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Abstract 

This article presents novel non-singular influence functions for homogeneous media. These solutions are 
displacement and stress fields of a three-dimensional, isotropic full-space under time-harmonic vertical and 
horizontal loads, which can be used within the framework of boundary element methods to solve elastodynamics 
problems in engineering practice. In order to account for sharply-varying contact tractions that may occur in such 
problems, the solutions in this article consider a biquadratic distribution of the loads within the loaded surface. 
In the present derivation, sets of Fourier transforms are used to uncouple the medium's equation of motion and 
enable the incorporation of boundary conditions directly as traction discontinuities. The article brings selected 
numerical results for various geometric and constitutive parameters. 
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1 INTRODUCTION 

Boundary element methods are typical choices of methods to model unbounded media such as the soil. This success 
is partly due to their ability to comply with radiation conditions of unbounded media (Sommerfeld, 1949) and because 
they do not require discretization of the unbounded domain (Kuzuoglu and Mittra, 1997). The Direct Boundary Element 
Method (DBEM) is one example of such methods. In DBEM formulations, a discretized boundary integral equation is used 
to approximate the solution of the problem. In elastodynamic problems, for example, this equation relates displacement 
and stress Green's functions, which comprise the displacement fields and stress tensors of the medium of interest in 
response to point loads. 

A comprehensive literature review of Green's functions for elasticity has been presented by Pan (2019). A well-
known difficulty in DBEM schemes is dealing with singularities resulting from collocation of Green's functions at the 
boundary of the domain (Dumont, 1994). One way to avoid this difficulty is by using non-singular influence functions, 
which can be collocated at the boundary without resulting in singularity problems. These functions can be used in 
Indirect-BEM (IBEM) schemes, in which displacement and stress influence functions are related through sets of fictitious 
loads, rather than by a boundary integral equation. Some of these non-singular influence functions have been derived 
by the authors of this article and their work group in the past decades. These solutions include isotropic (Mesquita et al., 
2012b) and anisotropic media (Barros and Mesquita, 1999), harmonic and transient excitations (Mesquita et al., 2003), 
concentrated (Mesquita et al., 2009a) and distributed loads, for half-spaces (Mesquita et al., 2012a) and full-spaces 
(Labaki et al., 2019), and with a variety of different methods of derivation (Adolph et al., 2007; Romanini et al., 2019). 
Extensive investigations into the numerical evaluation of such solutions (Labaki et al., 2012) and strategies to deal with 
their high computational cost (Mesquita et al., 2009b) have been presented as well. In view of soil media applications, 
other groups have also invested significant effort to model influence functions that represent the soil's transversely 
isotropic, layered, and poroelastic characteristics. Selected examples of these functions, together with their applications 
within IBEM frameworks, are models of the dynamic response of rectangular plates embedded in layered, transversely 
isotropic soils (Fu et al., 2017; Fu et al., 2019), models of the response of strip foundations on transversely isotropic, 
layered, elastic (Ba et al., 2018a) and poroelastic (Ba et al., 2018b) soils, and models of the seismic response of alluvial 
basins (Ba et al., 2020). 

Solutions for uniformly-distributed loading cases such as those presented by Romanini et al. (2019), however, face 
a difficult challenge when used to model discontinuous contact problems. Such problems are common in multi-media 
and multi-body interaction applications, and the challenge is to represent sharply-varying contact tractions that occur at 
the edges and interfaces between different bodies and media (Barros and Mesquita, 2000). Figure 1 illustrates this 
problem. It shows the horizontal and vertical contact tractions tX and tZ at the interface between a rigid strip footing and 
a half-space, resulting from the application of an external rocking moment MY on the footing. These results were 
computed by Barros and Mesquita (2000) for the normalized frequency of excitation a0=ω/cs=1, in which cs is the shear 
wave speed in the half-space. 

 
Figure 1 Sharply-varying contact traction distribution at the interface between a half-space and rigid strip footing under rocking moment. 

