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Abstract 
Micro-buckling of unidirectional fiber-reinforced composites is in-
vestigated in this paper by means of an explicit representation of a 
geometrically imperfect fiber within the context of kinematical and 
material non-linear behavior. Two types of fiber imperfections are 
considered: a helicoidal shape, identified as 3D imperfection; and a 
sinusoidal plane shape (2D imperfection). Both imperfection models 
are characterized by a maximum misalignment angle of the fiber 
with respect to the ideal or perfect configuration, as is usually 
considered in this field. A total of 816 cases were computed in 
terms of imperfection type (either 2D or 3D), fiber volume fraction, 
fiber arrangement (square or hexagonal array), orientation for 2D 
models, matrix yield stress, and misalignment angle. Two load 
cases, with constrained and unconstrained transverse strain, were 
considered. Assuming periodic boundary conditions, homogeniza-
tion was carried out to obtain macroscopic stresses. Numerical 
results are compared with an analytical model available in the 
literature. The results show a high imperfection-sensitivity for small 
misalignment angles; on the other hand, the type of imperfection 
and the fiber arrangement do not have a large influence on the 
results. In addition, it was found that this problem is governed by 
fiber volume fraction and matrix yield stress only for small imper-
fections, whereas for large misalignment angles, a change in fiber 
volume fraction produces small changes in micro-buckling stress. 
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1 INTRODUCTION 

In the context of fiber-reinforced composite materials, the term fiber micro-buckling refers to the 
buckling of fibers involving transverse displacements under compression in the direction of the fiber. 
By analogy with a structural behavior, micro-buckling is frequently modeled as the buckling of a 
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column which is laterally supported on an elastic matrix. This problem has attracted a number of 
researchers, starting from the pioneer work of Rosen (1965). There are two general ways in which 
such instability can occur: either due to elastic buckling of the fiber involving deformations of the 
matrix (a problem which is usually called micro-buckling), or by plastic deformations (called 
kinking), as reported by Budiansky and Fleck (1993). Comparison between both modes has been 
made by Sun and Tsai (2001) among others: both are seen to be different problems and involve 
different assumptions; however, these authors concluded that the loads (stress fields) found at buck-
ling or kinking are not very different. 

Micro-buckling may occur in mainly two modes: in a periodic (or “in-phase”) mode there are pe-
riodic deformations of the fibers and shear of the matrix but no significant transverse deformation 
occurs. Micro-buckling can also occur in a non-periodic (or “out-of-phase”) mode, in which shear is 
negligible and buckling is dominated by transverse deformations, much in the form of a beam on an 
elastic foundation. Both cases were discussed by Rosen (1965) and were reviewed in the classical 
text by Jones (1975). Regarding stability of the post-critical path, Maewal (1981) anticipated a 
stable post-buckling behavior for the in-phase problem. On the other hand, Yurgartis and Sternstein 
(1994) performed tests that showed the detrimental influence of fiber misalignment on the micro-
buckling process, a behavior that is typical of unstable postbuckling. 

Tomblin et al. (1997) investigated imperfection-sensitivity of fiber micro-buckling as a conse-
quence of fiber misalignment under compression in the direction of the fiber within the framework of 
the general theory of elastic stability. Material nonlinearity was introduced in the shear constitutive 
equations by means of a hyperbolic relation, and the adopted RVE focused on in-phase modes. This 
led to the identification of an unstable symmetric bifurcation behavior for a RVE, in which a 2/3 
power law was found to characterize the imperfection-sensitivity caused by fiber misalignment. Such 
deterministic theoretical results indicated the nature of the expected unstable behavior and were 
followed by probabilistic studies by Tomblin and Barbero (1997) and Barbero (1998). 

The importance of stacking sequence on micro-buckling was highlighted by Drapier et al. 
(1996)with reference to bending tests which were performed to identify limit states under compres-
sion. Rather than considering a UC, these authors took into account a two-dimensional model of a 
homogenized laminated composite. For the same periodic configuration of fiber misalignment (under 
an in-phase mode), a nonlinear Finite Element model of a unidirectional carbon-fiber and epoxy-
matrix composite was used (Drapier et al., 1998). The results under compression with misalignment 
showed significant loss of stress carrying capacity, exhibiting high imperfection-sensitivity. This was 
the first numerical study to quantify the effect of geometric imperfections on micro-buckling. 

Consideration of waviness in other composites, such as biaxial and triaxial textile composites, 
was recently addressed by Mallikarachchi et al. (2013), Kueh (2013, 2014), and Rasin et al. (2016). 

All models reported in the literature were based on a two-dimensional idealization of fiber wavi-
ness, where as in reality the fiber may adopt a 3D helicoidal shape rather than a 2D sinusoidal one. 
Nevertheless, the 2D idealization is often used to calculate imperfection sensitivity of fiber micro-
buckling because it is mathematically tractable. Therefore, a pressing question is whether or not a 
2D approximation is sufficiently accurate with respect to a 3D one, and thus the motivation for this 
workin which a more detailed model and refined results are discussed. 
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2 MODEL 

2.1 Framework of Analysis 

At a unit cell level, a composite is modeled in this work by means of computational micro-
mechanics (see, for example, Zohdi and Wriggers, 2008);in which there are macro and micro 
scales. This methodology has been employed to model a wide range of heterogeneous materials, 
such as particle-reinforced composites (Li and Wongsto, 2004); and fiber-reinforced composites 
(Car et al., 2002). Matrix and fiber are modeled as two separate materials at the micro scale; 
whereas a single homogenous material (which is assumed to have an equivalent behavior to the 
heterogeneous fiber-matrix material) is taken into account at the macro scale. In a periodic heter-
ogeneous material, this UC is employed to reconstruct the composite material by means of a re-
petitive pattern, as shown in Figure 1. 
 

