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Abstract 
In this paper a new hybrid glowworm swarm algorithm (SAGSO) 
for solving structural optimization problems is presented. The 
structure proposed to be optimized here is a simply-supported 
concrete I-beam defined by 20 variables. Eight different concrete 
mixtures are studied, varying the compressive strength grade and 
compacting system. The solutions are evaluated following the 
Spanish Code for structural concrete. The algorithm is applied to 
two objective functions, namely the embedded CO2 emissions and 
the economic cost of the structure. The ability of glowworm 
swarm optimization (GSO) to search in the entire solution space is 
combined with the local search by Simulated Annealing (SA) to 
obtain better results than using the GSO and SA independently. 
Finally, the hybrid algorithm can solve structural optimization 
problems applied to discrete variables. The study showed that 
large sections with a highly exposed surface area and the use of 
conventional vibrated concrete (CVC) with the lower strength 
grade minimize the CO2 emissions. 
 
Keywords 
Hybrid glowworm swarm algorithm, discrete variables, concrete I-
beam, CO2 emissions, self-compacting concrete. 
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1 INTRODUCTION 

The traditional goals of engineers are the design of safe and economic structures. However, there is 
a growing concern for sustainability about the need to protect the environment. Now, more than 
ever, engineers should choose environmentally-friendly materials and cross-section dimension to 
minimize the impact of their projects as well as the consumption of natural resources. In this con-
text, the so-called metaheuristics methods have shown to be highly suited to design structures 
(Hare et al., 2013). While the design of economic structures has always been conditioned by the 
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experience of structural engineers, metaheuristic methods have recently provided efficient structures 
with a reasonable computing time. 
 Optimization of reinforced concrete (RC) structures has been investigated by many researchers 
in the past. A thorough review of nonheuristic structural concrete optimization studies can be found 
in Sarma and Adeli (1998). Many later studies have been undertaken to implement evolutionary 
algorithms to solve structural concrete optimization problems (Kicinger et al., 2005), while the pre-
sent authors’ research group reported on non-evolutionary algorithms to optimize real-life RC struc-
tures (Payá-Zaforteza et al., 2010; Yepes et al., 2012; Carbonell et al., 2012; Martí et al., 2013; Mar-
tínez-Martín et al., 2013; Torres-Machí et al., 2013). 
 Swarm intelligence is a type of biologically-artificial intelligence based on neighbour interactions. 
It imitates the collective behaviour of some agents which follow a global pattern. They interact with 
one another and learn from it. In fact, these algorithms differ in philosophy from genetic algorithms 
because they use cooperation rather than competition (Dutta et al., 2011). Particle swarm optimiza-
tion (PSO) simulates a simplified social system (Kennedy and Eberhart, 1995). Ant colony optimi-
zation (ACO) was proposed by Colorni et al. (1991) simulating the behaviour of ants leaving pher-
omone to guide others. Artificial bee colony (Basturk and Karaboga, 2006; Karaboga and Basturk, 
2008) mimics the food forage behaviour of honeybees. The glowworm swarm optimization (GSO) 
algorithm was proposed by Krishnanand and Ghose (2009) to obtain multiple optima of multimodal 
functions. This algorithm imitates a glowworm carrying luciferin and moving towards a mate whose 
luciferin level is higher than its own (Liao et al., 2011; Gong et al., 2011; Luo and Zhang, 2011; 
Khan and Sahai, 2012). However, Qu et al. (2011) pointed out its low convergence rate; what is 
more, this algorithm can be effective for searching a local optimum, but some shortcomings exist for 
searching the global optimum solution (Zhang et al., 2010). 
 The main purpose of this paper is to demonstrate how the standard GSO can be improved by 
incorporating a hybridization strategy. A hybrid GSO algorithm (SAGSO) is proposed, combining 
the broad search ability of GSO and SA effectiveness to find a global optimum to speed up the local 
search. Hybrid GSO has already been proposed combining a simplex search method (Qu et al., 
2011), chaos optimization mechanism (Zhang et al., 2010), Hooke-Jeeves pattern search (Yang et 
al., 2010) and differential evolution (Luo and Zhang, 2011). In fact, the results showed that the 
hybrid algorithm had faster convergence, higher accuracy and was more effective for solving con-
strained engineering optimization problems (Luo and Zhang, 2011). Hybrid PSO optimization has 
also been widely applied (Shieh et al., 2011; Valdez et al., 2011; Fan and Zahara, 2007; Ahandania 
et al., 2012; Li et al., 2009; Wang et al., 2013) demonstrating faster convergence rates. Likewise, 
ACO was improved by incorporating a hybridization strategy (Chen et al., 2012; Koide et al., 
2013). 
 This paper describes a new hybrid algorithm applied to two objective functions, namely the em-
bedded CO2 emissions and the economic cost. For the design of a simply supported concrete I-
Beam, 20 discrete variables were used. The optimization compares self-compacting concrete (SCC) 
with conventional vibrated concrete (CVC), as well as four different compressive strength classes. 
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2 THE OPTIMUM DESIGN PROBLEM 