Modeling quantities like these using uniformly-distributed loading solutions requires large numbers of elements and 
results in high computational cost, and in some problems is altogether unattainable (Barros and Mesquita, 2009). A 
contribution toward improved representation of sharply-varying contact quantities has been recently presented by 
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Romanini et al. (2021), in which bilinearly-varying loadings were considered. The solution in this article is a significant 
improvement in that regard. 

This article presents displacement and stress solutions for a three-dimensional, isotropic full-space under time-
harmonic vertical and horizontal excitation. External loads can have arbitrary biquadratic distribution over a rectangular 
patch within the full-space. Within DBEM and IBEM contexts, these non-singular influence functions correspond to 
quadratic boundary elements, which can be used in elastostatic and elastodynamic analyses with improved accuracy, 
convergence, and computational cost. The article presents original numerical results for various geometric and 
constitutive parameters, and shows that the presented implementation can be used within formulations of the boundary 
element method. 

2 PROBLEM DEFINITION 

Consider a three-dimensional, isotropic full-space, under horizontal (x- and y-directions) and vertical (z-direction) time-
harmonic loads of circular frequency ω. In the absence of body forces, the equation of motion of this medium is given by 

2 2( ) ( • ) ,          u u u  (1) 

in which μ and λ are Lamé's constants and ρ is the mass density of the medium, and u=u(x) is the displacement vector of 
point x=(x,y,z). The corresponding stress field σ=σ(x) can be obtained from u=u(x) through the constitutive relation 

, ,( • ) ( ),      ij ij i j j iu u u
 (2) 

in which δij is the Kroenecker Delta. 
In this work, we derive solutions for both u and σ for the loading case illustrated in Figure 2: the loaded surface is a 

square patch defined by |x|<A; |y|<B; z=0, over which arbitrary, biquadratically-varying loads are applied. 

 
Figure 2 Biquadratically-varying load distribution within the full-space. 

3 SOLUTION PROCEDURE 

The strategy to derive solutions for u and σ in this paper is based on the Helmholtz decomposition (Helmholtz, 
1858). Each term ui of the displacement field u=uiêi (i=x,y,z) is expressed as the linear superposition 

, ,2 2

1 2
e ,i i imn n m

L S

u
k k

    

 (3) 

in which Δ and Ω are independent fields, and kL
2=ω2ρ/(λ+2μ) and kS

2=ω2ρ/μ are primary and secondary wave numbers 
of the full-space. Equation 2 can be rewritten in terms of the scalar dilatation field Δ and the vector rotation field Ω as 
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in which n2=kL
2/kS

2. Trial solutions for Δ and Ω can be written in the wave number domain (β, γ) as 

 i(1,2) (1,2) 2e ,Lz x y
LA k      

 (5) 

 i(1,2) (1,2) 2e ,Sz x y
j j SB k      

 (6) 

in which the super-indices m=1,2 indicate m=1 (−∞<z≤0) and m=2 (0≤z<+∞) halves of the full-space. The solutions 
expressed in Eqs. 5 and 6 satisfy the condition that u must vanish for x→±∞ (Sommerfeld, 1949). 

In view of the properties of Δ and Ω, Eqs. 5 and 6 yield 

 2 2 2 2
, , ,L S L Sk    

 (7) 

 (1,2)
3 1 2

i
.

S

B B B 


 
 (8) 

The passage from Eqs. 5 and 6 to Eqs. 7 and 8 is detailed in Appendix A. Substituting Eqs. 5 and 6 into 3 and 4 yields 

   i x+ y(1,2) (1,2) (1,2)(1,2) 2 2
1 2

2
i e e eL Sz z

X S
S

u A B B      


 
                (9) 
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1 2

2
i e e eL Sz z

Y S
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                 (10) 
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                  (13) 
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XZ L SA B B                   (14) 
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                  (15) 
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YZ L SA B B                   (16) 
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in which A(m) and Bn
(m) (m=1,2; n=1,2,3) are arbitrary functions that depend on specific boundary conditions. 