 

Figure 1: Unit cell Example of a two-dimensional periodic material. 

 
In computational micro-mechanics, a UC is considered with given boundary conditions and un-

der a specific load configuration. With the solution of the stress field at the UC level, usually known 
as microscopic stresses, a post-process follows to evaluate the stress field in an equivalent homoge-
neous material, usually known as macroscopic stresses. This process at the micro level is carried out 
in this work using a Finite Element approximation. The model employed in this work is discussed 
in this section, including UC geometry, boundary conditions, and constitutive materials. The stabil-
ity analysis is performed by means of the general purpose Finite Element code ABAQUS (2009). 
 
2.2 Unit Cell Geometry 

A UC shown in Figure 2a was used in this work to represent the microstructure in the periodic 
composite together with the geometric deviations with respect to an ideal or perfect configuration. 
The UC is constructed by means of the scan of a transverse section (see Figure 2b) by introducing 
displacements without rotation along the curve that defines the fiber along the imperfect location 
(imperfection lines, shown in Figure 3).Finite Element models were investigated by assuming hex-
agonal (designated as Hx) and square (Sq) fiber arrangements, which are shown in Figure 2b. This 
allows representation of a three-dimensional periodic microstructure, leading to a geometry that can 
be easily meshed. 
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(a)  (b) 

Figure 2: (a): Unit cell. (b): Transverse sections (fiber arrangements). 

 
For a given fiber radius Rf, the dimensions of the UC were calculated based on fiber volume 

fraction Vf and the ratio between fiber length Lf and diameter Df, i.e. = Lf/Df. Since a first order 
computational micromechanics technique is employed in this work, absolute UC dimension values, 
such as fiber radius Rf, would not affect results. Higher order homogenization theories would be 
necessary to take into account such absolute UC dimensions, as explained by van Dijk (2016) 
among others. The angle  is equal to 60º in Hx, and 90º in the Sq configuration (see Figure 2). 
The value of b in Figure 2 is given by 
 

4 sin( )
b Rf

Vf

p
q

=  (1)

 

2.3 Fiber Imperfections 

Two types of imperfections with respect to a straight fiber were considered in this work: (i) Three-
dimensional (3D) deviations, with the fiber having a helicoidal shape; (ii) Two-dimensional (2D) 
deviations following a sinusoidal shape. In their initial positions, the fibers are assumed to be in 
phase. As shown in Figure 3, the 3D imperfection is contained in a cylinder whereas the 2D imper-
fection lies in a plane. 

With reference to Figure 3, perfect alignment would be given by a fiber placed in the direction 
of axis x1; a 2D imperfection has been illustrated in the plane containing axis x1 and has a given 
angle  measured with respect to the plane x1-x2; in other words,  defines the orientation of the 
plane where the 2D imperfection develops. Following the usual definitions in the micro-buckling 
field, both imperfections have a maximum angle of misalignment () of the fiber with respect to 
axis x1. 

The difference between angles  and  should be emphasized. The orientation of the plane 
which contains the imperfect fiber in the 2D model is ; whereas  is the maximum angle of the 
fiber with respect to axis x1. Thus, angle  has relevance in a 2D model, but  is a relevant parame-
ter in both 2D and 3D models. 

The Cartesian equations of the 2D imperfection line are given by 
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The equations for a 3D imperfection line are 
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where rc is the radius of the cylinder which contains the helicoid. This value may be obtained from 
the expression 
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(4) 

 

(a) 

(b) 

Figure 3: Definition of imperfection. (a): 2D model; (b) 3D model. 

 
2.4 Periodic Boundary Conditions 

Periodic boundary conditions (PBC) were used to represent a periodic microstructure. PBC are 
described at large in the literature on computational micro-mechanics, such as Li and Wongsto 
(2004), Sharma et al. (2014),among others; they were also used by Kueh and Pellegrino (2007) and 
by Mallikarachchi et al. (2011) by means of 1D beam elements for 2D structures. 
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To model the micro-structure in a periodic material it is possible to employ the concept of peri-
odicity vectors (Oller et al., 2005; Car et al., 2002). Following the nomenclature adopted in Zahr-
Viñuela and Pérez-Castellanos (2011), two points in a microstructure are identified as “correspond-
ing points” if the position of one of them may be obtained as the position of the other one plus a 
linear combination of the periodicity vectors using integer coefficients. To illustrate the concept, 

periodicity vectors 1P  and 2P  are shown in Figure 4. The points in pairs:(C0; C1), (C0; C2) and (C0; 

C3) are corresponding points. 
 

 

Figure 4: Corresponding points. 

 
Three vectors of periodicity, shown in Figure 5, were used in this work. 

 

2 Rfb=P1 i ; 2b=P2 j ; 2 cos( 2 sin() )b bq q= +P3 j k  (5)
 

where , ,i j k  are unit vectors in the coordinate directions x1, x2, and x3. 

 

 

Figure 5: Periodicity vectors used in this work. 