The structural design problem established for this study aims to minimize the objective function F 
of equation (1), subject to the constraints represented by equation (2). 
 

F(x1, x2,..., xn )  
 

(1) 
 

gj (x1, x2,.....xn ) ≤ 0  

 
(2) 
 

xi ∈ di1,di2,...,diqi( )  (3) 

 
 Note that x1, x2,..., xn are the variables to be optimized (design variables). Each design variable 
may assume the discrete values listed in equation (3). The objective function F defined in equation 
(1) is either the cost or the CO2 emission. The constraints gj in equation (2) are all the service limit 
states (SLSs) and ultimate limit states (ULSs) with which the structure must comply, as well as the 
geometrical and constructability constraints of the problem. The following sections describe the 
problem in detail. 
 
2.1 Design variables and parameters 

The case considered here is a simply supported concrete I-beam (see Figure 1). The problem is for-
mulated with 20 variables. Seven variables define the geometry: the depth (h), the width of superior 
flange (bfs), the width of inferior flange (bfi), the thickness of the superior flange (tfs), the thickness 
of the inferior flange (tfi), the web thickness (tw) and the concrete cover (r). Another variable estab-
lishes the concrete mix: four mixes of SCC and four mixes of CVC represent four strength classes. 
The mixtures are described by Sideris and Anagnostopoulos (2013). All mixtures use crushed lime-
stone. 
 Finally, passive reinforcement is defined by the number and diameter of the bars. The longitudi-
nal reinforcement is arranged in longitudinal upper reinforcement (n1, Ø1), covering the whole beam 
length. Lower reinforcement is divided in two systems, one covering the whole beam length (n2, Ø2) 
and another covering the central part of the beam (n3, Ø3). Transversal and longitudinal shear rein-
forcement changes between two zones, support zone as length of L/5 near the supports and central 
zone. Shear reinforcement is defined by the number of bars per meter and their diameter in the 
support zone (n4, Ø4) and in the central zone (n5, Ø5). The number of bars per meter of transversal 
and longitudinal shear reinforcement is equal, while the diameter can change. Therefore, four varia-
bles define the longitudinal shear reinforcement: the support zone (n4, Ø6) and the central zone (n5, 
Ø7). 
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Figure 1   Design variables of the simply supported concrete I-beam. 

 
 The parameters of the I-beam are all fixed quantities that do not change during the optimiza-
tion, including the beam span (15 m), the permanent distributed load (20 kN/m), and the variable 
distributed load (10 kN/m). 
 
