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Abstract 

In this work, a corotational finite element formulation is suggested for spatial beams with geometrically 
nonlinear behavior subjected to static loads. We returned to the three successive rotation angle 
procedure, mainly the Tait-Bryan angles. By carefully defining the trigonometric rules for all rotation 
angles, the singularity problem, that had limited the use of these angles, is avoided. Three different 
types of coordinate systems are used: a fixed global coordinate system that stays fixed throughout the 
analysis, a fixed local coordinate system that is fixed and precisely attached to each element, and a 
corotational local frame for each element that moves and rotates together with the element throughout 
the analysis. The rigid body motion can easily be separated from the overall deformation since the 
deformation is always tiny relative to the corotational frame. An incremental-iterative method is used 
for the solution based upon the Newton-Raphson method. Different examples are solved to 
demonstrate the practicality, correctness, and accuracy of the proposed method. The solutions converge 
at a relatively quick rate. 
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1 INTRODUCTION 

Enhancing geometrically nonlinear finite element formulations for spatial beam elements has recently become a 
crucial objective (Santana et al., 2022; Vo and Nanakorn, 2020; Magisano et al., 2020). It makes sense that many 
innovative applications (Leng et al., 2022; Trapper, 2022; Liu, 2014; Xiaohang et al., 2022; Liu and Bai, 2022) that have 
large displacements require accurate modelling. Leng et al. (2022) insist that geometric nonlinearity has a considerable 
impact on flexible offshore structures and devices and cannot be ignored. At the same time, it has become urgently 
necessary to increase the size of renewable energy devices as they experience extraordinary growth. As a result, 
Xiaohang et al. (2022) studied a flexible wind turbine blade that was 100 meters long. This study validates how crucial 
geometric nonlinearity is, in the analysis of such a large blade. Even in space applications, Liu and Bai (2022) conducted 
experimental and numerical analyses for a deployable cabin that can be used as space habitats. Most of these innovative 
applications have been treated using commercial finite element programs. Hence, there is a snowballing need for 
computationally inexpensive geometrically nonlinear finite element formulations to examine and improve such 
commercial programs. Such improved and flexible formulations can also deal with various engineering problems that 
cannot be solved, and diverge, in some cases, when using commercial finite element programs. 

One pillar of geometrically nonlinear analysis is the kinematics description approach. Three formulations are usually 
applied to describe the kinematics of a spatial beam element. These formulations are the total Lagrangian, the updated 
Lagrangian, and the corotational formulations. The total Lagrangian formulation (Santana et al., 2022; Vo and Nanakorn, 
2020; Mars et al., 2017; Crivelli, 1991; Simo and Vu-Quoc, 1986; Remseth, 1979) is the oldest formulation and is 
frequently used in commercial finite element softwares. This formulation uses the fixed global frame to define the terms 
of the system equation. This fixed global frame does not update through the analysis. Consequently, it causes relatively 
large displacements, rotations, and strains that require special techniques to handle. The updating Lagrangian 
formulation (Yang et al., 2002; Yang et al., 2007) employs a frame which is updated with the last accepted solution to 
define the terms of the system equation. Thus, the system equations are sampler than the corresponding equations in 
total Lagrangian formulations. The reference frame does not change during the solution cycles; hence, if the 
displacement from the current configuration relative to the last equilibrium configuration is large, a basic assumption is 
violated, and for that reason this formulation also experiences some intricacies. To avoid these complications, the 
corotational formulation presents an efficient kinematics description approach for large displacement analysis. The small 
strain theory is employed in this formulation (Belytschko and Hsieh, 1973; Elkaranshawy and Dokainish, 1995; 
Elkaranshawy et al., 2018; Gu, 2004; Oran, 1973; Crisfield, 1990; Le et al., 2014; Jonker and Meijaard, 2013; Bathe and 
Bolourchi, 1979; Benjamin, 1982; Nunes et al., 2003). With each element, the corotational frame rotates and translates 
with it, but it does not deform with it. This frame is continuously updated and can be used in a variety of ways (Gu, 2004). 
Because the deformational motion is always small with respect to the moving corotational frame, this formulation has 
the distinct advantage of making it easy to separate the rigid body motion from that motion. 

Due to the complication of large spatial rotations, the three-dimensional formulation is not just a simple extension 
of the planar formulation. For instance, Remseth (1979) applied an approximate vectorial hypothesis to treat three-
dimensional rotations, and he restricted his method to moderate rotations that do not exceed 15 degrees. Therefore, his 
method cannot be applied for large rotations. Oran (1973) utilized orthogonal axes that are rigidly attached and 
deformed with each joint. A joint orientation matrix was defined and used to describe these axes. The angles between 
the member axes and this set of orthogonal axes are used to compute the nodal rotations for each element. This 
procedure was improved by Crisfield (1990), Le et al. (2014), and Jonker and Meijaard (2013). The requirement for a 
special parametrization of the finite rotations is the cornerstone of this method. The joint orientation matrices that are 
stored and the parametrization of the finite rotations considerably increase the computational time needed for this 
method. A moving local frame with three successive rotations, similar to the Euler angle, was presented by Bathe and 
Bolourchi (1979). However, they did not provide trigonometric rules for all rotation angles. Benjamin (1982) adds to this 
method by stating rotation angles' cosines and sins in terms of kinematic variables. However, he did not determine a 
control sign for the cosine of the rotation angles that can be obtained using the two hypotenuses of right-angle triangles. 
To overcome the problem of cosine of an angle outside the interval [π/2, -π/2], Nunes et al. (2003) controlled the sign of 
cosine of rotation angles. However, they did not specify clearly how to determine the transformation procedure in the 
case of vertical members, which is very important in the modelling of three-dimensional structures. They did not analyze 
three-dimensional problems to thoroughly test their motion description method. Simo and Vu-Quoc (1986) pointed out 
the problem of singularity, in the case of adopting this method, which has to be handled carefully. 