 
The boundary conditions are relations involving the forces and displacements at the boundary 

of the cell (Li and Wongsto, 2004). If the traction at a boundary point and its corresponding point 

are +t and -t  respectively, then the following condition should be satisfied at all boundary pairs of 
points 
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+ -= -t t (6)
 

Assuming that the displacements at a boundary point are written as +u  and at its correspond-

ing point as -u , then the condition 
 

0+ -- =u u Pε  (7)
 

applies at all boundary points, where 0 is the macroscopic strain tensor; and P is a periodicity 
vector (or a linear combination of them) which satisfies the condition 
 

+ -= -P X X (8)
 

where +X  and -X  are the coordinates of each node of the considered couple, for which the dis-

placements are +u  and -u . 
For a UC modeled by Finite Elements, it is only necessary to specify the conditions (7) for the 

displacements at the boundary. The conditions (6) for the boundary tractions are automatically 
satisfied because a displacement-based variational Finite Element formulation is employed, as ex-
plained by Li and Wongsto (2004). 

There are several ways to implement the conditions (7) in practice, including Lagrange multi-
pliers or a penalty formulation. In this work, periodicity was implemented by means of multipoint 
linear constraints (using the *EQUATION command in ABAQUS). Basically, following(7), the 
scalar equation 
 

1 2 3 0i i i x i y i zu u U P U P U P+ -- - - - =  (9)
 

(for i=1, 2, 3) holds, where Ui
 j are the displacement components in direction i of the additional 

node j that has been included as a control node. Three control nodes have been selected in this 
work, and a boundary condition is assigned to them in terms of the components of the macroscopic 
strain tensor which is to be imposed on the UC: 
 

0j
i ijU e=  (10)

 

To avoid problems with units, equations (9) and (10) are assumed to include a unit coefficient 
to homogenize units. Equations (7) are thus implemented by use of equation (9) and boundary con-
ditions (10). 

Some further details need to be considered. When implemented using multipoint linear con-
straints in a program like ABAQUS, the first degree-of-freedom involved in equation (9) is elimi-
nated as an unknown from the problem and cannot be further employed in new restrictions or in 
other boundary conditions. For this reason, the equations that are included in the programming 
should be selected to achieve an effective enforcement of all necessary relationship at the UC 
boundary. Following this procedure it is possible to select the conditions to be employed and avoid 
problems with missing degrees-of-freedom. 

Boundary faces, edge lines, and vertices, are identified in Figure 6. 
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(a) (b) (c) 

Figure 6: Identification of (a) faces, (b) edges, and (c) vertices. 

 
All equations to be implemented have the form of equation (9), but for each pair of nodes itis 

necessary to specify the associated vector P. As an example, consider a couple of faces, such as R 
and L in Figure 6, and corresponding nodes on each face. Equation (9) establishes the condition for 
this pair of nodes, and for any other pair of corresponding nodes on faces R and L with vector of 
periodicity P1 : 
 

1 2 31 1 1 0R L
i i i x i y i zu u U P U P U P- - - - =  (11)

 

A summary of the P vectors to be used with each pair of nodes on faces, edges, and vertices is 
given in Tables 1 to 3 for the first and second degree of freedom (DOF) in equation (11). This pro-
cedure allows implementation of any macroscopic strain. 
 
1st DOF 2nd DOF P 1st DOF 2nd DOF P 1st DOF 2nd DOF P

R L P1 V2 V1 P1 E3 E1 P2
S I P2 V5 V1 P2 E11 E1 P3
F P P3 V3 V1 P3 E12 E1 P2+P3

   V4 V1 P1 + P3  E8 E5 P1
   V7 V1 P2  + P3  E7 E5 P2
   V6 V1 P1 + P2  E10 E5 P1  +P2

   V8 V1 P1  +P2  + P3 E4 E2 P1

      E6 E2 P3
      E9 E2 P1+P3  

Table 1, 2 and 3: P vectors of different pairs of faces, edges and vertices. 

 
2.5 Load Cases 

Under compression in direction x1, a single lamina can freely deform in the transverse directions. 
However, if it is used as part of a laminate, then it cannot deform transversely in the same way 
because other laminae produce an effect of transverse constraint. The question arises regarding how 
this may influence the micro-buckling of a fiber which is part of a laminate? To distinguish between 
possible situations, two loading cases are considered in this work: one with constrained transverse 
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strain and another one without such constraint. Notice that the first case is not fully representative 
of the strain state of a lamina in a laminate, but it may be seen as a limiting condition. 

Both loading cases are deformations without macroscopic distortions, i.e. the macroscopic strain 
tensor has zero off-diagonal components and a compressive component 11. In one case (which is 
identified as case A) the transverse strain components are not specified, so that the UC can expand 
in the transverse directions while being under 11 compression. In the other load case (identified as 
case B) the transverse strain components are zero, with the consequence that no lateral expansion 
occurs under axial compression. 

Implementation of load cases A and B described above is done through boundary conditions, eq. 
(10), applied on displacements at control nodes since they are directly related to macro strain com-
ponents. In load case B, all displacements are specified; this means that all macroscopic strain com-

ponents 0
ije  are imposed. For load case A, boundary conditions related to 0

11e  diagonal component 

and zero off-diagonal components are imposed; whereas the displacements of control nodes related 

to transverse strains 0
22e and 0

33e  are kept as degree of freedoms in the model, and they can be ob-

tained from the numerical solution of the UC. 
 