4 BOUNDARY CONDITIONS 

Solutions for the full-space (−∞<z<+∞) are obtained from Eqs. 9 to 17 by imposing continuity and equilibrium 
conditions at the interface between media m=1 and m=2. The former is imposed for all displacement components uj 
(j=x,y,z) as 

   (1) (2), , 0 , , 0 ,j ju x y z u x y z  
 (18) 

while the latter is imposed for all stress components σZj as 

     (1) (2), , 0 , , 0 , ,Zj Zj jx y z x y z P x y    
 (19) 

in which Pj(x,y)=pjei(βx+γy) are external loads of amplitude pj in the j-direction (j=x,y,z) applied at the interface between 
media m=1 and m=2 (Fig. 2). The solution of all six algebraic equations involved in Eqs. 18 and 19 results in A(m) and Bn

(m) 
for the full-space boundary-value problem: 

     (1,2)
2 2 2

, , ,1 1 1
i ,

2 2 2
X Y Z

L S L S S

p p p
A

k k k

       

    
  

 (20) 

   


(1,2)
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,

4 4
Y Z

S S S

p p
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 (21) 

   (1,2)
2 2 2

, ,1 1
i .

4 4
X Z

S S S

p p
B

k k

    

  
  

 (22) 

4.1 Biquadratic external loads 

The external load distribution shown in Fig. 2, which is defined by its values at the nine points ti (i=1:9) can be 
described by direct biquadratic interpolation over pj(Qi)=ti: 

  


2 2 2 2 2 2 2 2 2
1 2 3 4 5 6 72 2

2 2 2
8 9

1
, , 0 2 2 2

4
2 4 ,

jp x y z T x y T Bx y T B x T ABxy T Axy T AB x T A y
A B
T A By T A B

       

 
 (23) 

for|x|<A and |y|<B, and pj(x,y,z=0)=0 otherwise, in which 

 1 1 3 5 7 9 2 4 6 84 2 ,T t t t t t t t t t        
 

 2 1 4 7 3 5 82 2 ,T t t t t t t     
 

3 2 6 9,2T t t t 
 

 4 1 5 3 7 ,T t t t t   
 

 5 1 3 6 2 5 72 2 ,T t t t t t t     
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6 2 6,T t t 
 

7 4 8 92 ,T t t t  
 

8 4 8,T t t  
 

9 9.T t
 

In order to allow its incorporation into Eq. 19, Eq. 23 must be written in the transformed (β, γ) space, which is 
obtained through its direct Fourier transform with respect to (x, y): 

 
9

2 2 3 3
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2
j ij
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 (24) 

in which 
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       8
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sin sin sin cos ,
2 i
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A B B A B
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4

jp
A B
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5 FINAL SOLUTIONS 

Substituting Eqs. 20 to 22 into 9 to 17, together with Eq. 24, results in u(kβ,kγ) and σ(kβ,kγ). Applying the inverse 
Fourier transform into u(kβ,kγ) and σ(kβ,kγ) yields u(x) and σ(x), the displacement and stress fields in the physical domain. 
In order to improve the readability of this article, the final expressions for u(x) and σ(x) are listed in Appendix B. Two 
selected components are shown here in order to illustrate the general aspect of these solutions: 

3 2
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the horizontal (x-direction) displacement due to vertical (z-direction) loads, and 
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 (26) 

the shear stress in the y-z plane due to horizontal (y-direction) loads. The parameters involved in Eqs. 25 and 26 are listed 
in Appendix B as well. 

Notice that these solutions are expressed in the [0,+∞) interval, rather than in the original Fourier transform (−∞,∞) 
interval. This can be obtained after careful consideration of whether the integrand of each term is an odd or even 
function. Moreover, the term z/|z| is incorporated into some components so that a single expression for each 
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component can represent the entire full-space, rather than separate solutions for each media m=1,2. Both these 
modifications entail arduous mathematical manipulations and are aimed at facilitating the numerical evaluation of these 
expressions. 