This study proposes a relatively accurate and simple corotational finite element formulation for statically loaded 
space frames. The material is assumed to be elastic and isotropic. The beam element cross section is uniform, and 
Bernoulli's hypothesis is assumed. The cross-sectional distortion, shear, and warping effect are not considered. 
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The transformation procedure involves a regular update of the coordinates' vector with each equilibrium 
configuration during the analysis. In the transformation technique, three successive rotations of Tait-Bryan angles 
(Gu, 2004; Bathe and Bolourchi, 1979) are employed. The proposed approach uses two main steps to transform 
vectors and matrices from the fixed global frame to the local corotational frame. The first step is to transform from 
the fixed global frame to the fixed local frame, and the second step is to transform from the fixed local frame to the 
moving corotational local frame. All trigonometric rules of the spatial beam element with control signs are expressed, 
including special cases. These trigonometric rules are then used to define the rotation matrices and the relative 
displacement vector. Although the suggested formulation is simple and does not require special parametrization of 
finite rotations, it requires adjusting the load step and number of elements to reduce the relative chordal rotations 
that occur throughout the analysis. The system's equilibrium equation is derived using the virtual work principle. An 
incremental iterative procedure based on the full Newton-Raphson method is employed to solve this equation through 
a MATLAB code. Due to bypassing the joint orientation matrices and parametrizing of finite rotations, this code has a 
comparatively rapid convergence rate for equilibrium. 

This section serves as an overview and highlights the value of researching geometric nonlinearity. Section 2 
introduces the spatial beam element motion description approach, which involves coordinate systems. Section 3 
illustrates the method of transformation between the used coordinate systems based on Tait-Bryan angles. In Section 4, 
the stiffness matrix and the strain energy are derived. The equilibrium equation is then derived in Section 5 using the 
principle of virtual work. The numerical algorithm is shown in Section 6. To show the efficacy and validate the precision 
of the suggested method, five numerical examples are solved and compared with the published results in Section 7. 
Conclusions are discussed at the end. 

2 KINEMATICS DESCRIPTION 

The beam material is assumed to be isotropic and elastic, and the cross section of the beam element is assumed to 
be uniform and doubly symmetric. Bernoulli's assumptions are considered, and cross-sectional distortion, shear, and 
warping effects are neglected. Always, the deformational and rotational displacements with respect to the corotational 
frame are assumed to be tiny. To guarantee that these requirements remain valid, and results are reliable, appropriate 
element sizes and load steps are carefully chosen. So, the small strain theory hypothesis is employed in the used 
corotational formulation. 

After discretization of the structure into finite elements, the ith beam element can be defined with two end nodes 
(n=1, 2). Every node has six degrees of freedom and is defined with respect to three frames, as shown in Figure 1. These 
coordinate systems are the fixed global coordinate system associated with the fixed global frame (X, Y, Z), the fixed local 
coordinate system associated with the fixed local frame (x�i, y�i, z�i) and the moving local coordinate system associated with 
the corotational local frame (x�i, y�i, z�i). This local corotational frame is updated and attached to each beam element. It 
also translates and rotates with the beam element but does not deform with it. Figure 1 also shows the three 
configurations used in the analysis: an initial configuration, the jth equilibrium configuration, and a current configuration. 
The element’s initial length is Lo; after deformation in the current configuration, the element's length is equal to the arc 
length Si, while Lc is the current chord length. 

For the current configuration, as shown in Figure 2(a), the nodal displacement vector for the ith beam element in 
the fixed global coordinate system is given by: 

[ ]Ti 1 1 1 1 1 1 2 2 2 2 2 2          θ θ θ θ θ θ= U V W X Y Z U V W X Y ZD  (1) 

where Un (n=1, 2), Vn (n =1, 2) and Wn (n =1, 2) are the displacement translational components in X, Y and Z 
directions, respectively, and 𝜃𝜃𝑋𝑋𝑛𝑛. 𝜃𝜃𝑌𝑌𝑛𝑛 and 𝜃𝜃𝑍𝑍𝑛𝑛 (n =1, 2) are the counterclockwise rotations about X, Y and Z axes, 
respectively. The nodal incremental displacement vector of the ith beam element in the global coordinate system is 
defined as: 
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Figure 1 Kinematics description and coordinate systems of the ith spatial beam element. 

[ ]Ti 1 1 1 1 1 1 2 2 2 2 2 2           U V W X Y Z U V W X Y Zθ θ θ θ θ θ∆ = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆D  (2) 

where ∆Un (n=1, 2), ∆Vn (n=1, 2) and ∆Wn (n=1, 2) are the incremental translational components of displacement in X, Y 
and Z directions, respectively, and ∆𝜃𝜃𝑋𝑋𝑛𝑛.∆𝜃𝜃𝑌𝑌𝑛𝑛 and ∆𝜃𝜃𝑍𝑍𝑛𝑛 (n =1, 2) are the counterclockwise incremental rotations about 
X, Y and Z axes, respectively. The nodal displacement vector 𝐃𝐃i can be updated by: 

j
i ii    = + ∆D D D  (3) 

where 𝐃𝐃i
j is the nodal displacement vector for the ith beam element in the fixed global coordinate system, at the jth 

equilibrium configuration. The nodal displacement vector 𝐃𝐃i is divided into nodal translational displacement vector 𝐃𝐃𝐃𝐃i 
and nodal rotational displacement vector 𝐃𝐃𝐃𝐃i, which can be written as: 

[ ]Ti 1 1 1 2 2 2         = U V W U V WDt  (4) 

[ ]Ti 1 1 1 2 2 2        θ θ θ θ θ θ= X Y Z X Y ZDr  (5) 

 
Figure 2 Nodal displacements and forces of the ith beam element: (a) displacements and forces positive signs in the global 

coordinate system and the corotaional local coordinate system, and (b) element displacements and internal forces with the 
attached corotaional local frame in planes (x�i - y�i) and (x�i - z�i). 
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Similarly, ∆𝐃𝐃i vector can be separated into the nodal incremental translational displacement vector ∆𝐃𝐃𝐃𝐃i and the 
nodal incremental rotational displacement vector ∆𝐃𝐃𝐃𝐃i. Therefore, the nodal coordinates' vector of the ith beam element 
in the fixed global system can be continually updated as follows: 

j
i n i ,   = + ∆X X Dt  [ ]Ti i i i X Y Z=X  (6) 

where 𝐗𝐗i is the vector of the nodal coordinates of the ith beam element relative to the fixed global frame, at the current 
configuration, and 𝐗𝐗i

j is the vector of the nodal coordinates relative to the fixed global frame, at the jth equilibrium 
configuration. The nodal displacement vector of the ith beam element in the element corotational local coordinate 
system, at the current configuration, is: 