2.6 Fiber and Matrix Materials 

In order to investigate imperfection sensitivity, this model includes two sources of non-linearity: The 
epoxy matrix is modeled as a non-linear material, whereas the strain-displacement relations are 
geometrically non-linear. The nonlinear equilibrium paths are followed using the Riks algorithm in 
ABAQUS (2009). 

To illustrate the micro-buckling behavior, a composite made of glass fibers and epoxy matrix 
was considered having Rf = 3.5 x10-6 m. Both constituent materials were assumed to be isotropic: 
the fiber was modeled as linear elastic with modulus Ef = 84 GPa, and Poisson’s ratio f = 0.22, 
whereas the matrix was modeled as an elasto-perfectly plastic material with Em= 4 GPa and m = 
0.38. Two yield stresses for the matrix material were considered with values given by y = 48.26 
MPa and y =100 MPa. An associative flow rule was used together with von Mises yield surface. 
 
2.7 Post-Processing and Finite Element Mesh 

The macroscopic Cauchy stress tensor, k
ij, is computed, as in many other works, as 

 

1

1 N
k

ij ij k
k

V
V

s s
=

= å  (12)

 

where k
ij is the ij component of the microscopic Cauchy stress tensor at Gauss point k in the Finite 

Element mesh that covers the UC; Vk is the integration weight (in terms of volume associated with 
the Gauss point k) for a mesh with N Gauss points and, V is the current volume of the UC. 

Approximately 30,000 elements (C3D8 in the ABAQUS library, a solid 8-node linear brick) 
were used in the Finite Element mesh. This element does not have volumetric locking when used in 
plasticity problems. Meshes with 200,000 elements were also used in some configurations to test 
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convergence. The maximum stress changed less than 0.7% respect to values reported in the follow-
ing Section. 
 
3 RESULTS AND DISCUSSION 

Under load condition A, 384 cases were solved for this work, where as 432 cases were computed for 
load condition B. The cases cover changes in the variables of interest, which include the type of 
imperfection (either 2D or 3D); orientation angle  of the 2D imperfection; configuration of fiber 
arrangement; matrix yield stress y; fiber volume fraction Vf, and misalignment angle . Cases with 
Vf = 10%, 30%, 50% and 70% were investigated, together with values of angle  between 0.01º and 
20º and  = Lf/Df between 12.5 and 200 to have a wide perspective of the phenomenon covering 
results reported in experimental tests; as a reference value, Jochum and Grandidier (2004) measured 
values of between 20 and 50 with misalignment angles up to 10º. 

To facilitate the presentation of results, each case was identified with a group number ranging 
from 1 to 24, a letter to identify the load case, the misalignment angle, and the yield stress of the 
matrix. Group numbers are given for a Vf value, a type of imperfection, a specific fiber arrange-
ment, and an angle  (in cases of 2D imperfection). The codification is shown on Tables 4 to 7. For 
example, Group 4 includes cases with Vf = 70%, Sq arrangement, 2D imperfection, and = 0. 
 
3.1 Equilibrum Paths 

Equilibrium paths are shown in Figure 7 for selected cases of Groups 4A and 4B (Vf = 70%, 2D 
imperfection, square fiber array,  = 0) and y = 48.26 MPa, whereas values of misalignment angles 
are given in each case. Notice that because only compressive behavior is of interest for micro-
buckling, negative values of strain and stress are reported. For small deviation angles, the equilibri-
um path is fairly linear and reaches a maximum value at a bifurcation load; then the path drops in 
the post-buckling path. For large deviation angles, the equilibrium path exhibits nonlinearity until a 
maximum is reached; this is a limit point in the nomenclature of the theory of elastic stability (see, 
for example, Godoy, 2000); then, the path drops in an unstable behavior. 
 

(a) (b) 

Figure 7: Equilibrium paths for selected cases of Group 4 as a function of misalignment angle . 

Results for y = 48.26 MPa. (a): Unconstrained load case A; (b): Constrained load case B. 
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Nº 
V

f 
[%
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Im
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A
rr

