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1 INTRODUCTION

Computational technology improvements provide a continuous advance in structural analysis,
resulting in designs of lighter and slender structures. In this sense, the geometrical and physical
non-linear analysis of structures, including any kind of flexible connection, acquire special im-
portance in engineering analysis. From this reasoning it is necessary to develop a wetposed non
linear formulation allowing the accurate evaluation of displacements and efforts of conventional
and unconventional structures.

Various researches related to geometrical non linear analysis of two and threedimensional
frames that consider plasticity can be cited. Some pioneering authors as Shi and Atluri (1988)
and Argyris et al (1982) applied co-rotational techniques to analyze three-dimensional frames
developing plasticity. In these works elastoplasticity were treated in a discrete way (plastic hin g-
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es), in which a moment-curvature relation is assumed for continuous members cross sections. One
can cite some recent works that follows the same localized plastic hinge strategy to model the
behavior of frame elements, are they: Zhou and Chan (2004), Ren et al (1999), Armero and Ehr-
lich (2006), Ehrlich and Armero (2005), White (1993), Chen et al (1996), La ndesmann and Batis-
ta (2005), Chan and Zhou (2004) and Ngo-Huu et al (2007).

Some authors as Alvarenga and Silveira (2009), Avery and Mahendran (2000) and Gruttmann
et al (2000) use distributed plasticity to model two and three dimensional frames. One advantage
of distributed plasticity, when compared to plastic hinges, is the better representation of the pla s-
tic evolution over cross sections, without the necessity of a previous knowledge of moment
curvature curves. However, both plastic hinges and the existent distributed plasticity frame mo d-
els do not consider the shear stress influence as the finite element proposed in this work.

Concerning problems in which semirigid connections are present one can cite the works of Lui
and Chen (1988), King (1994), Sim>es (1996), Chui and Chan (1997), Xu (2001), Sekulovic and
Salatic (2001), Pinheiro (2003), Kruger et al. (1995) and Chan and Chui (2000). All these works
use second order geometrical description, which limits the range of applications, i.e., displae-
ments and rotations should not be large.

In order to implement semi-rigid connections in any computational code it is necessary to use
results from works that study the experimental behavior of these connection, as, for example,
Chen and Kishi (1989) and Abdalla and Chen (1995). Some works that, using experimental re-
sults, try to establish empirical mathematical models for connections behavior are also present in
literature see, for example, the works of Richard and Abbott (1975), Frye and Morris (1975), Ang
and Morris (1984), Lui and Chen (1986), Lui and Chen (1988), Kishi and Chen (1986a), Kishi
and Chen (1986b) and Zhu et al. (1995). In our work, as an alternative to these empirical form u-
las, we propose a multilinear elastoplastic diagram that allows to follow the experimental results
for semi-rigid connections. Moreover the elastoplastic behavior ensures realistic results for cycling
loads that are not provided by the non -linear elastic empirical formulas proposed by the previous-
ly mentioned works.

In the present work an alternative position based Finite Element (FE) formulation (Bonet et
al., 2000 and Coda and Greco, 2004) is developed to comprise geometrical and physical nan
linearity of both frame members and connections. The formulation, originally developed and pre-
sented in this work, is geometrically exact and, considering the Reissner kinematic hypothesis,
includes shear stress contribution in both displacement and failure criterion. Based on Botta et al.
(2008), the developed elastoplastic algorithm is rmulti -linear with an alternative flow direction
rule, which allow the reproduction of any stress-strain curve and the determination of closed solu-
tion for the plastic multiplier. Moreover, semi -rigid elastoplastic connections develop large rot-
tions allowing realistic analysis of unload situations for which connections and/or frame elements
suffers plastic deformations.

We start the formulation description by defining the Reissner kinematic for laminate frame e |-
ements passing through the establishment of thetotal potential energy including plastic dissip a-
tion for both frame elements and semi-rigid connections. After that, the principle of stationary
energy is employed to write the equilibrium equations (regarding positions) and the elastoplastic
evolution is defined. The Newton-Raphson procedure is used to solve the nordinear system of
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equations and examples are presented to validate the proposed formulation and to show its posis
bilities.