[ ]Ti 1 1 1 1 1 1 2 2 2 2 2 2          θ θ θ θ θ θ= u v w x y z u v w x y zd  (7) 

where un (n=1, 2), vn (n=1, 2), and wn (n=1, 2) are the displacement translational components in x�i, y�i, and z�i directions, 
respectively, and 𝜃𝜃𝑥𝑥𝑛𝑛.𝜃𝜃𝑦𝑦𝑛𝑛. and 𝜃𝜃𝑧𝑧𝑛𝑛 (n =1, 2) are the counterclockwise deformational rotations after eliminating the rigid 
body rotations. As shown in Figures 1 and 2(b), the displacement component vn (n=1, 2) and wn (n=1, 2) are equal to zero 
because of the characteristics of the attached corotational frame. Also, the axial displacement of the first node is selected 
to be zero, while the axial displacement of the second node is 𝑢𝑢2. As a result, the nodal displacement vector 𝐝𝐝i has only 
seven nonzero components that can simplified to: 

[ ]Ti 1 1 1 2 2 2 2  0  0  0   0  0    θ θ θ θ θ θ= x y z u x y zd  (8) 

The axial displacement 𝑢𝑢2 in equation (8) can be written as: 

2 i o c o i S  L  L L b= − = − +u  (9) 

where bi is the element axial elongation due to the bowing effect, which can be determined in terms of rotations 
(Chan, 1992) as 

2 2 2 2c c
1 1 2 2 1 1 2 2

L Lb 2  2   2  2
30 30

θ θ θ θ θ θ θ θ
  = − + + − +    

y y y y z z z z  (10) 

The internal elastic force vector for the ith beam element in the fixed global coordinate system, at the current 
configuration, can be written as: 

[ ]T1 1 1 1 1 1 2 2 2 2 2 2          = FX FY FZ MX MY MZ FX FY FZ MX MY MZe
iF  (11) 

The internal elastic force vector of the ith beam element in the element corotational local coordinate system, at the 
current configuration, is: 

[ ]T1 1 1 1 1 1 2 2 2 2 2 2           = fx fy fz mx my mz fx fy fz mx my mze
if  (12) 

where the internal elastic force vectors' components in both the fixed global coordinate system and the corotational 
local coordinate system are shown in Figure 2(a) with their positive signs. 

3 TRANSFORMATION PROCEDURE 

The transformation procedure depends upon updating the coordinates with every equilibrium configuration during 
the analysis. Two main stages are employed here to perform the transformation from the fixed global frame to the 
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moving corotational local frame. The first stage is the transformation from the fixed global frame to the fixed local frame, 
and the second stage is the transformation from the fixed local frame to the moving corotational local frame. Assuming 
that Vd is a 3D vector associated with the fixed global frame, the relation between the fixed global frame (X, Y, Z) and the 
fixed local frame (x�i, y� i, z�i) can be expressed by: 

d o dˆ =v r V  (13) 

where ro is an orthogonal matrix (3 × 3) which can be determined from the direction cosines of the fixed local frame 
relative to the fixed global frame. For a three-dimensional frame element, this matrix turns into a (12 × 12) matrix as 
follows: 

o

o
o

o

o

 0 0   0
 0 0   0

    
 0  0  0

 0  0   0 

 
 
 =
 
 
  

r
r

T
r

r

 (14) 

Similarly, the relation between the (x�i, y� i, z�i) frame and the current corotational local frame (x�i, y�i, z�i) is: 

d c dˆ =v r v  (15) 

where rc is also an orthogonal matrix (3 × 3) which can be obtained from the direction cosines of the corotational local 
frame relative to the fixed local frame. For a three-dimensional frame element, this matrix turns into a (12 × 12) matrix 
as follows: 

c

c
c

c

c

 0 0   0
 0 0   0

    
 0  0  0

 0  0   0 

 
 
 =
 
 
  

r
r

T
r

r

 (16) 

One can write the vector 𝐯𝐯�d in terms of Vd as 

d r d=v r V  (17) 

where 

r c o =r r r   (18) 

Therefore, the transformation matrix for the three-dimensional ith beam element from the fixed global frame to the 
moving corotational local frame, at the current configuration, can be expressed by 

r c o   =T T T   (19) 

Both transformation matrices ro and rc are determined using Tait-Bryan angles, which describe the three successive 
rotations of the three dimensional beam element. 

3.1 Transformation from the fixed global frame to the fixed local frame 

3.1.1 General case 

The first stage is to transform from the fixed global system to the fixed local system using the three successive 
rotaions βo, γo and αo, as shown in Figures 3(a), 3(b), 3(c), and 4(a)as follows: 
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Figure 3 Three successive rotations of a three dimensional beam element: (a) Rotation angle 𝛽𝛽𝑜𝑜of corodinate axes about Y axis, 

from (X, Y, X) to (𝑋𝑋𝛽𝛽𝑜𝑜, Y,  𝑍𝑍𝛽𝛽𝑜𝑜), (b) Rotation angle 𝛾𝛾𝑜𝑜 of corodinate axes about 𝑍𝑍𝛽𝛽𝑜𝑜axis, from (𝑋𝑋𝛽𝛽𝑜𝑜, Y, 𝑍𝑍𝛽𝛽𝑜𝑜) to (𝑋𝑋𝛾𝛾𝑜𝑜,𝑌𝑌𝛾𝛾𝑜𝑜 , 𝑍𝑍𝛽𝛽𝑜𝑜), and 
(c) Rotation angle 𝛼𝛼𝑜𝑜 of corodinate axes about 𝑋𝑋𝛾𝛾𝑜𝑜  axis, from (𝑋𝑋𝛾𝛾𝑜𝑜,𝑌𝑌𝛾𝛾𝑜𝑜, 𝑍𝑍𝛽𝛽𝑜𝑜) to (𝑥𝑥�i, 𝑦𝑦�i, �̂�𝑧i). 