ay
 

de
lt

a Misalignement angle 

0.01º 0.1º 1º 2.5º 5º 10º 15º 20º 

1 

70 

3D 
Hx - 3.706 2.591 1.023 0.558 0.318 0.177 0.130 0.106 

2 Sq - 3.960 2.674 1.011 0.552 0.321 - - - 

3 

2D 

Hx 0º 3.752 2.639 1.158 0.592 0.372 - - - 

4 Sq 0º 3.987 2.677 1.017 0.561 0.335 - - - 

5 Hx 30º 3.624 2.636 1.087 0.575 0.336 - - - 

6 Sq 45º 3.965 2.794 1.179 0.627 0.358 - - - 

7 

50 

3D 
Hx - 2.303 1.702 0.813 0.479 0.286 0.162 0.116 0.093 

8 Sq - 2.329 1.681 0.809 0.479 0.287 0.162 0.117 0.094 

9 

2D 

Hx 0º 2.346 1.744 0.867 0.519 0.318 0.207 - - 

10 Sq 0º 2.337 1.724 0.756 0.487 0.304 0.195 - - 

11 Hx 30º 2.333 1.722 0.824 0.495 0.306 0.201 - - 

12 Sq 45º 2.379 1.787 0.878 0.516 0.312 0.241 - - 

13 

30 

3D 
Hx - 1.480 1.146 0.626 0.398 0.256 0.152 0.110 0.088 

14 Sq - 1.505 1.157 0.624 0.397 0.255 0.151 0.110 0.088 

15 

2D 

Hx 0º 1.525 1.175 0.656 0.426 0.284 0.184 0.149 0.128 

16 Sq 0º 1.515 1.150 0.643 0.417 0.280 0.179 0.142 0.121 

17 Hx 30º 1.521 1.161 0.651 0.419 0.281 0.181 0.147 0.128 

18 Sq 45º 1.529 1.177 0.660 0.425 0.283 0.184 0.150 0.130 

19 

10 

3D 
Hx - 0.851 0.674 0.419 0.296 0.206 0.132 0.099 0.081 

20 Sq - 0.845 0.672 0.418 0.296 0.206 0.132 0.099 0.081 

21 

2D 

Hx 0º 0.857 0.685 0.430 0.311 0.229 0.157 0.125 0.105 

22 Sq 0º 0.852 0.681 0.430 0.311 0.228 0.157 0.123 0.104 

23 Hx 30º 0.855 0.689 0.428 0.312 0.228 0.157 0.124 0.104 

24 Sq 45º 0.862 0.681 0.429 0.313 0.228 0.157 0.125 0.105 

Table 4: Limit stresses in [GPa] for unconstrained load case A and y = 48.26 MPa. 

 
A comparison of load cases A and B shows that the slope is slightly higher in cases B, because 

the transverse strain has been constrained. 
Equilibrium paths for various misalignment angles , for Groups 4A and 4B and y = 48.26 

MPa, are plotted in Figure 8. The scale has been modified with respect to Figure 7 to highlight 
details of the curves. 

For configurations with moderate imperfections  there are local maximum points in the equi-
librium paths. But for large values of  the maximum vanishes, with the consequence that the 
stress increases with a compressive strain without crossing a singularity in the path; micro-buckling 
does not occur in such cases and the problem is governed by large displacements. This behavior of 
having a limiting angle  for which the maximum ceases to exist, occurs in most groups studied and 
is typical of shell buckling problems (Godoy, 2000). 
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A
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de
lt

a Misalignement angle 

0.01º 0.1º 1º 2.5º 5º 10º 15º 20º 

1 

70 

3D 
Hx - 4.839 3.624 1.787 1.019 0.607 0.340 0.249 0.202 

2 Sq - 5.162 3.758 1.647 1.008 0.607 0.348 0.259 0.216 

3 

2D 

Hx 0º 4.889 3.652 1.875 1.134 0.686 - - - 

4 Sq 0º 5.157 3.701 1.722 1.008 0.617 - - - 

5 Hx 30º 4.880 3.641 1.824 1.068 0.631 - - - 

6 Sq 45º 5.293 3.973 1.932 1.098 0.676 0.432 - - 

7 

50 

3D 
Hx - 2.964 2.364 1.324 0.853 0.536 0.312 0.229 0.185 

8 Sq - 2.986 2.292 1.294 0.847 0.537 0.315 0.231 0.188 

9 

2D 

Hx 0º 2.982 2.300 1.346 0.872 0.590 0.372 0.308 - 

10 Sq 0º 2.984 2.368 1.325 0.871 0.559 0.356 0.292 - 

11 Hx 30º 2.978 2.392 1.369 0.887 0.563 0.365 - - 

12 Sq 45º 3.028 2.435 1.402 0.873 0.580 0.373 0.312 - 

13 

30 

3D 
Hx - 1.928 1.576 0.978 0.681 0.466 0.289 0.215 0.175 

14 Sq - 1.925 1.577 0.977 0.680 0.467 0.290 0.216 0.176 

15 

2D 

Hx 0º 1.943 1.594 1.015 0.717 0.504 0.333 0.272 0.236 

16 Sq 0º 1.931 1.570 0.997 0.705 0.496 0.327 0.263 0.227 

17 Hx 30º 1.943 1.585 1.006 0.710 0.498 0.330 0.271 0.237 

18 Sq 45º 1.929 1.601 1.001 0.719 0.502 0.333 0.275 0.24 

19 

10 

3D 
Hx - 1.134 0.936 0.635 0.480 0.358 0.246 0.192 0.160 

20 Sq - 1.132 0.930 0.637 0.480 0.358 0.246 0.192 0.160 

21 

2D 

Hx 0º 1.138 0.937 0.654 0.508 0.391 0.286 0.234 0.201 

22 Sq 0º 1.137 0.944 0.659 0.507 0.391 0.286 0.233 0.199 

23 Hx 30º 1.139 0.944 0.654 0.508 0.391 0.287 0.234 0.202 

24 Sq 45º 1.138 0.944 0.660 0.508 0.392 0.287 0.235 0.203 

Table 5: Limit stresses in [GPa] for unconstrained load case A and y = 100 MPa. 

 
Values of the maximum loads (a limit point in the equilibrium path) in each case are shown in 

Tables 4 to 7. In groups for which a value is missing means that a maximum in the path was not 
found, i.e. micro-buckling did not occur. For all cases in Tables 4 to 7 a value of  = 50 was as-
sumed. Such value was selected based on results of experimental tests reported in the literature. 
Moreover, to illustrate the influence of , cases with  between 12.5 and 200 were solved for Groups 
1, 7, 13, and 19 (3D imperfection and Hx fiber array), load case B, = 0.01º and y = 48.26 MPa. 
Results of maximum stresses are shown in Figure 9 and they show a small change in limit stress for 
high  values. 