2 FRAME ELEMENT REISSR KINEMATICS

The FE formulation presented here is called positional as it is based on positions, not displace-
ments (Bone et al., 2000 and Coda and Greco, 2004). The main advantage of this total lagrangian
strategy is the establishment of the gradient deformation without the explicit use of the chain
rule (Coda and Paccola, 2008, Coda, 2009 and Coda and Paccola, 2010). The chain rule operation
appears as a simple numerical matrix inversion, which allows the generalization of this procedure
for any class of nonlinear mechanical problem (Coda and Paccola 2010, Coda and Paccola, 2011,
Nogueira et. al., 2012, Silva and Coda, 2013 and Pascon and Coda, 2013).

In this section we present the complete development of the alternative 2D positional Reissner
kinematics to be used in the proposed finite element formulation.

2.1 Initial configuration

The positional formulation is based on two mappings, one related to the initial configuration and
another related to the current configuration. To describe the initial configuration mapping one
starts with the reference line approximation, see Figure 1, by the following expression:

fr (D) =x"(1) =", X &

in which i is the coordinate direction (1 or 2), m represents the reference line and/ the element
node (or shape function). In expression (1) the repetition of index / indicates summation (Einstein
notation). Figure 1 shows 4 nodes (cubic approximation), however any quantity of nodes or approx-
imation order may be chosen.

Xy 4

(xq4-X33)

(55, %33)

—m

Nl)
!

m m
(x12, %) ——
- 1

(11, X31)

X1

Figure 1 Reference line parameterization for initial configuration (cubic approximation)

In Figure 1 fo’”(&) is the mapping from the non-dimensional variable ! to the reference line.

A similar mapping from the non -dimensional variable to the current reference line will be given in
the next item.
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We start to build the initial configuration of the frame element writing an approximation for
the normal vector, Figu re 2, using the known initial reference line mapping, as follows:

X1

Figure 2 Nodal normal vectors

The tangent vector at any point of the reference line can be written, particularly at nodes, by:

_dt ()

-rik du )<Ir"n (2)

in which E',k is non-dimensional coordinate of node k and T, isthe i, component of the tangent

vector at node k.
As a consequence, if thecoordinates of reference line nodes are known, the tangent vectors at
nodes are also known and the normal vectors can by calculated as:

Vi =-T, /\/ Ti(k)Tf(k) (3

Vy=T,/ Ti(k)Ti(k) (4)

in which index inside brackets does not mean summation, that is:

Voo = \/(Tl(k>)2 (M)’ (%)

For the present positional formulation it is important to write the nodal angle Ok that the

normal vector V.

.« makes with the horizontal direction ( x, axis), see Figure 2, as:

! 2 =arctg(V,,, 'V ) (6)

206) " V1)
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Knowing the nodal angles we use the same shape functions to approximateGO(E',) along the

initial configuration:

6°(€)=19,(8)8/ ™

Observing Figure 3 one can find any point inside the continuum (frame) adding the normal

vector g?(ﬁ,n) to a point of the reference line, as:

x,(Em)=x"(8)+g (Em) (8)
in which 77 is the second nondimensional variable used to build the 2D frame element.

reference
line

Xy ho{;

Figure 3  Point P ata general cross section of the initial element configuration

Moreover, vector g?(ﬁ,n) generates cross sections with (in this paper) constant height ho.
The width is also considered constant (bo) along the bar length, however it can vary along tran s-

verse direction to compose general crossections. This transverse variation is opportunely intr o-

duced.
From Figure 3 it is established that the initial cross section is orthogonal to the reference line,

S0 vector g?(ﬁ,n) can be written as a function of 8°(§), as follows:

h
g/ (Emn)= ?OnCOS(%(i)e?) (9)

glo(i,n)=%nsen(¢1 ©)6) (10

in which 77 varies from ! | to +1.

Latin American Journal of Solids and Structures 11 (2014) 1163-1189



1168 H. B. Coda et al./Physical and geometrical analysis of plane frames considering elastoplastic semi-rigid connections by the positional FEM

Substituting equations (9), (10) and (1) into (8) results the complete mapping from (/,”) to
the initial configuration of a frame element, as:

h
fu&m=x,En)=0X7+ ?OHCOS(%@)O?) (19

&) = X, (5= 0, X7+ 2 isen(p, (2)60) a2

2.2 Currentconfiguration:

The necessary information to build the initial configuration comprises the reference line nodal coor-
dinates, the height and the width of the cross section. The current configuration is achieved by a
non-linear process that uses a trial position to start the solution procedure. So, we do not worry at
this moment about the solution process and writes the current configuration similarly to the initial
one, that is:

h
fll(!,")=y](!,")=#£I/1’;1+?°" cos(#,(1)$,) (13

h
SEM=y,EM=0Y+ ?Oﬂsen(q)! (©)96,) (14)

For which Y, are the current coordinates of a general point inside the frame element, Yl;” are

current nodal coordinates and 0, are the current angles of cross sections, see Figure 4.