 
Figure 4 Transformation from the fixed global frame to the fixed local frame: (a) three successive rotations (βo, γo, αo) of a three 

dimensional beam element, and (b) corodinates of a reference point P relative to frame (Xγo,Yγo, Zγo). 

o

o o

β

o o

cosβ 0 sinβ
 0 1 0

sinβ 0 cosβ

 
 =  
 − 

r  (20) 

where 

X
o

XZ

Ccosβ   ,
C

=   Z
o

XZ

Csinβ   ,
C

=  2 1
X

o

X XC ,
L
−

=  2 1
Y

o

Y YC ,
L
−

=  2 1
Z

o

Z ZC
L
−

=  
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( )
1

2 2 2
XZ X ZC C C ,  = +  ( ) ( ) ( )( )

1
2 2 2 2

o 2 1 2 1 2 1L X X Y Y Z Z= − + − + −  (21) 

o 

o o

γ o o

cos γ sin γ 0
 sin γ cos γ 0

0 0 1

 
 = − 
  

r   (22) 

where 

o XZcos γ    C ,=  o Ysin γ    C=  (23) 

oα o o

o o

1 0 0
 0 cosα sin α  

0 sinα cosα

 
 =  
 − 

r  (24) 

where 

( ) ( )
o

o o

Pγ
o 1

2 2 2
Pγ Pγ

Y
cosα   , 

Y Z

=
 + 
 

 

( ) ( )
o

o o

Pγ
o 1

2 2 2
Pγ Pγ

Z
sinα  

Y Z

=
 + 
 

. (25) 

where XPγo, YPγo, and ZPγoare the coordinates of an assumed point P relative to γo frame as shown in Figure 4(b), 
which can be obtained from the following equation: 

[ ]
o o o o o

T T
Pγ Pγ Pγ γ β P1 P1 P1X Y Z    X Y Z    =  r r   (26) 

Hence, the rotation matrix 𝐃𝐃o can be obtained as: 

o o oo α γ β =r r r r   (27) 

By substitution, this matrix takes the form: 

X Y Z

X Y o Z o Y Z o X o
o XZ o

XZ XZ

X Y o Z o Y Z o X o
XZ o

XZ XZ

C C C
C C cos C sin C C cos C sinC cos

C C
C C sin C cos C C sin C cosC sin

C C

 
 
 
 − α − α − α + α

= α 
 
 α − α α + α
 − α
  

r  (28) 

3.1.2 Special cases 

It should be noted that the rotation angle αo is insignificant, in the case of a circular cross-section element. Thus, 
the rotation matrix 𝐃𝐃o can be calculated as: 

o oo γ β=r r r   (29) 

There is another special case where the initial position of the element is vertical, in the Y-axis direction. In order to 
get 𝐃𝐃o, there are only two successive rotations not three as in the general case. The first rotation γo is either 90o or 270o, 
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as shown in Figure 5, depending on whether CY is +1 or -1. The other rotation αo, which is shown in Figure 6, can be 
determined using a reference point P that lies in the (x�i, y� i) plane. In this case, Eq. (25) is modified as follows: 

( ) ( )
( )

( ) ( )
P1 P1

o Y o2 2 2 2
P1 P1 P1 P1

X Zcosα   C ,   sin α  
X Z X Z

= − =
+ +

  (30) 

Thus, the matrix 𝐃𝐃o in Eq. (29), can be written as: 

Y 

o Y o o

Y o o

0 C 0
C cosα 0 sin α
C sinα 0 cosα

 
 = − 
  

r  (31) 

Substituting Eq. (28) or Eq. (31) into Eq. (14), the matrix 𝐓𝐓o can be determined. 

 
Figure 5 The rotation angle γo for vertical member case. 

 

Figure 6 The rotation angle αo with the reference point for vertical member case. 

3.2 Transformation from the fixed local frame to the moving corotational local frame 

3.2.1 General case 

The second stage is to transform from the fixed local system (x�i, y�I, z�i) to the moving corotational local system 
(x�i, y� i, z�i), at the current configuration, using the three successive rotaions βc, γc and αc, as shown in Figure 7. 
The transformation procedure is similar to the rotations βo, γo and αo in Figures 3(a), 3(b), 3(c), and 4(a), but the 
trigonomatric rules for rotation angles are based on the relative displcacements between the two end points of each 
element, as follows: 
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c

c c

β

c c

cosβ 0 sinβ
 0 1 0

sinβ 0 cosβ

 
 =  
 − 

r  (32) 

where 

o
c '

1 2

,
ˆL  cosβ  +

=
r
iU

P P
 c '

1 2

  sinβ ,
ˆ

=
r

iW

P P
 ( ) ( )

1
2 2 2'

1 2 o L   ˆ ˆ = + + 
 

r r
i iP P U W  (33) 

 
Figure 7 Transformation from fixed local frame to moving corotational local frame using three successive rotations (βc, γc, αc) of a 

three dimensional beam element. 

It is worth noting that Bathe and Bolourchi (1979) provided only an expression for the cosine of the angle. Hence, 
when the angle βc > 90° a problem appears. Therefore, in this work an expression for the sine is provided. The location 
of the element can be precisely specified by both trigonometric relations. As shown in Figure 7, 𝑈𝑈�𝑖𝑖𝑟𝑟, 𝑉𝑉�𝑖𝑖𝑟𝑟 and 𝑊𝑊�𝑖𝑖𝑟𝑟 are the 
ith beam element relative translational displacements with respect to the fixed local frame. These relative displacements 
can be obtained from the corresponding relative displacement with respect to the fixed global system that can be 
determined from the vector 𝐃𝐃𝐃𝐃i in Eq. (4), and the matrix ro in Eq. (28), or Eq. (31) for the vertical member, as follows: 

[ ] o o i  ˆ ˆ ˆ r r r
i i iU V W  = −  r r Dt  (34) 

Consequently, the rotation matrix 𝐃𝐃γc can be determined as: 

c 

c c

γ c c

cos γ sin γ 0
 sin γ cos γ 0

0 0 1

 
 = − 
  

r  (35) 

where 

( )
'

1 2
c

c
cos γ   ,

L
=

P PSN   
c

c

  sin γ  ,
ˆ

L
=

r
iV

 ( ) ( )
1

2 22'
c 1 2  L  ˆ 
= + 
 

r
iP P V  (36) 
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and SN is equal +1 if �Lo +  𝑈𝑈�𝑖𝑖𝑟𝑟� ≥ 0 and -1 if �Lo +  𝑈𝑈�𝑖𝑖𝑟𝑟� < 0. Both trigonometric rules are defined properly with controlled 
signs, enabling the precise determination of the element's position. Hence, the model can deal with angle γc > 90° contrary 
to the technique of Bathe and Bolourchi (1979). 