2.2 Structural constraints 

Considering all the data necessary to define a given structure, the structural evaluation module 
calculates the stress envelopes and checks all the limit states and the geometric constraints repre-
sented by equation (2). Serviceability and ultimate limit states (SLS and ULS) must be guaranteed 
following the Spanish Standard EHE-08 (Fomento, 2008). As for the instantaneous and time-
dependent deflection of the central section, a limitation of 1/250 of the beam span for quasi-
permanent loading conditions is imposed. Besides, if the section does not comply with the geomet-
rical and constructability constraints, it is rejected. 
 One hundred years are required for the service life. The study was developed by evaluating du-
rability according to the EHE code (Fomento, 2008). The code presents durability of a concrete 
structure as its capacity to withstand, for the duration of its designed service life, the physical and 
chemical conditions to which it is exposed. Carbonation is the main factor leading to RC decay. 
Service life of RC structures is assessed as the sum of two phases, according to equation (4). This 
mode is based on the Tuutti (1982) model. The first phase is initiation of corrosion, in which car-
bonation penetration in the concrete cover means the loss of reinforcement passivity. The second 
phase involves the propagation of corrosion that begins when the steel is depassivated and ends 
when a limiting state is reached beyond which the consequences of corrosion can no longer be toler-
ated. 
 

t = d
k

⎛
⎝⎜

⎞
⎠⎟
2

+ 80 ⋅d
ϕ ⋅vc

 (4) 

 
where, t are the years of service life; d is concrete cover (mm); k is the carbonation rate coefficient; 
ϕ  is the bar diameter (mm), and vc is the corrosion rate (μm/year). The carbonation rate coeffi-
cient of all SCC and CVC mixtures was evaluated by Sideris and Anagnostopoulos (2013). The 
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values of the compressive strength and carbonation rate coefficient are presented in Table 1. In a 
general exposure, like IIb, the corrosion rate is about 2 μm/year (Fomento, 2008). 
 

Table 1   Mix design properties and cement content. 
 

Description Compressive strength (MPa) k (mm/year0.5) Cement (kg/m3) 

Concrete SCC1 35.80 7.42 302 
Concrete SCC2 45.30 5.14 336 
Concrete SCC3 54.20 3.40 374 
Concrete SCC4 57.10 1.45 436 
Concrete CVC1 31.10 9.99 300 
Concrete CVC2 41.00 6.23 330 
Concrete CVC3 52.70 3.65 370 
Concrete CVC4 56.70 1.49 450 

 
 
2.3 Objective functions 

The economic cost and the embedded CO2 emissions are the objective functions to be minimized. 
The objective functions measure the cost and the CO2 emissions of the RC production and place-
ment. The basic prices and emissions considered, given in Table 2, were obtained from the 2013 
BEDEC ITEC database of the Institute of Construction Technology of Catalonia (BEDEC, 2013). 
Concrete unit price and CO2 emissions were determined from each mix design, including transport 
and placing (García-Segura et al., 2014). Concerning the plasticizer used, CO2 emissions were those 
given by the European Federation of Concrete Admixtures Associations, since it distinguishes be-
tween plasticizer (EFCA, 2006a) and superplasticizer (EFCA, 2006b). It is considered that the silica 
fume does not produce emissions, since it is a waste product (García-Segura et al., 2014). Finally, 
the cost of CO2 emissions was that given in SENDECO2 (2013). 
 

Table 2   Unit prices and emissions considered in the RC I-beam. 
 

Unit Description Cost (€) CO2 emission (kg) 

m3 Concrete SCC1 86.01 282.46 
m3 Concrete SCC2 93.06 312.01 
m3 Concrete SCC3 96.27 343.12 
m3 Concrete SCC4 124.33 400.10 
m3 Concrete CVC1 99.32 278.56 
m3 Concrete CVC2 102.87 303.48 
m3 Concrete CVC3 106.52 336.10 
m3 Concrete CVC4 113.95 401.42 
t Steel B-500-SD 1237.59 3031.50 