¥,

N

Figure 4 Current configuration mapping — detaching angles

One can see from Figure 4 and from equations (13) and (14) that cross sections remain straight,
but no more orthogonal to the reference line. This is the general Reissner kinematics. Moreover we

kept hO and bO unchanged limiting our constitutive relation to accept any shear elastic modulus,

but null Poisson ratio.
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2.3 Change of configuration function (deformation) and its gradient:

Being defined mappings to initial and current configurations, we start the description of the change
of configuration of the analyzed body (frame). This is done by joining the two mappings of Figures

3 and 4 in a single representation, see Figure 5, for wtich the function f describes the change of

configuration from initial configuration ( B,) to the current one ( B). From basic knowledge of

calculus f is written as a composition of mappings fo and ]?1 as:
f=f"(f)" (15)

and the gradient of ]7 called here A (a 2x2 tensor) is written from the gradient of
fo and ]?1 as:

A=A"-(AY" (16)

WY

X1,%,
Figure 5 — Change of configuration — Positional mapping

In index notation one writes

A =A4D. (17)

ij ik jk

in which Dk. is the inverse of 4° .
kj ki

These gradients are written in an open form as:

o 9§ oan | _| 95 an (19
Y 0 f2° 0 f2° 8x2 8x2
9 o % am
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AEANIANN SN E
lz&l 1 # ):&!" L# )
S-SVARVAR ISP EAR

& ! ERE YT

(19

Elements of A; and A; are calculated directly from expressions (11), (12), (13) and (14) for

known values (integration points) of & and 1, as:

h
A== #. (XS °%en(#!(")<9é’)#k,--(")&}0

0 _%_E 0
A12 - an - 2 COS((I)! (g)el)

ox, h,
4= i =9, ()X, ++ TICOS(¢ (£)8))0, . (£)6,

0 _%_E 0
A22 - an - 2 Sen(q)/(&)e/)

y1 -

A == # LY $%%;en(#!(")&_ W (D&

A;f%%cos(#! (%)

1 hO
A= 3§ =0,.(O)Y,) +?ﬂCOS(¢!(§)G!)¢k,g(§)9k

9%, _h
A22_ an - 2 %n(q)l (&)el)

(20)

(21)

(22)

(23

(24)

(29

(26)

(27)
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The objective Green-Lagrange strain measure E is chosen to develop the geometrically exact
FEM, that is:

1 1 1 )
E=_(C-D=_(AA-T)or E =_(AA!") (29

where I is the second order identity tensor and C is the right Cauchy stretch.
In order to introduce lamina with different widths and material properties, one should simply
change expressions (11), (12), (13) and (14) by:

. i $ lam . ! .

x,(1,")=#X] +§gilam+07 zcos(#!(!) ) (29
$ lam 1

x,(1,")=# X + dlam+%"2sen(#!(!)*?) (30)

0

$ lam '

»,(! ,"):#[K’f+§gllanl+07"2cos(#[(! ) (31

hlam
»,EM =01 + (d,am + %n]sen(%(&)ez) (32

in which dlam is the distance between the reference line and the concerned lamina following the
positive sense of the vector defined by 8, see Figure 3. It is worth noting that hé‘”” is the height of

each lamina. Moreover, it is necessary to indicate the width blam and the physical properties of each

lamina at an integration point for which the constitutive model and the deformation gradient are
required.

It is important to stress that distortion effec ts are naturally considered resulting in a general
ReissnerMindlin kinematics.

3 ELASTIC PROCEDURE

In this section, the elastic Saint-Venant-Kirchhoff constitutive relation is adopted to relate the s e-
cond Piola-Kirchhoff stress § and the Green strain E for frame elements. Moreover, semirigid
linear elastic connections are introduced to make a preliminary development of the complete non
linear solution technique to be shown in the next section.
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3.1 Elastic connections:

In order to unify the notation, the degree of freedom Gﬁ will be called Y,,. Each element node has

three degrees of freedom, but when connecting elements by means of semigid connections (global
numbering) an extremity node may have more than three degrees of freedom, as the rotations of
the connected elements are not the same. Figure 6 shows three cases to illustrate the linking by
means of free connections (joints).