The rotation matrix for relative translational displacements can be written as 

c c cd γ β=r r r  (37) 

c 

c c c c c

d c c c c c

c c

cosβ cos γ sin γ sinβ cos γ
 cosβ sin γ cos γ sinβ sin γ

sinβ 0 cosβ

 
 = − − 
 − 

r  (38) 

Then, the rotation matrix 𝐃𝐃αc  can be obtained as: 

cα c c

c c

1 0 0
 0 cosα sin α

0 sinα cosα

 
 =  
 − 

r  (39) 

The angle αc is computed using the incremental procedure described in Bathe and Bolourchi (1979). The rotation 
matrix rc in Eq. (16) can be expressed as: 

c c c α d  =r r r  (40) 

3.2.2 Special cases 

In case of a vertical member that is parallel to the Y-axis, the rotation βc vanishes and the rotation γc is either 90o 
or 270o, depending on the member position. Traditionally, this case could create singularity and it had been the source 
of many difficulties (Nunes et al., 2003), and the authors of this research work suggested to avoid the rotation γc to be 
either 90o or 270o. In this work, this problem is solved by letting the code search for the alignment of the element, which 
means specifying if the rotation γc is either 90o or 270o. Thus, the matrix 𝐃𝐃dc can be rewritten as: 

c 

'
Y 

'
d Y 

0 C 0

 C 0 0
0 0 1

 
 

= − 
 
  

r  (41) 

where CY 
′ can be specified using the current vector of the nodal coordinates in Eq. (8) as follows: 

' 2 1
Y 

c

Y YC
L
−

=  (42) 

Thus, the value of CY 
′ is either +1 and the rotation γc is 90o or -1 and the rotation γc is 270o. 

Substituting Eqs. (38) or (41) and (40) into Eq. (36), the matrix rc can be determined. Hence, the transformation 
matrix 𝐓𝐓c in Eq. (16) has been specified. Then, the transformation matrix  𝐓𝐓r in Eq. (19) has been determined. 

4 STRAIN ENERGY AND STIFFNESS MATRIX 

Considering isotropic elastic materials, the constitutive relation between the stress vector 𝛔𝛔i and the strain 
vector 𝛜𝛜i of the ith beam element can be expressed by: 
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i i i =σ E   (43) 

where 𝐄𝐄i is the symmetric matrix of the elastic coefficients. The strain vector is given by: 

i    = fD qv  (44) 

where 𝐃𝐃𝑓𝑓 is the differential operator matrix and 𝒗𝒗𝒒𝒒 is the deformation vector, which can be defined as follows: 

i i     = N dqv  (45) 

where 𝐍𝐍i is the shape functions matrix, which is given in Appendix 1. Substituting Eq. (45) into Eq. (44), the strain vector 
can be expressed as follows: 

i i i    = fD N d  (46) 

Combining Eqs. (43) and (46), the stress vector can be rewritten as follows: 

  i i   =i i fE D N dσ  (47) 

The strain energy for the ith beam element Πi is given by: 

i

 T
i i i iV

1        V   
2

Π = ∫ dσ   (48) 

where Vi is the volume. Substituting Eqs. (46) and (47) into Eq. (48), the strain energy can be expressed as 

( )
i

 T
i i  i i i i V

1              V   
2

Π = ∫ f f i dE D N d D N d  (49) 

The element local displacement vector 𝐝𝐝i is independent of the volume Vi. Subsequently, Eq. (49) can be simplified 
to the following form: 

T
i i i i

1     
2

=Π d k d  (50) 

where ki is the symmetric element stiffness matrix in the corotational local coordinate system, which can be defined as: 

i

 
i i i V

  V= ∫ dTk B E B  (51) 

and B is defined as: 

i    = fB D N  (52) 

Equation (50) can be written as: 

( ) ( )TT T
i i i i r i i r i i i i

1 1         
2 2

=Π = =d k d T D k T D D K D  (53) 
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T
i r i r       =K T k T  (54) 

where Ki is the symmetric element stiffness matrix in the fixed global coordinate system. 
For the beam element used in this research work, the element stiffness matrix in the local coordinate system ki can be 

expressed as 

i 1 2   = +k k k  (55) 

where k1 is the axial and bending stiffness matrix and k2 is the geometric stiffness matrix for the ith beam element. 
Stiffness matrices are attached in Appendix 2 and Appendix 3. 

It is important to note that, in general, the rotation is non-commutative. However, the kinematic description 
employed in this paper depends on the continuous updating of the corotational frame to separate the large rigid-body 
motion from the deformational motion. We limit our analysis to small strain theory as explained in section 2, therefore 
the local rotational displacements relative to the element chord in each load step are always small. Hence, the vectorial 
addition can be applied to these relatively small rotational displacements, which offers simplicity and convenience. 
Also, the resulted stiffness matrices are symmetric. 

5 THE EQUILIBRIUM EQUATION 

The virtual work principle (Goldstein et al., 1980; Shabana, 2020) can be classified as the basis for variational 
principles of mechanics. This principle takes the form: 

( )δ δ δ
=

= − =∑T
1

 W  0 
n

int ext
i i

i

Q Q . (56) 

where WT is the total virtual work, 𝑄𝑄𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 is internal virtual work for the ith beam element and 𝑄𝑄𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖 is the external virtual 
work for the ith beam element. The internal virtual work 𝑄𝑄𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 can be written as 

δ δ= ∫ 
i

 T
i i iV

      V  int
iQ dσ  (57) 

Substituting Eqs. (46) and (47) in Eq. (57) one obtains: 

( )δ δ= ∫
i

 T
i i  i i iV

          V  int
i f i fQ dD N d E D N d . (58) 

Using Eqs. (51), (52) and (53) one can write Eq. (58) as: 

δ δ= T
i i i  int

iQ D K D  (59) 

The external virtual work for the ith beam element in static analysis can be written as 

δ δ= T P
i i    ext

iQ D F  (60) 

Substituting Eqs. (59) and (60) in Eq. (56) one obtains: 

( )δ δ δ
=

= − =∑ T T P
T i i i i i

1

 W          0
n

i

D K D D F  (61) 
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Thus, 

P
i i i 0− =K D F  (62) 

One can write 

e T e
i i i r i  = =F K D T f  (63) 

where 𝐅𝐅ie is the internal elastic force vector in the fixed global and 𝐟𝐟ie is the internal elastic force vector in the local 
coordinate systems, which is given by 

e
i i i   =f k d  (64) 

Accordingly, the nonlinear equilibrium equation of the entire structure is 

e P 0− =F F  (65) 

where 𝐅𝐅P is the vector of the external applied forces of the entire structure and 𝐅𝐅e is the internal elastic force vector of 
the entire structure. Both 𝐅𝐅P and 𝐅𝐅e are defined in the fixed global coordinate system. 