Equilibrium paths for groups 19A and 19B (Vf = 10%, 3D imperfection, hexagonal fiber ar-
rangement Hx, and y = 48.26 MPa) are plotted in Figure 10, for cases with  = 0.01º, 2.5º, and 
20º. 
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a Misalignement angle  

0.01º 0.1º 1º 2.5º 5º 7.5º 10º 15º 20º 

1 

70 

3D 
Hx - 4.958 3.388 1.303 0.637 0.381 - - - - 

2 Sq - 5.156 3.363 1.145 0.633 - - - - - 
3 

2D 

Hx 0º 5.001 3.451 1.350 0.741 0.437 - - - - 
4 Sq 0º 5.203 3.387 1.257 0.675 - - - - - 
5 Hx 30º 5.021 3.419 1.302 0.679 - - - - - 
6 Sq 45º 4.559 3.242 1.375 0.730 - - - - - 
7 

50 

3D 
Hx - 3.138 2.301 1.023 0.592 0.351 - - - - 

8 Sq - 3.145 2.267 0.992 0.575 0.353 - - - - 
9 

2D 

Hx 0º 3.171 2.345 1.088 0.630 0.387 - - - - 
10 Sq 0º 3.143 2.281 1.040 0.602 0.368 - - - - 
11 Hx 30º 3.155 2.322 1.065 0.608 0.367 - - - - 
12 Sq 45º 3.224 2.346 1.102 0.625 0.375 - - - - 
13 

30 

3D 
Hx - 2.163 1.590 0.834 0.526 0.338 - - - - 

14 Sq - 2.159 1.590 0.834 0.526 0.339 - - - - 
15 

2D 

Hx 0º 2.178 1.662 0.879 0.553 0.357 - - - - 
16 Sq 0º 2.163 1.628 0.850 0.536 0.354 - - - - 
17 Hx 30º 2.171 1.659 0.858 0.536 0.351 - - - - 
18 Sq 45º 2.174 1.655 0.870 0.549 0.356 - - - - 
19 

10 

3D 
Hx - 1.656 1.288 0.771 0.538 0.380 - - - - 

20 Sq - 1.658 1.288 0.774 0.539 0.381 - - - - 
21 

2D 

Hx 0º 1.666 1.307 0.790 0.538 0.386 - - - - 
22 Sq 0º 1.659 1.296 0.782 0.536 0.386 0.317 - - - 
23 Hx 30º 1.665 1.305 0.787 0.541 0.385 0.317 - -   
24 Sq 45º 1.668 1.310 0.788 0.541 0.386 0.318 - - - 

Table 6: Limit stresses in [GPa] for constrained load case B and y = 48.26 MPa. 

 

  

(a) (b) 

Figure 8: Details of equilibrium paths for selected cases of Group 4 as a function of misalignment angle.  

Results for y = 48.26 MPa. (a): Unconstrained load case A; (b): Constrained load case B. 
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In the almost-perfect case,  = 0.01º, a line is shown with the initial slope. There is a change in 
slope during the loading process of the UC which is caused by plasticity in the matrix. This change 
in slope occurs at a strain 11 = -0.012, and is more evident in load case A than in case B. Similar 
behavior was found for the other cases with Vf = 10%, but the slope change caused by plasticity is 
not clearly observed in higher volume fractions because the matrix has less incidence in the stiffness 
of the UC. 
 
 

 

Figure 9: Limit stresses as a function of ratio  = Lf/Df. Results for constrained load case B,  

y = 48.26 MPa, 3D imperfection, Hx array (Groups 1, 7, 13, and 19). 

 
 

(a) (b) 

Figure 10: Equilibrium paths for selected cases from Group 11 for different misalignment angles .  

Results for y = 48.26 MPa. (a): Unconstrained load case A; (b): Constrained load case B. 
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a Misalignement angle  

0.01º 0.1º 1º 2.5º 5º 7.5º 10º 15º 20º 

1 

70 

3D 
Hx - 6.337 4.719 2.142 1.227 0.723 - - - - 

2 Sq - 6.019 4.390 2.065 1.170 0.726 - - - - 
3 

2D 

Hx 0º 6.392 4.805 2.316 1.351 0.806 - - - - 
4 Sq 0º 6.468 4.674 2.153 1.234 0.752 - - - - 
5 Hx 30º 6.378 4.765 2.240 1.253 0.738 - - - - 
6 Sq 45º 6.220 4.629 2.331 1.341 0.798 - - - - 
7 

50 

3D 
Hx - 3.874 3.014 1.682 1.041 0.652 - - - - 

8 Sq - 3.911 3.079 1.633 1.035 0.654 - - - - 
9 

2D 

Hx 0º 3.933 3.111 1.747 1.110 0.689 - - - - 
10 Sq 0º 3.937 3.042 1.687 1.041 0.669 - - - - 
11 Hx 30º 3.932 3.125 1.716 1.065 0.671 - - - - 
12 Sq 45º 3.995 3.188 1.795 1.111 0.690 - - - - 
13 