m2 Formwork in beams 33.81 2.08 
m Beam placing 16.86 39.43 

t·CO2 European CO2 price 6.00  
 



V. Yepes et al. / Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm     1195 

Latin American Journal of Solids and Structures 11 (2014) 1190-1205 
 

 Carbonation captures CO2 and therefore, this capture should be subtracted from the embedded 
CO2 emissions. This CO2 capture was estimated based on the predictive models of Fick’s First Law 
of Diffusion (Collins, 2010; Lagerblad, 2005). Equation (5) estimates CO2 capture as the product of 
the carbonation rate coefficient k, the structure service life t, the quantity of Portland cement per 
cubic meter of concrete c, the amount of CaO content in Portland cement (assumed to be 0.65), the 
proportion of calcium oxide that can be carbonated r (assumed to be 0.75 (Lagerblad, 2005)), the 
exposed surface area of concrete A, and the chemical molar fraction M (CO2/CaO is 0.79). The 
quantity of Portland cement per cubic meter of concrete of every mixture is provided in Table 1. 
 

MArCaOctkCO ⋅⋅⋅⋅⋅⋅=2  (5) 
 
3 RESULTS 

GSO was originally proposed by Krishnanand and Ghose (2009) to find solutions to the optimiza-
tion of multiple optima continuous functions. GSO is a swarm intelligence algorithm based on the 
release of luciferin by glowworms. This luciferin attracts glowworms creating a movement toward 
another glowworm that is in its neighbourhood and glows brighter. The choice is encoded by a 
probabilistic function and the neighbourhood by a dynamic radial rate. The luciferin level depends 
on the fitness of its location, which is evaluated using the objective function. 
 GSO based algorithms present three main drawbacks: the glowworms may get stuck in local 
optima, they easily fall into an unfeasible solution and they have slow convergence rate. To over-
come these problems, a hybridized method combining simulating annealing and glowworm swarm 
optimization (SAGSO) algorithms is proposed. Simulated annealing (SA) can escape from the local 
optima thanks to its probabilistic jumping property. Besides, SA accelerates convergence to the 
optimum. 
 Simulated annealing was originally proposed by Kirkpatrick et al. (1983) to design electronic 
circuits. This algorithm is based on the analogy of crystal formation from masses melted at high 
temperature and cooled slowly to allow atoms to align themselves reaching a minimum energy 
state. The probability of accepting new solutions is governed by the expression exp (-ΔE/T), where 
ΔE is the increment in energy of the new configuration and T is the temperature. The initial tem-
perature T0 is usually adjusted following methods like that proposed by Medina (2001). The initial 
temperature is halved when the percentage of acceptances is greater than 40%, and the initial tem-
perature is doubled if it is less than 20%. An exponential annealing schedule is adopted using a 
cooling rate k to control the temperature decrement once a Markov chain Mc ends. Hence, the 
probability of accepting a worse solution drops with each Mc. The temperature decrement is given 
by 
 

Ti+1 = kTi  (6) 
 
where Ti and Ti+1 are the system temperatures at i and i+1 iteration. The minimum and maximum 
cooling rate k values used are given in Table 3. 



1196      V. Yepes et al. / Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm 

Latin American Journal of Solids and Structures 11 (2014) 1190-1205 
 

 After a glowworm movement, SA updates the glowworm position with a local search strategy. 
Figure 2 shows a flowchart of the simulated process. The algorithm ends when the number of itera-
tions t reaches the maximum tmax. The SAGSO algorithm is presented below. 

1. A swarm of n feasible glowworms is randomly generated within the search space. To each 
glowworm, several parameters are assigned: initial luciferin value l0, initial radial sensor 
range rs, and initial temperature T0. After assessing each glowworm objective function, the 
worst objective value A is chosen. 

2. The luciferin value is updated as the sum of the two terms, according to equation (7). The 
first term simulates the reduction in luciferin level with time, and the second term repre-
sents the enhancement of the value of the objective function. As the algorithm must mini-
mize both objective functions, the second term is modified. The difference between the 
worst objective value A and the value of the objective function at time t+1 is evaluated. 

 
li t +1( ) = 1− ρ( ) ⋅ li t( ) + γ A − J xi t +1( )( )( )  (7) 

 
where: li   is the previous luciferin level; J(xi) is the objective function; ρ is the luciferin value 
decay constant (0 < ρ < 1), and γ is the luciferin enhancement constant (0 < γ < 1). 