6 NUMERICAL RESULTS 

A detailed description of the numerical scheme used in this work to evaluate Eqs. 48 to 71 (Appendix B) is presented 
by the authors in Labaki et al. (2012). In summary, a combination of two routines is used: an adaptive quadrature scheme 
is used to integrate a finite region of the integrand containing singularities, while an extrapolation-based scheme is used 
to integrate the oscillatory-decaying remainder portion of the integrand (Piessens et al., 2012). Additionally, a small 
damping factor η=0.001 is incorporated into the constitutive parameters according to λ*=λ(1+iη) and μ*=μ(1+iη) 
(Christensen, 2010), which then replace μ and λ in Eq. 1. This causes the integration path to evade the real-axis 
singularities via a small detour through the complex plane (Michalski and Mosig, 2016). 

All results in this section consider μ=1, ρ=1, ν=0.25, and A=B=1, unless otherwise stated. 

6.1 Verification 

Figure 3 shows a comparison of displacement components uYY and uZX with the dynamic Kelvin solution (Kitahara, 
2014). For this comparison, Kelvin's unit point-load solution was numerically integrated over a square 2A×2B area, and 
this case can be simulated with the present solution by making t1:9=1. These results were computed at point x=y=z=1.5, 
in terms of the normalized frequency a0=ω/cS=1, in which cS=√μ/ρ is the shear wave speed in the half-space. The root-
mean-square errors (RMSE) between the present and the reference Kelvin solution are 2.43⋅10−5 and 4.65⋅10−6 for the 
real and imaginary parts of uYY, respectively (Fig. 3a), and 3.32⋅10−5 and 2.97⋅10−5 for the real and imaginary parts of uZX, 
respectively (Fig. 3b). Since both solutions are synthetized numerically, they both have intrinsic numerical errors. These 
quantitative comparisons serve merely to verify that the solutions produce comparable results, rather than to validate 
them against some exact solution, since no such solution is available for this problem. 

 
Figure 3 Comparison of selected displacement components with the Kelvin solution. 

 
Figure 4 Comparison of selected stress components with (a) Kelvin problem solution and (b) Barros and Mesquita (1999) 2D problem. 

As for the stress components, Figure 4a shows a comparison of selected components with the classical static, point-
load Kelvin solution (Kane, 1994). For this comparison, we considered A=B=0.01, y=0.3, and z=0.5. Additionally, Fig. 4b 
shows a comparison with Barros and Mesquita's (1999) 2D plane-strain problem for various frequencies. In this 



A quadratic boundary element for 3D elastodynamics Edivaldo Romanini et al. 

Latin American Journal of Solids and Structures, 2023, 20(6), e508 9/26 

comparison, t1:9=1, B/A=50, x=0.8, z=0.5, and y=0. The RMSE between the present and the reference solution is 8.47⋅10−5, 
2.09⋅10−4 and 1.34⋅10−4 for σYYZ, σXXX and σXXY, respectively (Fig. 4a), and 3.11⋅10−4 and 3.24⋅10−4 for the real and imaginary 
parts of σXXZ, respectively (Fig. 4b). This shows that the present solution yields results that are comparable to the ones 
obtained by a variety of different methods. 

Figure 5 shows a verification of the compliance of the stress components with the boundary conditions prescribed 
in Eq. 19. These results show that as the line in which these solutions are measured approaches the loaded surface (z=0), 
the stress components tend to the traction discontinuity prescribed at that surface. This is the static case, and results are 
measured on the x-z plane (y=0). Figures 5a and b consider respectively ti=i, and t1:8=0; t9=1. 

 
Figure 5 Compliance of the stress solution with prescribed boundary conditions. 

Finally, an additional verification of the displacement components is obtained by comparing stress components that 
were directly evaluated from the solutions in this article with stress components that were synthesized numerically from 
displacement components. These numerically-synthesized equivalents, indicated by the superscript D, are obtained by 
computing strain components through the numerical derivation of displacement components, and subsequent 
computation of stress components through Hooke's Law. This scheme is shown in detail in Romanini et al. (2021). 

 
Figure 6 Comparison between stress components and displacement-based stress components. 