30 

3D 
Hx - 2.667 2.168 1.31 0.901 0.615 0.482 - - - 

14 Sq - 2.666 2.159 1.32 0.906 0.612 0.482 - - - 
15 

2D 

Hx 0º 2.643 2.206 1.34 0.937 0.637 - - - - 
16 Sq 0º 2.671 2.187 1.33 0.905 0.624 0.497 - - - 
17 Hx 30º 2.682 2.159 1.29 0.911 0.624 0.497 - - - 
18 Sq 45º 2.693 2.194 1.36 0.933 0.629 - - - - 
19 

10 

3D 
Hx - 2.103 1.621 1.144 0.852 0.641 - - - - 

20 Sq - 2.108 1.622 1.145 0.853 0.641 - - - - 
21 

2D 

Hx 0º 2.113 1.547 1.137 0.857 0.651 0.550 - - - 
22 Sq 0º 2.113 1.547 1.159 0.857 0.649 0.549 - - - 
23 Hx 30º 2.118 1.587 1.137 0.856 0.650 0.549 - - - 
24 Sq 45º 2.114 1.588 1.157 0.857 0.650 0.549 - - - 

Table 7: Limit stresses in [GPa] for constrained load case B and y = 100 MPa. 

 
3.2 Parametric Studies 

Parametric studies have been performed by taking into account the limit stresses in Tables 4 to 7, 
and results are presented (as in many stability problems) in terms of a knock-down factor , i.e. the 
critical stress for a given  divided by the stress for zero. Because of space restrictions, not all 
values from Tables 4 to 7 can be plotted. 

The knock-down factor  has been plotted as a function of misalignment  for unconstrained 
load cases A, and constrained cases B, in Figure 11, for 3D imperfections with Sq and Hx fiber ar-
rangement, and several values of misalignment . The results indicate that the fiber arrangement 
does not have an incidence on the results. A similar graph for 2D imperfections could also be plot-
ted from values of Tables 4 to 7, and similar results are found. 

The incidence of Vf for various misalignment angles is shown in Figure 12, for a given type of im-
perfection and fiber arrangement (3D and Hx array), and yield stress y = 48.26 MPa. The results 
show high imperfection-sensitivity to small amplitude imperfections: as an example, for  = 1º, the 
knock-down factor falls to less than 50% in all cases. This sensitivity increases with increasing Vf. 
Similar behavior was obtained for 2D imperfections and for Sq configurations and y = 100 MPa. 
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The influence of the type of imperfection (2D or 3D) has been investigated for groups 1, 3, 7, 9, 
13, 15, 19, and 21, considering an hexagonal fiber configuration (Hx) and y = 100 MPa. The 
knock-down factors are shown in Figure 13, and it is clear that the curves with different types of 
imperfection become almost identical. The conclusion is that the type of assumed imperfection (ei-
ther 2D or 3D) does not have a significant influence on the knock-down factor. 

The influence of angle  (the orientation of the 2D imperfection plane), for Groups 3, 5, 9, 11, 
15, 17, 21, and 23, for both load configurations A and B and for the same fiber arrangement (Hx) 
and y = 100 MPa has been plotted in Figure 14. The results indicate that  does not have an in-
fluence on the limit stress. The same behavior was found for square fiber arrangement (Sq) and y = 

48.26 MPa. 
 

(a) (b) 

Figure 11: Influence of fiber arrangement, considering square (Sq) and hexagonal (Hx).  

For 3D imperfections knock-down factors  are given for Groups 1, 2, 7, 8, 13, 14, 19, and  

20, with y = 48.26 MPa. (a): Unconstrained load cases A; (b): Constrained load cases B. 

 

(a) (b) 

Figure 12: Micro-buckling sensitivity. Knock-down factor for Groups 1, 7, 13 and 19 (3D imperfection,  

Hx array, and y = 48.26 MPa). (a): Unconstrained load cases A; (b): Constrained load cases B. 
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(a) (b) 

Figure 13: Influence of imperfection type: two-dimensional (2D) and three-dimensional (3D).  

Knock-down factors for Groups 1, 3, 7, 9, 13, 15, 19 and 21 (Hx array and y = 100 MPa).  

(a): Unconstrained load cases A; (b): Constrained load cases B. 

 

 

(a) (b) 

Figure 14: Influence of angle  (orientation of 2D imperfection plane). Knock-down factors for cases  

3, 5, 9, 11, 15, 17, 21 and 23 (2D imperfection, y = 100 MPa, and Hx array) for  = 0º and 30º,  

as shown in legend. (a): Unconstrained load cases A; (b): Constrained load cases B. 
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was found in all cases considered in this work. The influence of matrix yield stress on knock-down 
factor is shown in Figure 16 for cases 4, 16, and 21, with 2D imperfection, Sq fiber arrangement, 
and  = 0. The results show an increase in knock-down factor but the problem is still highly sensi-
tive to imperfection. 
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3.3 Comparison with a Simplified Model 

Comparison of the present Finite Element results with a simplified model presented by Barbero 
(1998) is performed in this section. The analytical equation (eq. 4.93 in Barbero, 2010) is given by 
 

2 2 2 12
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(a) (b) 

Figure 15: Influence of matrix strength on limit stress for cases 4 and 22 (2D imperfection and Sq array).  

(a): Unconstrained load cases A; (b): Constrained load cases B. 

