determine where to choose the possible new value as indicated by (7). 
 

 (7) 

 
Every component of the new harmony vector,  is examined to determine whether 

it should be pitch-adjusted. This procedure uses the PAR parameter that sets the rate of adjustment for 
the pitch chosen from the HM as shown in (8). 
 

 (8) 

 
The HMCR and PAR parameters, introduced in Harmony Search, help the algorithm find globally and 

locally improved solutions, correspondingly. 
 
4. Update the HM: The new harmony vector replaces the worst harmony if a better objective function 
value is obtained. HM is then resorted. 
 
5. Check if the termination criterion is satisfied:  When the termination criterion is not satisfied steps  3 
and  4 are repeated. 
 

For further information about the HS algorithm see Refs [3, 17-21]. 
 
5 THE NEW MULTILEVEL OPTIMIZATION ALGORITHM 

( )f x ix iX

( )f x

thi

iX
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In this study, a combination of IDW and HS is employed to decrease the computational effort and 
improve the convergence rate. The presented method has been applied to a number of truss design 
problems, which are presented in the next section. 

An optimal truss design is one in which the optimal cross-sectional area assigned to each member 
satisfies the given constraints. Design constraints typically consist of the maximum allowable com-
pressive and/or tensile stress in any member of the truss and the maximum allowable deflection of 
any node [1]. The truss optimization objective function can be expressed as (9). 
 

 (9) 

 
where = weight of the truss; = number of members making up the truss; = material density 

of member ; = length of member ; and = cross-sectional area of member i, chosen from a set 

of areas between  and , where = lower bound and = upper bound. The parameters  and  
represent the stress and deflection of the member of the truss respectively.  
 The algorithm consists of the following steps: 
 
1. Generating the sample points and initializing HM: sample points are generated by selecting   cross-
sections from an eligible set of cross-sections. At least one cross-section should be chosen near the up-
per bound and one near the lower bound (e.g.  and  respectively). The remaining selections 
should be distributed uniformly between these bounds. Then a sample grid matrix ( ) is gener-

ated from the chosen cross-sections, where  is the number of truss members and should be great-
er than or equal to 2 (the minimum number of sample point entries). In other words, the entries of 
sample grid matrix are chosen from those sample points. For instance, (10) shows the formation of SG 
matrix for 25-bar truss from the sample points 0.5 and 3.0. 
 

 (10) 

 
 HMS determines the number of cross-sections from SG matrix that HM should be filled with. An 
exact simulation is applied to each point in HM. Both IDW and HS get their initial points from the same 
HM. 
 
Note: In (9) the cross-sectional constraint is zero cost, while  and  impose computational efforts. 

In the case where  and  are not satisfied, HM would not be updated. In this case, the algorithm 

W m ig

i iL i iA
lA uA l u

thi

0.9 uA 1.1 lA
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recovers the unacceptable solution and by applying superposition principle, makes it more acceptable. 
That is, the cross-sectional area of each member is multiplied by  (11) and then it would be added to 
HM. Applying such a factor to the cross-sectional area makes the stress and deflection ratios to be as 
close as possible to 1. The above operation will satisfy the first two constraints mentioned in (9) for all 
solution vectors, but the cross-sectional constraint may be violated. As HM is filled by order of priority 
from the lightest to the heaviest truss, which generally implies that HM will be filled from the smallest 
to the largest cross-sections, the repeated application of algorithm through its convergence process will 
force the satisfaction of cross-sectional area constraint. For a detailed explanation of the normalization 
process, assume the algorithm found the solution [0.236, 0.409, 2.094, 1.992, 0.426, 0.459, 1.106, 
2.026] which is not acceptable according to the stress and deflection ratios (1.5 and 0.216 respective-
ly). However, the solution could be recovered through the normalization process by multiplying the 
solution to the normalization factor, 1.5, which is obtained using (11). The recovered solution would be 
[0.354, 0.614, 3.141, 2.988, 0.639, 0.688, 1.658, 3.039], with stress and deflection ratios of 1.000 and 
0.144, which satisfies the criteria and could be added to HM. It should also be noted that the only pa-
rameter, which affects the performance of the algorithm, is the initial sample points. 
 

 (11) 

 
2. Generating a new solution vector: A new solution vector is generated according to (12) where the 
cross-sectional area of the member is determined using HMCR and PAR (see (7) and (8) respectively). 
 

 (12) 

 
where = new cross-sectional area of  member; = total number of iterations; and  = cur-
rent step. 
 
3. Estimating the approximate response:  IDW is used to estimate the new solution response. If the 
new approximate response is better than the worst one stored in HM, the algorithm will proceed to the 
next step. Otherwise, it will return to the previous step. 
 
4. Evaluating the exact response: An exact response evaluation process is applied to the new generated 
solution. If the accurate response is acceptable, the worst solution in HM is replaced. Otherwise, the 
algorithm will return to step  3. In further iterations, as the responses in HM get closer to the optimal 
response, the distance between the approximate and accurate responses is reduced. Numerical exam-
ples show that the most of unnecessary and expensive calculations are eliminated in the early iterations 
where the responses are far enough from the optimal response. 
 