Figure 6 shows selected comparisons for a0=2 and ti=i. Figures 6a and b consider respectively stresses along the line 
x=y=0.5; 2≤z≤8 and y=z=0.5; 1≤x≤5. The RMSE between the stress components evaluated directly from Eqs. 57 and 71 
and the numerically-synthesized stress components is 7.72⋅10−5 and 1.77−4 for the real and imaginary parts of σXYZ, 
respectively (Fig. 6a), and 5.61⋅10−2 and 4.60⋅10−2 for the real and imaginary parts of σYZY, respectively (Fig. 6b). The 
considerably larger discrepancy between the two results in the case of σYZY could be initially thought to be due to the 
increased difficulty in evaluating stress influence function near the loaded surface (x→A). However, we have shown in 
Fig. 5 that these solutions can be accurately computed even very close to the loaded surface. This indicates that the 
discrepancy in these results must come from numerical difficulties that are intrinsic to the finite difference scheme used 
to evaluate the numerically-synthesized solutions (Romanini et al., 2021). 

6.2 Comparison between load distributions 

Figures 8 to 11 show displacement and stress fields due to various load distributions. Cases A, B, and C consider 
ti=1/(4AB) (i=1:9) (constant load distribution), ti=3i/(80AB), and t1:8=0; t9=9/(16AB) (Figure 7). These were selected to 
have unit net magnitude, that is, 
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 , 1,
A B

A B
p x y dxdy

 
   

so that the effect of the load distribution itself could be studied separately. All cases consider a0=1. 

 

Figure 7 Load distributions considered in this section. 

 

Figure 8 Effect of different load distributions on uXZ. 

These results show that displacement and stress fields are strongly dependent on the load distribution. Non-
uniformly distributed loads result in much sharper variation of displacements than the uniformly-distributed load case. 
Stress states are more strongly dependent on the load distribution under the loading area (x,y<A), outside which the 
effect of load distribution quickly becomes negligible. As expected, the overall magnitude of the direct displacement and 
stress components uZZ and σXXX is larger than that of the cross displacement and stress components uXZ and σXYZ, 
regardless of the load distribution, which is physically consistent. It is also physically consistent that the shear stress due 
to vertical load σXYZ is nearly zero in the uniformly-distributed load case, due to the symmetry of the load and to the 
proximity of the measuring line (0<x<5; y=z=0.05) to the x-z plane. 

 

Figure 9 Effect of different load distributions on uZZ. 
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Figure 10 Effect of different load distributions on σXXX. 

 
Figure 11 Effect of different load distributions on σXYZ. 

6.3 Quality of the implementation 

Formulations of boundary element methods, the main applications of influence functions, often require such influence 
functions to be evaluated for relatively high frequencies and for field (measuring) points relatively far from the source 
(loaded) points. Figures 12 and 13 show selected displacement and stress components evaluated at distant field points, 
while Figure 14 and 15 show selected components evaluated at high frequencies. All results in this section consider ti=i. 

Even though, due to the lack of comparable solutions in the literature, the results in this section cannot be verified 
in terms of accuracy, they are physically consistent. Some aspects showing this physical consistency are the overall 
decrease in the magnitude of the solutions for increasing distances from the source point and for increasing frequencies 
of excitation, and direct stress and displacement components posessing larger magnitude than their cross counterparts. 
The results are well-behaved, smooth curves, even for large values of x and a0. These results show that the strategy 
described in this paper for the computational implementation of these functions is able to handle a wide range of input 
data and parameters without failing, and that small changes in the input data do not lead to large changes in the output. 

 
Figure 12 Selected results from the evaluation of far-field displacement components. 
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Figure 13 Selected results from the evaluation of far-field stress components. 

 

Figure 14 Selected results from the evaluation of high-frequency displacement components. 

 

Figure 15 Selected results from the evaluation of high-frequency stress components. 