 

(a) (b) 

Figure 16: Influence of matrix strength on knock-down factors for cases 4, 16, and 22 (2D imperfection  

and Sq array). (a): Unconstrained load cases A; (b): Constrained load cases B. 
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This analytical equation approximates the limit stress  of a unidirectional composite under 
compressive load, without taking into account transverse effects. The composite properties required 
in this model are the in-plane shear strength F6 and the in-plane shear modulus G12. Such results 
are compared in Figure 17 for groups 1 and 19 (3D configuration, Hx array, and y = 48.26 MPa). 
For this numerical example and based on the assumed von Mises yield criterion for the matrix pa-
rameters, a value F6 = 27.86 MPa was adopted in concordance with y = 48.26 MPa. The elastic 
modulus G12 was obtained using the Periodic Microstructure Model (PMM), equation (4.39) in 
Barbero (2010). 

The results of the present Finite Element and the approximate analytical model are in very 
good agreement. Constrained cases A yield lower limit stresses. Similar trends are obtained for all 
cases considered. 

As a reference, the limit stress for both load cases considered has been normalized in Table 8 
with respect to bifurcation loads obtained from the model due to Rosen (1965). 
 

 

(a) (b) 

Figure 17: Comparison with analytical results. Sensitivity curves for Groups 11 and 1  

(3D imperfection, y = 48.26 MPa, and Hx array) and analytical equation  

(Barbero, 2010). (a): Unconstrained load cases A; (b): Constrained load cases B. 

 
Only results of cases from Group 1, 7, 13, and 19 (3D imperfection and Hx array) for  = 0.01º 

are considered, and it is found that unconstrained cases A have lower values than constrained cases 
B. Such discrepancies between simplified model due to Rosen and the present one could be caused 
by different assumptions in stress states for the fiber and matrix, consideration of fiber misalign-
ment and matrix plasticity, among other reasons. Similar trends were found with Sq array or 2D 
imperfection. 

Finally, Figure 17 and 15 show that there is a loss in fiber reinforcing contribution for large 
misalignment angles. Also, for such misalignment angles, a change in the matrix yield stress pro-
duces limit stresses that are comparable and even higher than those generated by changing Vf. As 
an example, case 22A in Table 4 (10% of fiber volume fraction, 2D imperfection, y = 48.26 MPa, 
and Sq array) with  = 5º has a limit stress of 0.228 GPa. If Vf is increased up to 70% (case 4A 
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from Table 4 is recovered), then a value of 0.335 GPa is obtained. If case 22A with  = 5º in Table 
4 is considered again and the matrix yield stress is changed from 48.26 MPa to 100 MPa, recovering 
case 22A from Table 5, a value of 0.391 GPa is obtained. Similar results were found for all cases 
considered here. Finally, the results seem to show that, for large misalignment angles, the matrix 
yield strength have a more important role than fiber volume fraction on limit stress. 
 

 y = 48.26 MPa  y= 100 MPa 

Vf [%] Case A Case B  Case A Case B 

10 0.529 1.029  0.704 1.306 

30 0.715 1.045  0.931 1.289 

50 0.794 1.082  1.022 1.336 

70 0.767 1.027  1.002 1.312 

Table 8: Limit stresses normalized with respect to bifurcation loads due to Rosen (1965). Results for  = 0.01º. 

 
4 CONCLUSIONS 

The micro-buckling of unidirectional fiber-reinforced composites has been investigated in this re-
search by means of a computational micromechanics simulation in which misalignment imperfec-
tions were geometrically represented. Results were obtained by means of a Finite Element discreti-
zation of the periodic Unit Cell domain, using the general purpose package ABAQUS, and assuming 
non-linear kinematic and material behavior. 

Based on the results, it is possible to conclude that there is a high imperfection-sensitivity in 
the critical stress of fiber micro-buckling. This is in agreement with earlier results by Drapier et al. 
(1998) for a unidirectional carbon fiber/epoxy resin material for a fixed imperfection wavelength. A 
sharp drop is seen to occur for very small angles less than α = 1º, which is consistent with the 2/3 
power law identified by Tomblin et al. (1997). For higher values of imperfection amplitude, the 
asymptotic model of Tomblin et al. (1997) is only an approximation, and more refined values are 
shown in this work, for example in Tables 4 to 7. 

The type of imperfection (either 2D or 3D), the fiber configuration (hexagonal or square), and 
angle of the plane of 2D imperfection (orientation of 2D imperfection) do not have a great influence 
on the limit stresses due to micro-buckling. For small values of misalignment, the problem is mainly 
influenced by fiber volume fraction and matrix yield stress. 

For large imperfection amplitude, as given by large misalignment angle, there is a significant 
loss in the reinforcing effect that is contributed by the fiber. Also, for such imperfection level, in-
creasing the matrix yield stress produces comparable or even higher limit stresses than those pro-
duced by fiber volume fraction changes. In other words, micro-buckling seem to be dominated by 
fiber volume fraction for small misalignment angles, whereas, for large fiber angles it shows as a 
property dominated by matrix yield stress. A sequel of this conclusion is that increasing fiber vol-
ume fraction is not an effective way to increase micro-buckling capacity unless a misalignment con-
trol is introduced during the fabrication process. 

This work has been restricted to an analysis at the micro level, and no attempt has been made 
to couple micro and macro levels; this is seen as a topic for further research. The research reported 
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aims to highlight which micromechanics variables play the most important influences on the micro-
buckling phenomenon, which is a necessary ingredient before proceeding to multi-scale coupling. 
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