6 NUMERICAL ALGORITHM 

The equilibrium equation is solved using an incremental iterative procedure. This procedure is based on the full 
Newton-Raphson method (Bathe, 1996). Eq. (65) can be rewritten as 

e P 0λ= − =cψ F F  (66) 

where 𝛙𝛙 is the out of balance force and λ𝑐𝑐 is the loading factor, which can be determined as follows: 

τλ
ω

=c  (67) 

where 𝜏𝜏 is the current number of load increment and 𝜔𝜔 is the total number of load increments. The load increment ∆𝐅𝐅P 
can be written as: 

P
P   

ω
∆ =

FF  (68) 

The iteration equilibrium convergence criterion is given by: 

re≤ fψ ψ     (69) 

where 𝛙𝛙𝐟𝐟 is the reference out of balance force, which is assumed to be the out of balance force in the first iteration, 
and 𝑒𝑒𝑟𝑟 is the error tolerance. 

It is worth mentioning that it is well known that element matrices are used only in the iterative process for the 
incremental solution, and they do not have to be exact. They are required to allow the solution to converge and satisfy 
the specified tolerance during solution iterations. That is why many authors have used tangent, secant, or even initial 
stiffness matrices in their nonlinear FE formulations. Using exact matrices typically costs more time because of the 
storage of non-symmetric matrices compared with the storage of only the triangular part in the symmetric matrices. 
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Therefore, we are confident that the restriction we made in section (2), which produced symmetric stiffness matrices, 
allows the whole solution to go faster without affecting the overall accuracy of the results. Through the solution of various 
numerical examples in the next section, we have assessed the effectiveness and the accuracy of this method. 

At the beginning of the iteration procedure, null displacement vectors are assumed, and then the following steps 
are performed at the beginning of each load increment: 

I. Computing 𝐤𝐤i and 𝐟𝐟ie for each element using Eqs. (51), (55) and (64), respectively. 
II. In the first iteration, calculating the matrices 𝐃𝐃o and 𝐓𝐓o using Eqs. (28) and (14). In all other iterations, 
calculating 𝐃𝐃c and 𝐓𝐓c using Eqs. (40) and (16). 
III. Determining the transformation matrix  𝐓𝐓r for each member using Eq. (19). 
IV. Obtaining 𝐊𝐊i and 𝐅𝐅ie according to Eqs. (54) and (63). 
V. Getting 𝐊𝐊 and 𝐅𝐅e for the entire structure, by assembling the stiffness matrices and the internal elastic force 
vectors for all elements of the analyzed structure. 
VI. Calculating the out of balance force 𝛙𝛙 from Eq. (66). 
VII. If the convergence condition in Eq. (69) is satisfied, stop the iteration and go to step IX. Otherwise, start the 
following iteration: 

a. Using the Newton-Raphson method, a displacement corrector vector 𝐑𝐑 is calculated as: 

1  −= −R K ψ  (70) 

b. Updating the incremental displacement vector as follows: 

0∆ = ∆ +D D R  (71) 

where ∆𝐃𝐃0 is the incremental displacement vector in the previous iteration, which is considered to be zero in the first 
iteration. 

c. Extracting vector ∆𝐃𝐃i for each element from vector ∆𝐃𝐃. Consequently, one can update the vectors 𝐃𝐃i and 
𝐗𝐗i using Eqs. (3) and (6). 
d. Using 𝐃𝐃i and 𝐃𝐃o, the relative displacements are calculated, as in Eq. (34). 
e. From the coordinate vector 𝐗𝐗i, the model can check for each element position to apply either the regular 
rotations matrices in Eqs. (28), (38) and (39), or the vertical member rotations matrices in Eqs. (31), (41) and 
(39). Then,  𝐓𝐓c and  𝐓𝐓r are updated for each element. 
f. Using the relative displacements, the rigid body rotations can be obtained as: 

( )
1

2
o

 tan
L  

ˆ

ˆ
µ −

 
 

=  
 + 
 

r
i

Y
r
i

W

U
 (72) 

( ) ( )
1  

2 2
o

 tan
L   

ˆ

ˆ ˆ
µ −

 
 

=  
 + + 
 

r
i

Z
r r
i i

V

U W

. (73) 

g. Eliminating the rigid body rotations from the rotational components 𝜃𝜃𝑌𝑌𝑛𝑛 and 𝜃𝜃𝑍𝑍𝑛𝑛 in the vector 𝐃𝐃i , for each 
element, as follows: 

`
  n n YY Yθ θ µ= +  (74) 

`
   n n ZZ Zθ θ µ= −  (75) 
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h. Transforming the pure rotations 𝜃𝜃𝑋𝑋𝑛𝑛 . 𝜃𝜃𝑌𝑌𝑛𝑛̀  and 𝜃𝜃𝑍𝑍𝑛𝑛̀ , which are relative to the fixed global frame, to determine 
the corresponding rotational components 𝜃𝜃𝑥𝑥𝑛𝑛 . 𝜃𝜃𝑦𝑦𝑛𝑛 and 𝜃𝜃𝑧𝑧𝑛𝑛 for vector 𝐝𝐝i in the current corotational local 
frame, which are always relative to the element chord, using the procedure detailed in Eqs. (13) and (15). 

i. The axial displacement 𝑢𝑢2 in Eq. (8) is obtained from Eq. (9). 

j. Using Eqs. (8) and (64), 𝐝𝐝i and 𝐟𝐟ie can be determined, respectively. 

VIII. Going to the start of step IV again. 

IX. The displacement vector at current configuration 𝐃𝐃N+1 can be updated using the displacement vector of the 
previous configuration 𝐃𝐃N as: 

N 1 N + = + ∆D D D  (76) 

X. Starting the next load step. 

The flowchart for the numerical solution is shown in Figure 8. It should be noted that this code includes a detection 
function in the MATLAB code, which accurately determines the position of each element using the nodal coordinate 
vector. Thus, it can easily select the appropriate trigonometric rules and the sign of rotations. The detection function 
specifies the position of the element using the nodal coordinate vector 𝐗𝐗i given in Eq. (6). When the relative difference 
between the coordinate in X and Z direction of the element end nodes approaches zero together, the code detects that 
the angle βc turns to be zero and the element is in the direction of Y axis. In this case, the code searches for the alignment 
of the element based on the sign of CY 

′ in Eq. (42). Additionally, when the relative displacement  𝑉𝑉�𝑖𝑖 𝑟𝑟 turns out to be zero, 
the angle γc vanishes. Likewise, if the relative displacement  𝑊𝑊�𝑖𝑖𝑟𝑟 turns out to be zero, the angle βc vanishes, however, 
the element in general is not vertical. Hence, the program deals with these special cases separately. 