3. The probability of moving toward a neighbour j is given by the equation (8), where 
j ∈Ni t( ) , Ni t( ) = j :dij < rd

i t( );li t( ) < l j t( ){ } . Ni(t) is the set of neighbours of the glow-

worm i at the iteration t. The neighbours must have higher luciferin value, they must be lo-
cated within the radial sensor range ( )tr id  and they must be feasible solutions. Distance dij 
represents the Euclidean distance between glowworms i and j. 

 

pij t( ) = l j t( )− li t( )
lk t( )− li t( )

k∈Ni t( )
∑  (8) 

 
4. Equation (9) defines the glowworm i movement toward the chosen glowworm j. Here, s (>0) 

is the step size. Although GSO was based on continuous variables, this algorithm adapts 
the new position to the closest discrete position thanks to the discrete nature of the struc-
tural variables. This proposal was already assumed for the PSO algorithm (Parsopoulos and 
Vrahatis, 2002; He et al., 2004). 

 

xi t +1( ) = int xi t( ) + s x j t( )− xi t( )
dij

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (9) 

 
5. The radial sensor range is updated (6) according to equation (10), where: β is a constant pa-

rameter, and nt is a parameter to control the number of neighbours. The new solution is 
checked and evaluated. Although the new solution is unfeasible, it is accepted. In this case, 
the objective function is penalized. 
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rd
i t +1( ) = min rs , max rd

i t( ) + β nt − Ni t( )( )⎡⎣ ⎤⎦{ }  (10) 

 
6. A total nM Markov chains are run. The solution is modified by a small random movement; nv 

variables are modified by a small random variation higher or lower to the values of these nv 
variables. 

7. The solution is evaluated. Only feasible solutions whose probability is greater than a random 
number between 0 to 1 are accepted. 

 

random < e
J xi t( )( )−J xi t+1( )( )

T  (11) 

 
8. When the Markov chain ends, the temperature decreases according to equation (6). 

 
3 RESULTS USING SAGSO METHOD 

In this section, we examine the results from computational experiments involving SAGSO optimiza-
tion applied to a simply supported concrete I-Beam with a 15 m span, considering the parameters 
defined in section 2.1. The algorithm was coded in Intel® Visual Fortran Compiler Integration for 
Microsoft Visual Studio 2010 with a INTEL® CoreTM i7-3820 CPU processor with 3.6 GHz. 
 

 
Figure 2   SAGSO flowchart. 
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 To define the SAGSO parameters (tmax, n, nt, l0, rs, ρ, γ, β, s, nM, k, Mc, nv), the algorithm was 
run 3600 times. Each of the 400 combinations of parameters was performed nine times to obtain 
statistical data of the results. The parameters were randomly generated between their minimum 
and maximum values given in Table 3. Figure 3 shows the average cost and the computing time of 
each run. Tables 4 and 5, respectively, give the statistical results and the parameters of the best 
values when both cost and computing time are considered. 
 

Table 3   Values of glowworm swarm parameters. 
 

Parameter Minimum Maximum Steps 

Maximum number of iterations tmax 5 15 5 
Number of glowworms n 10 40 10 
Number of neighbours nt 5 15 5 
Initial luceferin value l0 1000 4000 1000 
Radial sensor range rs 30 70 10 
Luciferin value decay constant ρ 0.30 0.70 0.20 
Luciferin enhancement constant γ 0.30 0.70 0.20 
Constant parameter β 0.05 0.08  
Step size s 10 30 10 
Number of Markov chains nM 1 3 1 
Coefficient of cooling k 0.80 0.95 0.05 
Markov chain Mc 500 1500 500 
Modified variables nv 3 4  

 
 

 
 

Figure 3   Average cost results of SAGSO. 
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Table 4   Statistical results of the best values for the minimum cost of SAGSO. 
 