Figure 6 Some free connections and degrees of freedom numbering.

Following Figure 6 one observes that the master element defines the first rotation degree of free-
dom (the third of the node) and each slave element introduces an extra degree of freedom for the
connection node. Figure 7 shows the introduction of elastic connections in the structures of Figure
6.

>-

kA12

Figure 7 Some semi-rigid connections

In general, the strain energy stored in a semirigid connection with stiffness modulus k%) at a
global node 77 - that is the initial (or final) node of a frame element ¢« and the final (or initial)

node of a frame element /3 - is given by:

USR B k(nocﬁ) k(naﬁ)
L)

(02-03) =5~ -va) (33

No summation implied.
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3.2 Frame element strain energy:

As mentioned before the specific strain energy to be adopted here is the SaintVenant-Kirchhoff
one, that relates the Green strain ( E) and the second Piola-Kirchhoff stress (.$ ) in a linear way
as:

ue=§(E121+E222)+ G(E,+E2) or ue=%E:¢:E (39)

in which G=F /[2(1+v)] is the shear elastic modulus, v is the Poisson ration and E; is the

Green strain tensor. Alternatively, in dyadic notation, K is the Green strain tensor and € is the
elastic constitutive tensor. As the Green strain has been written as a function of nodal positions, see
equations (16) through (28), the strain energy stored in the bar elements is written as:

|
U(Y)=1 u.dV, (35

in which ¥/ is the initial volume of the analyzed structural bar elements (Coda and Greco, 2004
and Coda, 2009).

3.3 Total potential energy:

In order to write the total potential energy of the mechanical system [I( Y ) (conservative and

isothermal) one sums the strain energy of frame elements, the strain energy of semrigid connec-
tions, the potential energy of external loads (and moments) and the potential energy of external
distributed forces, resulting:

(Y)=[ u(¥)av,+U*—F-Y-[ G- 5"(7)ds, (36)

inwhich F is the external nodal force vector (including moments) and q is the general distributed

force vector written as function of nodal values, by:
q,=9,(8)0, (37)

In equation (36), )7""(7) is the current position at the reference line of frame elements, written as
function of nodal positions Y (see equations (13) and (14)) and dS) is the infinitesimal length of

the curved frame element.
In order to find the equilibrium configuration one applies the principium of stationary potential
energy on equation (36), using as parameters the nodal positions,
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HSR 11 #i/m I
/" =0 i il 3 0 = 38
/#E #YdV$Y+ - $Y&F$Y&49 dS¥Y=0 (39)

By the energy conjugate principle (Ogden, 1984), the first term of the first integral of equation
(38) is the second PiolaKirchhoff stress. Using the same principle, the derivative of the strain ener-

gy stored in elastic connections is the internal moment M. Therefore, in order to simplify the
understanding of the physical non-linear procedure, shown in next section, one rewrites equation
(38) as:

I
(s gy sremr-sr—Fost—[ &0 us 57 =
5H_jyos.aYdV0 SY+M"™.8Y - F.8Y jsoq 5 L-ds, 87 =0 (39

The understanding of equation (39) can be further improved defining the first integral as the i n-
ternal nodal force and the last integral as the equivalent nodal force of applied distributed forces
(Coda, 2009b), resulting:

SIT=F".§Y+ M"™.§Y — F-§Y—L-Q-8Y =0 (40)

in which L is the matrix that transforms the distributed forces into nodal equivalent ones. Due to
the arbitrariness of 8Y equation (40) results into the geometrical non-linear equilibrium equation,
as:

ﬁ“f"fﬂ\:l"”’—ﬁ—L-Q:b (42)

The Newton-Raphson procedure is used to solve the nonlinear equilibrium. This procedure is
described in the next section, including the physical non-linear behavior of materials. To close this
item we show the pair of internal moments, for an elastic semi-rigid connection, associated to a
global node 7} related to the initial (or final) point of a frame element ¢ and to the final (or in i-

tial) point of a frame element 3, that is:
M, =k (Y - Y3 ) and M=k (¥ -1 ) (42)

4 INELASTIC PROCEDURE

4.1 Equilibrium equation

The difference between the elastic and inelastic procedures is the way the potential energyof exter-
nal forces is transferred to the deformed body and dissipated during the loading process. In this
case, instead of using the elastic strain energy, both for the frame element and connections, one uses
the Helmholtz free energy potential (Lanczos, 1970).
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Following this reasoning the total potential energy for isoth ermal problems is written as:
! Fo1 R
r =g (E,#)dv0+%SR((Y3§' st),#)' FIY' §a)y(V)ds (43)

where ¥ and O are, respectively, the free energy potentials of the continuous (frame elements)
and connection. These potentials are written as function of the Green strain tensor, the relative
angle positions at connections and the thermodynamic parametersoc and o .