7 CONCLUSIONS 

This article introduced original non-singular influence functions for three-dimensional, homogeneous, isotropic full-
spaces. These solutions are aimed at facilitating the representation of sharply-varying quantities, such as contact tractions 
between soil and foundations, which routinely occur in soil—structure interaction problems. In order to represent these 
quantities, the solution considered biquadratically-distributed loads applied to the full-space, since loads that vary according 
to higher-order polynomials are better suited to represent sharply-varying quantities than uniformly-distributed loads. 
These time-harmonic external loads were imposed in the Fourier transformed domain, in which uncoupled stress and 
displacement components are accessible separately. Selected numerical results showed that the solution yields physically 
consistent results, and that the proposed numerical evaluation scheme yields viable solutions. This improved representation 
comes at the cost of lengthy solutions to be implemented. These influence functions can be used as quadratic boundary 
elements, with improved representation of sharply-varying quantities, for elastodynamic analyses. 
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APPENDIX A 

This appendix expands the mathematical manipulation that yields Eqs. 7 and 8 from Eqs. 5 and 6. The rotational Ω 
of the displacement field u is a vector given by 

 3,2 2,3 1,3 3,1 2,1 1,2
ˆe e ,     

T

ijk k iu u u u u u u
 (27) 

for i,j,k=x,y,z. On the other hand, the dilatation Δ of the vector field u is a scalar given by 

, 1,1 2,2 3,3
.    i iu u u u

 (28) 

Consider the following identity about the vector field Ω: 

     
     

, 3,2 2,3 1,3 3,1 2,1 1,2,
1 2 3

3,21 2,31 1,32 3,12 2,13 1,23 ,

e

0,

                 
           

imn n m i

i i

x x x

 (29) 

since Ω3,21=Ω3,12, Ω2,31=Ω2,13, and Ω1,32=Ω1,23, which can be easily verified from Eq. 27. In view of Eq. 29, computing 
the gradient of the displacement field u (Eq. 3) yields 

, , , ,2 2 2,

1 2 1
• e ,              u i i ii imn n m iii

L S L

u
k k k

 (30) 

or 

,2

1
0.  ii

Lk  (31) 

Equation 5 expresses an Ansatz solution for Δ. Substituting 5 into 31 yields 

 

2 2 2
2 2 2 2 2

2 2 2 2

2 2 2 2 2 2

2

1
e e e e e

1
e e e 0,

             

       

q q q q q
L L L L L

L

q q q
L L L L

L

Ak Ak Ak Ak Ak
k x y z

Ak Ak Ak
k

 (32) 

in which  i
e e

    Lz x yq , and the superindices (1,2) have been omitted from A(1,2) for conciseness. Since eq≠0 
and A(1,2)=0 is the trivial solution, Eq. 32 yields the portion of Eq. 7 referring to αL: 

 2 2 2 2 .     L Lk  (33) 

Additionally, in view of Eq. 28, one can show that 

,
e 0, ijk k  (34) 

since 
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, 1,1 2,2 3,3 1,132 2,232 3,332 1,123 2,223 3,323

1,113 2,213 3,313 1,131 2,231 3,331

1,121 2,221 3,321 1,112 2,212 3,312

ˆe e i

ĵ

k̂= ,

         

     

      0

ijk k ijk k k ku u u u u u u u u

u u u u u u

u u u u u u
 (35) 

since um,ijk=um,ikj=um,jik=um,jki=um,kij=um,kji (m=1,2,3). In view of Eq. 34, computing the rotational of the displacement 
field u (Eq. 3) yields, for each of its components i, 

, , ,2 2 2

1 2 2
e e e e e e .

                     
ijk k ijk k ijk kmn n m ijk kmn n m

L S S

u
k k k

 (36) 

The left-hand side of Eq. 36 is (Graff, 2012) 

,
e 2 , ijk k j iu

 (37) 

since eijkuk is simply the rotational of the displacement field written in index notation (Eq. 27). Omitting the term 
1/k2

S for conciseness, the rotational terms in the right-hand side of Eq. 36 can be expanded into 

 
 
 
 

, 3,2 2,3 1,3 3,1 2,1 1,2

2,12 1,22 1,33 3,13

3,23 2,33 2,11 1,21

1,31 3,11 3,22 2,32

e e e

î

ĵ

k̂.

       

    

    

    

T

ijk kmn n m ijk

 (38) 

Consider initially the term of Eq. 38 in the î-direction. The following expansion can be made: 

2,12 1,22 1,33 3,13 1,11 1,22 1,33 1,11 2,12 3,13
.          