5. Checking the termination criteria: The algorithm terminates in a certain number of iterations 
(  i.e. ). Although the most of the meta-heuristic algorithms have some other criteria 
together with maximum iterations, we avoided to adopt such criteria here, because the IDW reduces 
the number of HS (exact analysis) iterations. On the other hand, the criteria excluding maximum itera-

new
iA thi K I

K I=
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tions may lead to a premature solution. If the termination criterion is not met, the algorithm repeats 
steps  3 and  4. 
 
6. Polishing the result: A semi-tabu algorithm is applied to the final solution to obtain a better solution. 
The semi-tabu is to find a smaller cross section area for each member to reach a better solution, while 
satisfying the criteria. This is achieved by reducing each area by multiplying by 0.95 in a loop, while 
satisfying the criteria. It should be noted that only one member is reduced in each loop. 
 

Figure 3 shows the optimization procedure of the IDW+HS algorithm. 
 

 
Figure 3   Optimization procedure of IDW+HS algorithm 

 
 

6 COMPUTATIONAL EXPERIMENTS 

The efficiency of the algorithm was evaluated through some numerical examples. To investigate the 
computational cost and convergence rate, three examples (10, 25, and 72-bar truss) are selected from 
refs [1-4]. The algorithm was developed using Python programming language and ran on a Centrino, 
1.4 GHZ computer. The structural analysis also was done using OpenSees code. 
The 10-bar truss is discussed in detail to show the efficacy of the algorithm, and the other examples are 
given for further investigations. These problems have been widely used as benchmarks to test and veri-
fy the efficiency of many different engineering optimization methods. 
 
 
6.1 Ten-bar truss 
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Figure 4 shows the geometry and support conditions for two-dimensional cantilever 10-bar truss 
with a single loading condition. 
 

 
Figure 4   Configuration of 10-bar truss 

 
The material used in this structure has a modulus of elasticity of  and a mass densi-

ty of . The design constraints are: maximum allowable stress in any member of the 

truss ; maximum deflection of any node (in both vertical and horizontal direc-

tions)
 

. The upper and lower limits of cross-section areas of each truss member 

. The sample points by which the sample grid is generated are 1.0 and 
30.0. Figure 5 compares the convergence rate of the proposed algorithm with that of some other algo-
rithms (GA, ACO, HS, IDW+HS, etc.). The IDW+HS has been already compared with the other pure me-
ta-heuristic algorithms by the authors [16]. Here the IDW+HS is compared with the new modified algo-
rithm. The comparison indicates that although the IDW+HS+Tabu fits the IDW+HS at the early stages, 
in the final steps, the semi-tabu algorithm leads to a lighter design. The exact design weight is shown in 
Table 1. It can be seen that the new algorithm designed a lighter structure compared to the IDW+HS 
algorithm (4893 vs 4963), in a fewer iterations (682 vs 1870). 
 

 
Figure 5   The convergence diagram for minimum weight design of 10-bar truss with various algorithms 

 
Table 1   The best solutions obtained from various algorithms for 10-bar truss 

 
Truss member ACO GA: Camp et al. Mahfouz GA HS IDW+HS IDW+HS+Tabu 

1 29.90 28.92 33.50 30.05 29.85 29.88 
2 0.10 0.10 1.62 0.27 0.53 0.14 

68.948E GPa=
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3 26.10 24.07 22.90 22.86 22.81 20.53 
4 15.40 13.96 14.20 14.58 14.54 13.84 
5 0.10 0.10 1.62 0.10 0.10 0.37 
6 0.50 0.56 1.62 0.28 0.73 1.02 
7 20.90 21.95 22.90 20.64 20.58 18.18 
8 7.40 7.69 7.97 8.11 7.31 7.04 
9 0.10 0.10 1.62 0.24 0.10 1.06 

10 18.70 22.09 22.00 20.69 21.01 23.33 
Weight (lb) 4994 5076 5491 4982 4963 4893 
Iterations 12000 15000 8000 5000 1870 682 

 
6.2 Twenty Five-bar Truss 

Material properties and design constraints: 
; ; ; ; 

; sample points = 0.5 and 3.0. 
 

Table 2   Single load case for 25-bar truss 
 

Node (Ton) (Ton) (Ton) 
1 0.454 -4.536 -4.536 
2 0.0 -4.536 -4.536 
3 0.227 0.0 0.0 
4 0.272 0.0 0.0 

 
Table 3   Multiple load case for 25-bar truss 

 
Case Node (Ton) (Ton) (Ton) 

1 

1 0.454 -4.536 -2.268 
2 0.0 -4.536 -2.268 
3 0.227 0.0 0.0 
6 0.227 0.0 0.0 

2 1 0.0 9.072 -2.268 
2 0.0 -9.072 -2.268 

 
 

xF yF
zF

xF yF
zF
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Figure 6   Configuration of 25-bar truss 

 
 

 
Figure 7   The convergence diagram for minimum weight design of 25-bar truss under single load case with various algorithms 

 
 
 
 