The variation of the total potential energy is null at the equilibrium position, i.e.:

a.{/ E)E ~ a@molas ~ _ _ aj}m
[[=| —:—=dV -0Y+——=—0Y—-F-0Y—| ¢-—=
o =], o 5y Ve ST+ 5OV~ F-07 [ 475

dsS, 8Y =0 (44)
in which parameters ¢ and & are not present due to their intrinsic relation with  E and S to be
shown in item 4.2.

Even for inelastic problems, the derivative of the free energy potential regarding Green strain is
the second PiolaKirchhoff stress tensor. For the same reason, the energy conjugate of the free eme
gy at elastoplastic connections regarding relative angles are internal moments. In this way, equation
(44) can be written exactly as equation (39). However, with a physical no n-linear meaning, i.e.,
while the passage from equation (38) to equation (39) is done by a simple differentiation of the
guadratic potential shown by equations (31) and (33), now it is necessary to define an inelastic
(plastic for instance) constitutive re lation to describe the material behavior and its evolution rule.

4.2 Elastoplastic constitutive relation

In this section, we summarize the constitutive elastoplastic relation developed by Botta et al. (2008)
and Rigobello et al. (2013). We follow a general 3D description in order to adequate the constitutive
relation to any finite element kinematic, avoiding volumetric locking. A brief description of the
main equations is given for both frame and connections.

4.2.1 Frameelement

Although the developed displacements are high, the strain level present in our applications is small.
Therefore, the Green strain approximates the linear strain and the second Piola-Kirchhoff stress can
be used in place of the Cauchy stress. Folloving this reasoning we adopt the additive strain decom-
position, as:

E=E‘+E” or E=E-E’ (49)

inwhich E° and E’ are, respectively, the elastic and plastic parts of E . Therefore, the free ene-
gy potential can be written as:
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‘P(E—Ep,oc)=%E" .-Q::E“+%ha2 (46)

where C is the elastic constitutive tensor and # is the isotropic hardening parameter.
The second PiolaKirchhoff stress and the thermodynamic force ) are written as:

!” — . € — .
S=Zz=CE =¢:(E#E’) (47)
:—a—'P:—ha (48
Jo

As mentioned after equation (44), in order to eliminate !/ from equilibrium equation it is nece s-
sary to relate E” and o« . In classical formulations this is done introducing a plastic potential
F(S,)() (Simo and Hughes, 1998) for which the plastic flow is given by:

. . OF . . 0F
EP=A— d =A—
S and « 7 (49
or in infinitesimal notation:
oF oF
dE’ =dA— d da=dl—
S an o 7 (50

where A is the plastic multiplier. In the adopted formulation (Botta et al., 2008 and Rigobello et
al., 2013) equations (48) and (50) are replaced by @ =—A and:

dE” =ndA and dy=hdA (51)

for which,

G (5 s) G(ep)-l

E E‘I’wl and \/72

in which J, =1 /2[5 : Et] is the second invariant of the deviatory stress S and € is an elastic

n="":8= (52

constitutive tensor, similar to & changing the v by v”. Moreover k” = E/[3(1—2v”)} is the

elastoplastic bulk modulus. Following this strategy, when v” = 0.5 isochoric plasticity takes place

Latin American Journal of Solids and Structures 11 (2014) 1163-1189
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and when v =v” the plastic flow occurs in the same direction of elastic flow. In this work we adopt

¢’ = ¢, defined by the second derivative of expression (34) regarding strain. This choice releases
any possible locking related to Reissner kinematic.
To complete the elastoplastic procedure one defines the yielding failure expression as:

S=N x5, (59

in which § =0, /3 is the initial size of the Von -Mises surface (f =0) with o, being the

yielding uniaxial stress.
It is important to know that the plastic multiplier should satisfy the Khun  -Tucker conditions,
related to the yielding surface (53), i.e.:

dA>0, f<0,d/ f=0 (54)

which means that if f <0 then d/ =0 and no plastic evolution occurs and if, for some situation,
one finds >0 then d!/ " 0 should be achieved in order to guaranty the equality ' =0.