Solution Minimum cost (€) Average cost (€) Standard deviation (€) Average time (sec) 

S1 3155.17 3155.17 0.00 10.78 
S2 3155.17 3155.17 0.00 8.71 
S3 3155.17 3155.17 0.00 8.53 
S4 3155.17 3155.17 0.00 6.72 
S5 3155.17 3155.17 0.00 5.71 
S6 3155.17 3155.70 1.19 3.20 
S7 3155.17 3155.78 0.98 2.57 
S8 3155.17 3156.94 2.03 2.34 
S9 3155.17 3157.02 1.77 1.47 

 
Table 5   Parameters of the best values for the minimum cost of SAGSO. 

 
Solution n nt l0 rs ρ γ β s nv Mc k tmax nM 

S1 40 15 3000 40 0.50 0.30 0.05 10 3 1500 0.90 15 2 
S2 40 5 2000 40 0.50 0.70 0.05 10 4 1500 0.90 10 3 
S3 40 10 2000 40 0.70 0.70 0.05 20 3 1500 0.85 10 3 
S4 20 5 1000 40 0.70 0.50 0.05 20 3 1500 0.90 15 3 
S5 40 15 2000 60 0.50 0.50 0.05 20 3 1500 0.85 15 2 
S6 20 10 1000 70 0.50 0.70 0.05 10 3 1500 0.80 10 2 
S7 20 5 3000 60 0.70 0.50 0.05 10 3 1500 0.85 10 2 
S8 10 15 2000 50 0.70 0.70 0.05 20 3 1500 0.85 10 3 
S9 40 15 4000 60 0.70 0.70 0.05 10 3 500 0.80 15 1 

 
 The same procedure was repeated again minimizing CO2 emissions. Figure 4 shows the average 
CO2 emissions and the computing time. Concerning the best values for the average CO2 emissions 
and minimum CO2 emissions, Table 6 summarizes the statistical results. The corresponding param-
eters are given in Table 7. Finding the global optimum was more difficult in this case. Besides, the 
standard deviation was higher. 
 

 
 

Figure 4   Average CO2 results of SAGSO. 
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Table 6   Statistical results of the best values for the minimum CO2 of SAGSO. 
 

Solution Minimum emission  
(kg CO2) 

Average emission  
(kg CO2) 

Standard deviation  
(kg CO2) 

Average time  
(sec) 

S10 2217.75 2349.91 115.89 1.65 
S11 2317.50 2344.80 48.82 1.58 
S12 2224.91 2337.74 79.32 2.29 
S13 2217.75 2318.01 59.07 3.43 
S14 2217.75 2317.37 61.26 5.91 
S15 2217.75 2305.60 51.47 5.90 
S16 2217.75 2297.07 70.99 5.49 
S17 2217.75 2288.38 60.96 5.71 

 
Table 5   Parameters of the best values for the minimum CO2 of SAGSO. 

 
Solution n nt l0 rs ρ γ β s nv Mc k tmax nM 

S10 10 5 1000 40 0.70 0.30 0.05 30 3 1000 0.90 15 2 
S11 10 5 2000 30 0.30 0.30 0.05 30 4 1000 0.85 15 2 
S12 20 10 1000 30 0.70 0.30 0.05 20 4 1500 0.80 15 1 
S13 20 15 4000 60 0.70 0.70 0.05 20 4 1500 0.80 10 2 
S14 20 10 3000 30 0.70 0.50 0.05 20 3 1500 0.90 10 3 
S15 40 10 2000 70 0.70 0.50 0.05 30 3 1000 0.90 15 2 
S16 40 10 4000 60 0.70 0.70 0.05 30 4 500 0.90 15 2 
S17 30 5 2000 30 0.70 0.70 0.05 30 4 1000 0.90 15 2 

 
 Comparing the cost-optimized beam with the emission-optimized beam (Table 8), it is worth 
noting that emission-optimized beam has a larger section, with a greater amount of concrete and 
less steel. The exposed surface area of the emission-optimized beam was nearly double, since the 
algorithm searched maximizing the CO2 capture. Concrete cover was 35mm, the maximum allowed. 
Concerning the concrete mix, the cost-optimized beam acquired 54.2 MPa SCC and emission-
optimized beam acquired 31.10 MPa CVC. The emission-optimized beam achieved 26% fewer CO2 
emissions, but this solution is 65% more expensive. 
 