This function also controls the angle γc when the rotation is outside the interval [π/2, -π/2]. The sign SN in Eq. (36) 
specifies the cosine of the angle γc to meet the corresponding element position during the motion because the terms 
𝑃𝑃1𝑃𝑃2′������ and Lc are always positive which cannot reflect the real sign of cosine of γc. At the same time, the sine of γc is 
already specified with the sign of  𝑉𝑉�𝑖𝑖 𝑟𝑟. This function conserves the code to converge efficiently. 

The geometric stiffness matrix is essential in improving convergence. Updating of element matrices in every 
iteration is also crucial for convergence acceleration. Hence, the proposed formulation experiences a rapid convergence 
rate. Providing that the load step and the element size are adjusted to satisfy the requirements of the small strain theory. 

7 NUMERICAL EXAMPLES 

7.1 Clamped- clamped beam subjected to a concentrated vertical load at the mid-span 

A clamped-clamped beam is solved, in this part. The beam geometric data are shown in Figure 9. The beam's 
material properties are given in Table 1. This beam is subjected to a concentrated vertical load at mid-span. This problem 
is analysed by Mondkar and Powell (1977) using different load stepping procedures. They used 16 elements to solve this 
problem. The present results are obtained using only ten elements and one loading increment. The used error tolerance 
is 10−2. The present results are compared with the results of Mondkar and Powell (1977), which used seven loading 
increments, and the linear analysis results. The present results are significantly in agreement with the results in Mondkar 
and Powell (1977), as can be shown in Figure 10. Figure 10 also shows that the linear displacement is considerably larger 
than the corresponding nonlinear displacement. 

Table 1 The beam's material properties (Mondkar and Powell, 1977). 

Modulus of elasticity E(ksi) Density ρ(lb/in3) Poisson's ratio 𝑣𝑣 

30,000 0.098 0 
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Figure 8 The flowchart of the numerical solution. 

 
Figure 9 Geometrical data of the clamped-clamped beam. 
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Figure 10 Load-displacement curves of the clamped-clamped beam. 

7.2 Cantilever beam subjected to a vertical end load at the free end 

 
Figure 11 Load-displacement curves of the clamped-clamped beam. 

In this example, a cantilever beam subjected to a concentrated end load is analysed, as shown in Figure 11. The geometric 
data and material properties of the beam are shown in Table 2. The applied concentrated vertical force PY = −600 KN. Liu 
(2014) and Crivelli (1991) solved this problem with different number of elements. The present results are obtained using one 
loading increment and the error tolerance er =  10−2. The free end vertical displacement and rotation are compared with the 
results of Liu (2014) and Crivelli (1991), as shown in Table 3. It can be noticed from Table 3 that our results converge to the 
more accurate values with only 2 elements compared to 8 elements for the results of both Liu (2014) and Crivelli (1991). 

Table 2 The geometrical data and material properties of the cantilever beam. 

Length L(m) Cross-sectional area A(m2) IY (m4) IZ (m4) Modulus of elasticity E (GPa) Modulus of rigidity G(GPa) 

5.0 4.8 x 10-3 4.45 x 10-5 4.45 x 10-5 207 80.775 

Table 3 Comparison of results for the cantilever beam subjected to vertical end load. 

Number of elements 
Displacement (m) Rotation (rad) 

Liu (2014) Crivelli (1991) Present Liu (2014) Crivelli (1991) Present 

1 2.261 1.833 2.232 0.701 0.747 0.698 

2 2.167 2.078 2.155 0.674 0.688 0.673 

4 2.157 2.139 2.154 0.673 0.676 0.673 

8 2.154 2.154 2.153 0.673 0.673 0.672 

16 2.153 2.157 2.152 0.672 0.672 0.672 
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7.3 Cantilever beam subjected to a concentrated end moment at the free end 

 
Figure 12 Load-displacement curves of the cantilever beam. 

The cantilever beam shown in Figure 12 is solved in this example. Table 4 provides the material properties and 
geometric data of the beam. This beam is subjected to a concentrated end moment MZ = 10 000 N. m at the free end. 
This problem is classified as a large displacement and large rotation problem (Liu, 2014). Wang and Rattanawangcharoen 
(2008) used 20 elements and 10 loading increments to solve this problem. Liu (2014) solved this problem with one loading 
increment and ten beam elements. The present results are obtained using one loading increment, ten beam elements 
and the error tolerance 𝑒𝑒𝑟𝑟 = 10−2. The present results are compared with the results in (Liu, 2014; Wang and 
Rattanawangcharoen, 2008) in Table 5. The comparison shows that the present results agree sufficiently with the 
referred results. 

Table 4 The geometrical data and material properties of the cantilever beam. 

Length L(m) Cross-sectional area A(m2) IY (m4) IZ (m4) Modulus of elasticity E (GPa) Poisson's ratio 𝑣𝑣 

1.0 1 x 10-4 5 x 10-8 5 x 10-8 210 0.3 

Table 5 Comparison of results for the cantilever beam subjected to an end moment. 

Displacement (cm) Liu (2014) Wang and Rattanawangcharoen (2008) Present 

UTip -15.82 -14.70 -14.45 
VTip -45.99 -47.19 -45.13 

7.4 Cantilever beam subjected to a concentrated inclined load at the free end 

In this numerical example, a cantilever beam subjected to an inclined end load is analyzed, as shown in Figure 13(a). 
Dowell and Traybar (1975) conducted an experimental study on this cantilever to invistigave its geometrically nonlinear 
behaviour. Rosen et al. (1987a,b) proposed some mathematical models to solve this problem and used the geometric data 
and material properties provided in Table 6. Noting that they used different values for EIY in both papers, the value of EIY in 
Table 6 is that given in Rosen et al. (1987b), which matches the experiment of Dowell and Traybar (1975). Ten beam 
elements and four loading increments are used in the present analysis. The error tolerance er is chosen to be 10−3. The 
results for the tip displacements VTip, WTip vs the inclination angle γv for three different cases of end load PTiP are shown in 
Figures 13(b), 13(c). The tip twist angle θTip vs the inclination angle γv, for three different cases of end load PTiP is shown in 
Figure 13(d). The proposed results are compared with corresponding numerical results (model D) in Rosen et al. (1987a), 
and with the experimental results in Dowell and Traybar (1975). This comparison shows that the present results are in good 
agreement with the previously published results, especially with the experimental results. 

Table 6 The geometrical data and material properties of the beam. 