In terms of incremental solution we assume constant by parts hardening ( /) and a typical i n-
terval [tn,tm:l for which n is a previous (solved) step and n+1 is the current step. Therefore,

one writes:
t (1) - Elastic trial of the total strain
' (’; ) = f - Accumulated plastic strain (assumed as trial)
t (1) — " - Internal variable trial
t%(,m) =X, - Thermodynamic internal force trial

Using these variables we calculate the stress level consideringAE” (instead of dE®) as the
main unknown, as follows

S

= (E

(n+1) - tE: - AEP) ='S,

(n+1)

-C:AE” (55)

where the trial stress 'S is known. Using this value we calculate the trial yielding expression:

t]((‘nﬂ) = \/zl o I Sy (56)
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If tf(;m) I 0 the step is elastic and the trial variables are the correct ones. However, if tf(;m) >0

then the step is elastoplastic and f(n+1) should assume zero, resulting:

AA="f, ., /(G+H) (57)

Finally, using equations (51) and (52), the searched plastic strain is found as,

P _

Sy | Sy, Grr('S)

= (58)
t P t
(G * H) 2\/ JZ(n+1) 9k \/ JZ(n+1)
Moreover, the elastoplastic constitutive tensor is written as (Rigobello et al., 2013):
| I 2n % . Q. (
'E 'E'E  g'S.C.#+2\J,Hj

4.2.2 Elastoplasticmodel for the semiigid connections

In this item the previous general elastoplastic procedure (multi-linear) is simplified to accomplish
the semirigid connection. Firstly, the notation of equations (33) and (42) is changed to:

Rl =(v1-13) (60

where R’f . is the relative rotation between frame bars « and B at a connection node 7] . From

now on, to simplify the developments, this relative rotation will be called simply R . This variable
is clearly one-dimensional and is separated into elastic and plastic parts, as:

R=R°+R” o R°=R! R (61)
The free Helmholtz energy potential, implicit in equation (43), is written as:

@SR(R—RP,&):%k(RL’)2+%h&2 (62

where k is the elastic stiffness of the connection and % its hardening. Using the work of Botta et
al. (2008) and Rigobello et al. (2013) and following the previous item one writes the internal m o-
ment and the thermodynamic force related to the internal variable ¢ as:
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a®SR
M= =kR*=k(R-R’ 63
R ( ) (63
X= —a—€ =—ho (64)
oo

In the case of semirigid connections, the elastic limiting moment My >0 is used to write the

failure expression as:
f=[My MU #O o f=|M|-M +ha<0 (65

in which isotropic hardening is adopted.
Following the steps described in the previous item, one achieves:

AR? =sign( M ). k—fh (66)

in which sign represents signal. Moreover the tangent modulus results:

PR

= 6
" OR*  k+h (87

5 NewtorRaphson procedure

Knowing the elastoplastic constitutive models, one starts the solution process rewriting the equilib-
rium equation (44) as:

I j $ SR . . | | )I}m B |
g(Y) #'E |YdV +—'—/oF/q7’:£q&—|—!YdS0—0 (68)

Remembering that the process is nonlinear, equation (68) is expanded in Taylor series from a
trial position Y ,l.e.

PPN R,
G(Y)! Q(Y,)+9| #Y=0 (69
YO

Solving the linear system of equation (69) one finds the position correction ! Y applied as
Y=Y +AY until " Y‘ /‘X’ <tol , in which tol is the tolerance in positions and X is the initial
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nodal positions of the body. As the applied forces are conservative the derivative of g regarding

positions results:

! 2n 2 2
lg_ME U 1E o VE& 1), (70)

ly @y tertey Taviy(ayry

or, using equations (59) and (67),

(79

Y oY~ "9y " ovoY

= 2
a_g_[aE_Eep_aEw_ O’E J+Kt
The derivatives of the Green strain regarding positions are straightforward and left to the rea d-
er.

6 EXAMPLES

6.1 Elastoplastic connection of two bars

This example is used to confirm the computational implementation of the elastoplastic connection,
to demonstrate the geometrically exact description of the proposed total Lagrangian frame formula-
tion and to describe the difference of non-linear elastic and elastoplastic connection models.