Table 8   Values of variables and constraints coefficients of the optimal design. 
 

Variable Cost-optimized Emission-optimized 

h (mm) 1570 2470 
bfs (mm) 450 600 
bfi (mm) 300 1000 
tfs (mm) 150 150 
tfi (mm) 170 150 
tw (mm) 150 150 
r (mm) 30 35 

n1 10 17 
n2 4 32 
n3 1 1 
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Table 8 (continued)  Values of variables and constraints coefficients of the optimal design. 
 

n4 4 5 
n5 9 6 

Φ1 (mm) 6 6 
Φ2 (mm) 25 8 
Φ3 (mm) 25 8 
Φ4 (mm) 8 6 
Φ5 (mm) 6 6 
Φ6 (mm) 6 6 
Φ7 (mm) 6 6 
Concrete SCC3 CVC1 

Deflection coef.1 1.00 9.07 
Cracking coef.1 1.52 infinite 
Cracking coef.2 3.03 infinite 
Bending coef.1 1.08 1.00 
Bending coef.2 1.36 1.52 

Transversal shear coef.3 1.00 1.08 
Transversal shear coef.2 1.55 1.37 

Longitudinal superior shear coef. 1.64 1.59 
Longitudinal inferior shear coef. 4.21 1.56 

Amount of steel (kg) 383.14 353.57 
Volume of concrete (m3) 4.54 8.44 

Cost (€) 3155.17 5213.55 
Emissions (kg CO2) 3017.14 2217.75 
Service life (years) 169.71 221.84 

1. Verification on central section 
2. Verification on the boundary of two different sections 
3. Verification on a section located an effective depth distance away from the edge of the sup-

port 
 
 Figure 5 shows a typical curve for CO2 emissions following SAGSO. The optimization process 
encompasses a SA search and a GSO movement (represented by a vertical line). While SA only 
makes small movements, GSO can jump to a quite different solution. 
 

 
 

Figure 5   Typical evolution of CO2 emissions for SAGSO algorithm. 
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5 COMPARISON BETWEEN HEURISTICS 

The proposed SAGSO algorithm is compared with the SA and GSO methods. Figure 6 shows the 
cost optimization results with GSO. The best solution obtained with GSO was 4557.84 euros with a 
computing time of 8.86 sec. Therefore, SAGSO found high quality solutions with the same compu-
ting time. Concerning SA, the algorithm found the best cost-optimized and emission-optimized 
beam but the computer time increased 30 times. 
 SAGSO achieved the goal sought, which was to improve the exploitation of the algorithm. GSO 
provided the global searching capability and SA speeded up the local search. Its efficiency was well 
proven. A good calibration is needed to guarantee high quality solutions with a short computing 
time. 
 

 
 

Figure 6   Average cost results of GSO. 
 
6 CONCLUSIONS 

In this paper, a hybrid method combining simulated annealing with glowworm swarm optimization 
(SAGSO) algorithms is presented and employed to optimize a concrete I-beam. The algorithm min-
imizes the economic cost and CO2 emissions of a simply-supported concrete I-beam. The algorithm 
is adapted to the discrete nature of the structural variables. The findings provide evidence to sug-
gest that large sections with a highly exposed surface area and the use of CVC with the lower 
strength grade can minimize the CO2 emissions. 
 The proposed method obtained considerably better results in terms both the quality and the 
computing time. SAGSO outperforms GSO in terms of efficiency, accuracy and convergence rate. 
The lack of feasibility and convergence to the optimum of GSO is solved thanks to the stable con-
vergence characteristics of SA. 
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