 (39) 

In view of the terms Ω1, Ω2 and Ω3 of Ω expressed in Eq. 27, then Ω1,11=u3,211−u2,311, Ω2,12=u1,312−u3,112, and 
Ω3,13=u2,113−u1,213. Therefore, 

 
     
 

1,11 1,22 1,33 1,11 2,12 3,13 1,11 1,22 1,33

3,211 2,311 1,312 3,112 2,113 1,213

1,11 1,22 1,33
.

          

     

    

u u u u u u

 (40) 

The same expansions can be made for the terms of Eq. 38 in the other directions. In view of these expansions, Eq. 
38 yields 

 
 
 

, 1,11 1,22 1,33

2,11 2,22 2,33

3,11 3,22 3,33 ,

ˆe e i

ĵ

k̂ .

     

   

     

ijk kmn n m

i jj  (41) 

Therefore, in view of Eqs. 37 and 41, Eq. 36 results in 

,2

1
0.   i i jj

Sk  (42) 
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Equation 6 expresses an Ansatz solution for Ω. Substituting 6 into 42 yields 

 

2 2 2
2 2 2 2 2

2 2 2 2

2 2 2 2 2 2

2

1
e e e e e

1
e e e ,

             

      

p p p p p
S S S S S

S

p p p
S S S S

S

Bk Bk Bk Bk Bk
k x y z

Bk Bk Bk
k

 (43) 

In which  i
e e

    Sz x yp , and the superindices (1,2) have been omitted from B(1,2) for conciseness. Since ep≠0 
and B(1,2)=0 is the trivial solution, Eq. 43 yields the portion of Eq. 6 referring to αS: 

 2 2 2 2 .     S Sk  (44) 

Finally, consider the condition that 

,
0, i i  (45) 

shown in Eq. 29. Substituting Eq. 6 into 45 yields 

2 2 2 2 2 2
1 2 3 1 2 3

e e e i e i e e 0.
  

        
  

p p p p p p
S S S S S S SB k B k B k B k B k B k

x y z  (46) 

Since ep≠0 and k2
S≠0, Eq. 46 yields Eq. 8: 

 (1,2) (1,2) (1,2)
3 1 2

i
.   




S

B B B
 (47) 
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APPENDIX B 

This appendix lists the final expressions for the displacement and stress fields in the physical domain. The 
displacement components are given by 

3 2
1 21 1

1 1 2 13 2 3 2 2 20 0 0 0
0 0

2 2
1 2

3 1 4 120 0 0
0 0

2

XZ
x y x y

N

B
x y x

F FF Fu z A A B
T F s dk c dk T F s dk s dk

D z a k k a k k

sF FAB A B
T F s dk c dk T F c dk

a k a kk

  
       

   

 
     

 

   

  

                   
        

   

   2

20

3
12 22

5 1 6 12 30 0 0 0
0

3
1 2

7 1 8 130 0 0
0

2

2
2

y

B
x y x y

A x y A x

F
s dk

k

F sF FA
T F c dk c dk T AB F c dk c dk

k k ka k

FA
T F s s dk c dk T A B F s s dk

a k


 



  
       

  


       





   

  

    
                

       



   

   2

20

2
9 0 10 0
4 ,

y

B
A x y

F
s dk

k

s
T AB a F s s dk c dk

k


 




    





 

 

    



 
 (48) 

3 2
1 21 1

1 1 2 13 3 2 2 30 0 0 0
0 0

2 2
1 2

3 1 4 13 20 0 0
0 0

2

YZ
x y x y

N

x B y x

F FF Fu z A A B
T F c dk s dk T F c dk c dk

D z ka k k a k

F FAB A B
T F c dk s s dk T F s dk

a ak k

  
       

  

 
      

 

   

  

                   
         

   

   2

0

3
12 22

5 1 6 12 2 2 20 0 0 0
0

3
1 2

7 1 8 120 0 0
0

2

2
2

y

x y x B y

A A
x y

F
c dk

k

FF FA
T F s dk s dk T AB F s dk s s dk

a k k k

Fs sA
T F c dk s dk T A B F

a k kk


 