A clamped bar is divided into two equal elastic parts linked by an elastoplastic connection, as
seen in Figure 8.

[
A o . g E =21000kN / cm’
1
| 150cm [ 150cm ? ] = v=0.0

|2 2’!'

Figure 8 Clamped bar connected by an elastoplastic connection

The cross section and the elastic properties of the bar are also depicted in Figure 8. Two finite
elements of cubic approximation order have been used and the load is divided into 30 steps. Figure
9a shows the moment versus rotation graphic comparing the rumerical result with the analytical
curve for a monotonically crescent load. The initial elastic modulus of the connection is

k=12kN.cm with elastic limit My =3kN.cm. Figure 9b shows the connection behavior when

subjectedto a cyclic loading.

As one can see in Figure 9 the formulation models perfectly the elastoplastic connection beha-
ior; highlighting that the multi -linear strategy is capable of accurately reproduce any elastoplastic
curve. It is important to mention that if one uses a nonlinear elastic model, as the ones adopted,
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for example, by Pinheiro and Silveira (2005) and Chan and Chui (2000), the loading situation (Fi g-
ure 9a) will present the same result as the analytical solution; however their models are unable to
reproduce the real unloading or cycling situation (Figure 9b), that is, in their formulation no plastic
evolution takes place and the unloading follows the same curve as loading, which results into no
plastic residuals at a new resting position.

g ]

) .
& )]
N .
@ . © /
s ] Co T T . \
g & 1+4=-25.:=-1230/- R S W HS e
E % ° 18@2/>.=1>/A@-5 S
™ o 1
o s v
o +
T #A g
- s

! T T T T T T e

! . # $ % &
<35=5.3416>=0;
(a) Monotonic loading (b) Cycling loading

Figure 9 Connection moment x rotation graphics — a) Monotonic, b) Cyclic.

Figure 10 shows partial positions for 15 equally spaced loading levels demonstrating that the
non-linear geometric description is exact. This level of rotation is not accomplished by formulations
that adopt second order geometrical descriptions.

Figure 10 Partial positions for equally spaced loads

6.2 Four point test

A simple supported beam, subjected to a monotonically crescent controlled displacement at load
positions, see Figure 11, is analyzed. The cross section is also presented in Figure 11, for which
three lamina are employed to perform the Gauss integration procedure. Five Gauss integration
points are adopted for each lamina. Two different materials are employed for comparisons, one is
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perfect elastoplastic and the other presents softening, see Figure 12a.
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Figure 12 Curves: stress x strain and force x displacement (under the load)

Figure 12b shows the beam behavior for both materials. Results are compared to the elastic limit
load and the ultimate load for perfect elastoplasticity. Position control is sufficient to model the
post critical behavior of this example. Three cubic elements (without considering symmetry) are
used to model this case.
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Figure 13 Bending moments diagrams for various load levels

Figure 13 shows the evolution of bending moments for different load levels. One can observe that
for the perfect elastoplastic case the degradation spread over the beam; moreover the load stabilizes
after the displacement of 7cm. For the material that pres ents softening, after the imposed displae-
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ment of 2.2cm a reduction in the load level occurs for crescent imposed displacements and, cores
guently, in the bending moment. Moreover, no bending moment spreads over the beam.

6.3 Elastoplastic column

This example illustrates the application of the proposed formulation to the eccentric compression of
the column depicted in Figure 14a. The material properties are: E =2100&kN / cn?, / =0.0 and
! y = 21kN / cn? with perfect elastoplasticity. Figure 14b shows the results obtained using the

proposed formulation (geometrically exact) for the elastic and elastoplastic cases. These solutions
are compared to the elastic closed second order analytical solution (secanformulae). We adopt six
cubic finite elements to run this example, four along the column and two for the small consoles at
extremities. Position control is employed and, to impose symmetry, the rotation of the central node
is restricted.

4 s

%!

/>5,<5468;-7?/@ A-;4
- - /B=-7848;/95;,=./,6.56

© /C56D5;4/57-94,:7-948;

,-./10123

]

b

! ——— 11—
—4 PO #LSE % &L T (1)L KLt g

w9 +-456-7/.89:7-;5<5=4/0;<3

(a) Geometry (b) Load versus central displacement

Figure 14  Eccentric column and results.

This example confirms that the elastic second order theory gives a more flexible result than the
elastic geometrically exact one. The plastic flow starts at the load level of 13kN, 16% less than
the column criti cal load (15.545KN ). The elastic release starts at the load level 3.773kN and the
residual displacement, at the new unloaded situation, is about 30cm.