Length L(m) 
Cross-sectional dimensions 

EIY (N.m2) EIZ (N.m2) GJ (N.m2) 
b(m) h(m) 

0.508 0.3175 x 10-2 0.127 x 10-1 2.4783 36.2695 2.9623 
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7.5 Circular cantilever beam subjected to a vertical out of Plane end load 

In this example, a 45o circular cantilever beam is considered as shown in Figure 14(a). The material and geometric data of 
the bend are given in Table 7. This example is a three-dimensional large displacement and rotation problem (Liu, 2014; 
Chan, 1992). Bathe and Bolourchi (1979) solved this problem using a moving frame through three successive rotations similar 
to Euler angles. They used 16 three-dimensional solid elements and eight straight beam elements. They also employed 60 load 
steps in the analysis of this bend. Chan (1992) analysed this problem using various formulations for comparison. However, he 
did not determine the number of elements used in this example. In the present study, four load increments and eight straight 
beam elements are used. The chosen value for the error tolerance er is 10−2. The present results are compared with the linear 
analysis results, the results in Bathe and Bolourchi (1979), and the results of the joint orientation approach in Chan (1992), 
as can be seen in Figures 14(b), 14(c), and 14(d). The present results are highly consistent with the compared results, especially 
those of Bathe and Bolourchi (1979) with a smaller number of load steps and elements. 

Table 7 The geometrical data and material properties of the circular beam (Bathe and Bolourchi, 1979). 

Radius R(in) 
Cross-sectional dimensions 

Modulus of elasticity E (psi) Poisson's ratio 𝑣𝑣 
b(in) h(in) 

100 1.0 1.0 107 0 

 

Figure 13 Three-dimensional cantilever beam subjected to an inclined end load: (a) geometrical data, (b) VTip displcament curves, 
(c) WTip displcament curves, and (d) twist angle θTip curves. 
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Figure 14 45o circular cantilever beam: (a) Geometrical data, (b) dimensionless load-displcament U/R curves, (c) dimensionless 

load-displcament V/R curves, and (d) dimensionless load-displcament W/R curves. 

8 CONCLUSIONS 

This paper has presented an adapted corotational finite element formulation for spatial beams and frames with 
geometrically nonlinear behavior, subjected to static loads. Elastic and isotropic properties of the materials have been 
postulated. The distortion of cross-section, shear, and warping effects have all been disregarded. Through the concept 
of the used corotational frame, which continually updates and moves with each element, this approach significantly 
decreases the active degrees of freedom in the local displacement. The corotational frame additionally distinguishes 
between the deformational displacement and the rigid body displacement. The small strain hypothesis has been used 
since the deformational displacement is always small relative to the corotational frame. Also, the load steps and the 
number of elements both have been adjusted to keep the rotational displacement relative to the element chord relatively 
small. As a result, the vectorial addition can be applied to the rotational displacements and the stiffness matrices are 
symmetric. Consequently, storage of only the triangular part has been counted, which significantly reduces the 
computational time and accelerates the rate of convergence. The equilibrium equation has been derived using the virtual 
work principle. Two steps are suggested for the transformation of matrices and vectors from the fixed global frame to 
the corotational moving frame depending on Tait-Bryan angles, which have been computed in successive manner. The 
trigonometric formulas for all rotation angles including the special cases of the beam element have been investigated. 
Thus, the proposed method has addressed the issues with the rotation angles beyond the range [π/2, -π/2] and the 
vertical members. This contribution has been used to deal with some of these special cases, which have been classified 
as a singularity problem by many researchers in the field. 

An incremental-iterative method based on the Newton-Raphson method has been used to solve the equilibrium 
equation. A MATLAB code has been constructed to accomplish this. This code provides a detecting function designed to 
control the rotational angle sign and locate the position of each member during the analysis. Each iteration, the stiffness 
matrices and the element coordinates' vector are continuously updated. Even though this update takes time in each 
iteration, it considerably reduces the total time of analysis. The proposed numerical algorithm's effectiveness and 
precision have been demonstrated by comparing the obtained results with published results of analytical formulations 
and experiments. Five numerical examples of large-displacement frames and beams have been solved and analyzed. 
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Although in the analysis of these problems a reasonable number of elements were used, accurate results have been 
obtained in comparison with the published results. 

The kinematic representation, the transformation method introduced, the symmetric stiffness matrices, and the 
mathematical derivation of the equilibrium equations constitute a distinctive blend of corotational formulation, setting 
it apart from other formulations found in the existing literature. A relatively rapid convergence rate has been observed 
in the proposed method since it does not depend on the well-known joint orientation method that requires a special 
parametrization of the finite rotations which considerably increase the computational time. The proposed method is not 
only simple and timesaving, but also it is highly effective and accurate. It seems that the method presented in this 
research has the potential to become a valuable tool for the analysis and resolution of numerous engineering applications 
due to its simplicity, accuracy, and effectiveness. 
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APPENDIX 1 - THE SHAPE FUNCTIONS MATRIX 

𝐍𝐍i =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 

 𝑁𝑁1 0 0 0 0 0
0  𝑁𝑁2 0 0 0  𝑁𝑁3
0 0  𝑁𝑁2 0 −𝑁𝑁3 0
0 0 0  𝑁𝑁1 0 0
0 0  𝑁𝑁2

′ 0 −𝑁𝑁3
′ 0

0  𝑁𝑁2
′ 0 0 0  𝑁𝑁3

′

 

 𝑁𝑁4 0 0 0 0 0
0  𝑁𝑁5 0 0 0  𝑁𝑁6
0 0  𝑁𝑁5 0 −𝑁𝑁6 0
0 0 0  𝑁𝑁4 0 0
0 0  𝑁𝑁5

′ 0 −𝑁𝑁6
′ 0

0  𝑁𝑁5
′ 0 0 0  𝑁𝑁6

′  
 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

where and ( )′ is the first derivatives with respect to x�i. 
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APPENDIX 2 - THE AXIAL AND BENDING STIFFNESS MATRIX 

𝐤𝐤𝟏𝟏

=  
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where E is the modulus of elasticity, G is the modulus of rigidity, 𝑎𝑎𝑖𝑖  is the cross-sectional area, Iyi and IZi are the moment 
of inertia about y�i and z�i axes, and Ji is the polar moment of inertia. 
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APPENDIX 3 - THE GEOMETRIC STIFFNESS MATRIX 
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where fx2 is the axial force of the second node in x�i direction, which is presented in Eq. (12). 