Table 4   The best solutions obtained from various algorithms for 25-bar truss under single load case 
 
Group Truss member ACO GA: Camp et al. HS IDW+HS IDW+HS+Tabu 

1 1 0.10 0.10 0.12 0.28 0.52 
2 2-5 0.30 0.50 0.17 0.30 0.40 
3 6-9 3.40 3.40 3.40 3.40 3.04 
4 10-11 0.10 0.10 0.12 0.11 0.56 
5 12-13 2.10 1.90 1.23 1.73 1.64 
6 14-17 1.00 0.90 0.82 0.91 0.64 
7 18-21 0.50 0.50 0.94 0.53 0.51 
8 22-15 3.40 3.40 3.35 3.39 3.37 

Wight (lb) 485 485 482 476 451 
Iterations 7700 15000 5000 2838 166 
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Figure 8   The convergence diagram for minimum weight design of 25-bar truss under multiple load case with various algorithms 

 
 

Table 5   The best solutions obtained from various algorithms for 25-bar truss under multiple load case 
 

Group Truss member ACO GA: Camp et al. HS IDW+HS IDW+HS+Tabu 
1 1 0.01 0.01 0.10 0.10 0.41 
2 2-5 2.00 2.01 1.65 2.05 2.21 
3 6-9 2.97 2.95 3.12 2.97 2.55 
4 10-11 0.01 0.01 0.13 0.19 0.32 
5 12-13 0.01 0.03 0.11 0.12 0.43 
6 14-17 0.69 0.68 0.53 0.67 0.63 
7 18-21 1.68 1.68 2.04 1.57 1.38 
8 22-15 2.67 2.68 2.80 2.64 2.49 

Wight (lb) 545.53 545.80 559.45 542.14 516.82 
Iterations 7700 15000 5000 2838 557 

 

6.3 Seventy Two-Bar Truss 

Material properties and design constraints: 
 

68.948E GPa= ; 32.768T
m

g = ; ; ; 

; sample points= 0.05 and 2.20 
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Figure 9   Configurations of 72-bar truss 

 
Table 6   Nodal coordinates of  story for 72-bar truss 

 
Node X (m) Y (m) Z (m) 
i+1 -1.524 -1.524 1.524i 
i+2 1.524 -1.524 1.524i 
i+3 1.524 1.524 1.524i 
i+4 -1.524 1.524 1.524i 

 
Table 7   load conditions for 72-bar truss 

 

Case Node (Ton) (Ton) (Ton) 

1 

17 0.0 0.0 -2.268 
18 0.0 0.0 -2.268 
19 0.0 0.0 -2.268 
20 0.0 0.0 -2.268 

2 17 2.268 2.268 -2.268 

thi

xF yF zF
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Figure 10   The convergence diagram for minimum weight design of 72-bar truss with various algorithms 

 
 

Table 8   The best solutions obtained from various algorithms for 72-bar truss 
 
Group Truss member ACO GA: Camp et al. HS IDW+HS IDW+HS+ Tabu 

1 1-4 1.948 1.856 1.86 1.85 1.99 
2 5-12 0.508 0.493 0.51 0.51 0.42 
3 13-16 0.101 0.100 0.01 0.01 0.08 
4 17-18 0.102 0.100 0.01 0.04 0.15 
5 19-22 1.303 1.283 1.30 1.27 1.04 
6 23-30 0.511 0.503 0.52 0.51 0.49 
7 31-34 0.101 0.100 0.01 0.02 0.06 
8 35-36 0.100 0.100 0.02 0.02 0.02 
9 37-40 0.561 0.518 0.53 0.53 0.71 

10 41-48 0.492 0.523 0.54 0.50 0.41 
11 49-52 0.100 0.100 0.02 0.02 0.01 
12 53-54 0.107 0.105 0.04 0.07 0.11 
13 55-58 0.156 0.156 0.17 0.17 0.19 
14 59-66 0.550 0.550 0.54 0.52 0.59 
15 67-70 0.390 0.398 0.44 0.43 0.50 
16 71-72 0.592 0.675 0.60 0.60 0.50 

Wight (lb) 380 380 365 359 357 
Iterations 18500 - 5000 1800 985 

 
7. CONCLUSION 

This paper describes a surrogate-based optimization algorithm. It is a combination of a metamodel 
and a meta-heuristic algorithm. Most of the meta-heuristic algorithms (e.g. GA, HS, and ACO) employ 
a large initial population size, which leads to a large and costly number of function evaluation and 
suffer from slow convergence. These prohibitive factors are more pronounced when applied to exact 
simulation. IDW+HS+Tabu algorithm implements the optimization process in two steps. First, the 
IDW is applied to eliminate the unnecessary calculations. Then the remaining solutions are processed 
for exact simulation. Then superposition principle is applied to normalize the result of exact simula-
tion. Finally HM is updated by the results. The algorithm was applied to four truss design problems. 
The obtained results showed that the proposed method not only reduces the computational effort 
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but also significantly improves convergence rate. As shown above, the proposed algorithm saves the 
computational cost from 86 to 99 percent. 
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