 
        

  

 
   

 



   

  

   
                  
      



   

   2

0

2
9 0 10 0
4 ,

x y

A
x B y

F
c dk c dk

k

s
T AB a F c dk s s dk

k


   




    





 

      
      



 
 (49) 

and 

3 2
1 21 12 2

1 23 3 3 2 3 20 0 0 0
0 0

2 2
1 22 2

3 43 20 0 0
0 0

2

ZZ
x y x y

N S S

B
x y

S S

F FF Fu F FA A B
T c dk c dk T c dk s dk

D a k k a k k

sF FF FAB A B
T c dk c dk T s

a k ak k

  
       

   

 
   

 

 

 

   

  

                   
      

   

   2

20

3
12 222 2

5 62 2 3 20 0 0 0
0

3
12

7 30 0
0

2

2

x y

B
x y x y

S S

A
x y

S

F
dk s dk

k

F sF FF FA
T s dk c dk T AB s dk c dk

ka k k k

FsFA
T c dk c dk

a k k


   



  
       

  


  

 

 





   

 

      
                  
      



   

  22 2
8 20 0

2 2
9 0 0 0

2

4 ,

A
x y

S

BA
x y

S

FsF
T A B c dk s dk

k k

ssF
T AB a c dk c dk

k k


    

 


   

 





 

 

      
      

 

 
 (50) 
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due to loads in the z-direction, 

3 2
1 21 13 3

1 23 2 2 2 20 0 0 0
0 0

2 2
13 3

3 420 0 0
0 0

2

XY
x y x y

N L S L S

x B y
L S L S

F FF Fu F FA A B
T s dk s dk T s dk c dk

D ka k k a k

F FF FAB A B
T s dk s s dk T

a ak

  
       

  

 
    



   

   

   

  

                   
      

   

   22

0

3
12 223 3
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3
13

7 820 0
0

2

2

x y

x y x B y
L S L S

A x y
L S

F
c dk c dk

k k

FF FF FA
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FFA
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  22 3
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2 3
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 (51) 

3 2
1 21 14 4

1 23 3 3 2 3 20 0 0 0
0 0

2 2
14 4

3 430 0 0
0 0

2

YY
x y x y

N L S L S

B
x y

L S L S

F FF Fu F FA A B
T c dk c dk T c dk s dk

D a k k a k k

sFF FAB A B
T c dk c dk T

a k ak

  
       

   


   



   

   

   

  

                   
      

   

  22

2 20

3
12 224 4
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83 20 0 0
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9 0 0 0

2

4

A
y x y

L S

BA
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due to loads in the y-direction, and 

3 2
1 21 15 5

1 23 3 3 2 3 20 0 0 0
0 0

2 2
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XX
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 (53) 

due to loads in the x-direction, with uZX=uXZ, uZY=uYZ, and uYX=uXY, in which 
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0

,=
Ak
aβ β

 0

,=
Ak
aγ γ

 
2 2 2

0

i ,
2

+
= − r i

ND
B a

η η
µπ  

0 ,=a A ρω
µ  

0sin , =  
 

x
as k x
Aβ β

 

0sin , =  
 

y
as k y
Aγ γ

 

0cos , =  
 

x
ac k x
Aβ β

 

0cos , =  
 

y
ac k y
Aγ γ

 

( )0sin ,=As a kβ β  
( )0 0sin ,=Bs a b kγ γ  

( )0cos ,=Ac a kβ β  
( )0 0cos ,=Bc a b kγ γ  

( ) ( )2* *
2 2 2

/
,

i
= + −

+
L S

L
r i

k k
k kβ γα

η η  
( )2 2 2 1 ,

i
= + −

+S
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k kβ γα
η η  

0 0

1 e ,
− −
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α α

 
( )
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2 2

2 e ,
− −
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0 0
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( )2 2
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( )2 2 2
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The corresponding stress fields in the physical domain are: 
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