6.4 Frame analysis subjected to concentrated leafkastoplastic connection

In this example the frames depicted in Figure 15 are analyzed considering elastoplastic connections.
The original data of this problem are given by Pinheiro and Silveira (2005) a nd Chan and Chui
(2000). In these works the connection model does not consider plasticity, the geometry follows the
second order approximation and the kinematic does not include shear effects. To simplify compai-
sons, we adopt elastic bars with E =21000kN / cn? and v =0.0.

The adopted multi -linear connection diagrams, shown in Figure 16, are extracted from Pinheiro
and Silveira (2005). The elastic limits of the connections for the four tested cases are:
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Mj =750kN.cm, M =1625kN.cm, Myc =5000kN cm and M, =20480kN.cm with their
corresponding rotations 9? =1.67x10°rad, Bf =1.67x107 rad , 95 =5.00x10"rad and

! 5 =6.67x10 " rad . More data information can be seen in Pinheiro and Silveira (2005).

Beams are constituted of steel wide flange shaped sectior# 14x48 while columns are constitut-
ed of W12x96 section. It is interesting to note that bars behave elastically because the ultimate
limit of the strongest connection (case D) is practically equal to the elastic limit of beams, and loads
are applied at connections.

The load P (Figure 15) grows monotonically until the critical load shows up. Figures 17 and 18
show that the results presented by our formulation agree with the ones given by references. For
semirigid connections the differences in results are less the 2% for all cass. For rigid connection
the difference is about 6%, explained by the difference among the exact geometrical description and

second order approximation.
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Figure 15 Analized frames, adapted from Pinheiro and Silveira (2005)
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Figure 16 Connections bending moment x rotation diagrams
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Figure 18 Clamped structure behavior

For connections A and B the displacement levels are very small and failure occurs in an abrupt
way. In order to show up the horizontal plateau (for A and B), Figures 17 and 18, we used lateral
loads of 0.0015P and 0.003P instead of 0.001P and 0.002P . However, this procedure does not

change the critical load value.
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6.5 Frame analysis subjected to distributed loa#@$astoplastic connection

A change in the last example is introduced in order to compare the structure behavior when the
same load is applied distributed along beams or concentrated at connections. As the analysis -
cludes an unload situation it cannot be done using formulations that consider elastic frame elemerts
and non-linear elastic connections.

Vertical and horizontal loads are depicted in Figure 19a. The frame is simple supported and the
connections are of type D. The physical parameters to model the frame bars are

E=21000kN /cnv, ! =0.0 and o =21kN /cm’® (perfect elastoplasticity). Cross sections are

the same ones employed in example 6.4, i.e.J¥'14x48 for beams and W12x96 for columns.

Figure 19b presents the horizontal displacement at the top of the structure for concentrated (at
connections) and distributed (along beams) vertical loads. Figure 19b also shows the vertical ds-
placement at the center of the top beam for the case of distributed loading. The load equivalence is
givenby P=wL /2,inwhich w is the distributed load, see Figure 19a. The distributed load level

grows until the imminence of failure then the structure is unloaded.

From Figure 19b, the application of distributed load, instead of concentrated ones, leads to the
yielding of horizontal elements. As a consequence there is a loss of overall flexural stiffness resulting
into a smaller critical load when compared to the concentrated loading case. Moreover, the unload-
ing reveals the presence of residual plastic strain for the applied load level.
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Figure 19 Analyzed structure and results
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7 CONCLUSIONS

In this work an alternative FEM formulation based on positions to the analysis of geometrical and
physical non-linear behavior of structures is proposed and implemented. The geometrical description
is exact and the kinematics considers shear stress in theenergy and failure calculations. The cross
sections are laminated and enable physical nodinear calculations with the required precision. Semi-
rigid elastoplastic connections are developed and implemented. The elastoplastic behavior of ao-
nections and bars are multi-linear and enables the accurate reproduction of any stressstrain exper-
imental behavior. Moreover, closed solutions are given to the plastic multipliers improving the eff i-
ciency of the proposed technique.

Examples show the formulation capacity in modeling structures that present large displacements
and rotations, as well as, the accuracy in modeling continuous elements developing plasticity. Criti-
cal load level can also be achieved using the proposed methodology, as shown at specific examples.
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