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Abstract 
Hybrid-Trefftz finite elements have been applied to the analysis of several types of structures successfully. It 
is based on two different sets of approximations applied simultaneously: stresses in the domain and 
displacements on its boundary. This method presents very large linear systems of equations to be solved. To 
overcome this issue, most authors have been careful in the choice of the approximation fields in order to have 
highly sparse linear systems. The natural choice for the stress basis has been linearly independent, hierarchical 
and orthogonal polynomials which typically result in more than 90% of sparsity in 3-D finite elements. 
Functions derived from associated Legendre and Chebyshev orthogonal polynomials have been used with 
success for this purpose. In this work the non-orthogonal polynomials available in the Pascal pyramid are 
proposed to derive a harmonic and complete set of polynomial basis as an alternative to the above-cited 
functions. Numerical tests show this basis produces accurate results. No significant differences were found 
when comparing the sparsity of the linear system of equations for both functions. 
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1 INTRODUCTION 

The hybrid-Trefftz stress element formulation presents itself as an alternative for the dominant conforming single-
field based displacement element in computational analysis after the pioneering work of Pian (1964), Pian and Tong 
(1969) and de Veubeke (1980), which has been thoroughly compiled along with other non-conventional methods by 
Freitas et al. (1999). This formulation, considering the linear isotropic case for simplicity, consists on the independent 
approximation of the stress field in the domain of the element and the displacement field on its boundary. The 
Papkovitch-Neuber solution of Navier equation is used to derive the stress approximation fields to satisfy the Trefftz 
constraint, i.e., the displacement in the domain must satisfy locally all field equations. This technique imposes the use of 
harmonic potential functions for generating stress solutions. 

The hybrid-Trefftz method, in particular when applied to 3-D problems, generates very large linear systems when 
high order polynomial approximations are used. For instance, a 50-element mesh with a hierarchical polynomial stress 
approximation of order 10 can create a matrix size larger than 20,000 × 20,000, making the sparsity feature paramount 
in the computation of the solution of the resulting linear system. The natural choice for the stress basis has been 
orthogonal polynomials to display high sparsity indices (Freitas, 1998), which typically results in high level of sparsity, 
say, more than 90% in three-dimensional finite elements. 

In this work the non-orthogonal polynomials available in the Pascal pyramid are proposed as an alternative to 
orthogonal polynomial bases to be used as stress approximation functions in the context of 3-D hybrid-Trefftz elements. 
Homogeneous Harmonic Polynomial (HHP) functions derived from the Pascal’s pyramid of polynomials proposed by 
Wang (2002) are applied to the Papkovitch-Neuber solution of the Navier equation to derive a complete set of 3-D stress 
and displacement bases. This procedure was applied with success to the analysis of plates and shells with hybrid-Trefftz 
elements by Martins et al. (2018). 

The sparsity levels of the finite element matrices produced by this approximation functions are compared to those 
produced by one set of orthogonal and harmonic functions. Without loss of generality, in this work the basis derived 
from associated Legendre and Chebyshev (LC) polynomials is the chosen one. Both Legendre and Chebyshev stress 
approximation bases are orthogonal in [-1, 1] domain. It has been used with success by Freitas and Bussamra (2000), 
whereas the drawback of this choice is that in 3-D formulation the completeness of this stress basis is limited to the sixth 
degree. In addition, the accuracy of the stress predictions of the proposed element is analyzed through numerical tests. 

Hybrid-Trefftz elements with both nodal and generalized variables framework have shown good performance in 
linear elastic (Freitas and Bussamra, 2000) and elastoplastic (Bussamra et al., 2001) analysis of solids with LC functions. 
In crack analysis, singular stress fields and stress concentration problems were analyzed using LC and Airy functions 
(Bussamra et al., 2014) and Kaczmarczyk and Pearce (2009), respectively. In multisite cracked solids, Chebyshev functions 
were applied in a nodal framework (Argôlo and Proença, 2016). 

Some authors applied the hybrid-Trefftz formulation to problems other than linear elastic mechanics. Fu et al. 
(2011) analyzed heat conduction in functionally graded nonlinear anisotropic materials using a nodal hybrid-Trefftz 
element. Cao et al. (2013), Lee et al. (2010) and Souza and Proença (2009) used complex variables derived from works 
from Muskhelishvili (1953) and Qin and Wang (2008) to approximate the domain fields when analyzing micromechanics 
of heterogeneous composites, crack singularities and the effect of selective enriching approximation functions, 
respectively. 

Wang et al. (2014) applied the dual reciprocity method to orthotropic potentials modeled with hybrid-Trefftz finite 
elements, dividing the solution into homogeneous and particular parts. Petrolito (2004) used bi-harmonic polynomials 
as approximation functions implemented in triangular elements with hybrid-Trefftz formulation to analyze stability and 
buckling of thick and thin plates in a 2-D approach and later studied vibration and stability on thick orthotropic plates 
with complex conjugate harmonic polynomials (Petrolito, 2014). Karkon and Rezaiee-Pajand (2016) studied thick 
orthotropic plates, with the difference of using orthotropic Timoshenko beam interpolation functions for approximation 
at the boundary fields and using both triangular and rectangular hybrid-Trefftz elements in various benchmark tests from 
the literature. Karkon (2015) also proposed triangular and rectangular hybrid-Trefftz elements to analyze anisotropic 
laminated plates. 

No study was found, to the best of the authors knowledge, that compares not only numerical results but also the 
proposed function’s numerical applicability measured in terms of the sparsity of their linear system of equations. 
Therefore, this work proposes to compare the aforementioned harmonic function sets in terms of sparsity and 
completeness. 
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2 FORMULATION 

The hybrid-Trefftz stress element formulation derived in this work is based on the linear elastic fundamental 
governing equations, applied to a system with domain V and enclosed by a boundary Ć, referred to a Cartesian 
coordinate system: 

D𝝈𝝈+ b �= 𝟎𝟎 in V,  (1) 

𝜺𝜺 = D*u in V,  (2) 

𝜺𝜺 = f (𝝈𝝈 −  𝝈𝝈�𝛉𝛉) + 𝜺𝜺�𝛉𝛉 in V,  (3) 

N𝝈𝝈 = t ̅Γ in Γ𝝈𝝈 ,  (4) 

u = u�Γ in Γu ,  (5) 

where vector ó and å gather the independent components of the stress and strain tensors in the equilibrium and 
compatibility equations, Eqs. (1) and (2) respectively; b �  represents the prescribed body forces vector and u the 
displacements vector. The constitutive equation Eq. (3) is represented in the flexibility format with f being the flexibility 
matrix, symmetric and with constant entries when a linear, reciprocal elastic law is assumed. ó�č and å�č represent the 
residual stress and strain vectors, respectively. For simplicity, ó𝜃𝜃, å𝜃𝜃 and b� are set to zero. Equation (4) stands for the 
Neumann boundary condition, applied in the static section of the boundary (Ćó), where tĆ̅ are the prescribed tractions. 
Equation (5) stands for the Dirichlet boundary condition, applied to the kinematic portion of the boundary (Ću), where 
the displacements (u�Ć) are prescribed. D is the differential equilibrium operator and  D* is its Hermitian transpose. Both 
are linear and adjoint in the context of geometrically linear models. Matrix N contains the unit outward normal vector 
associated with the operator D. 

2.1 Approximation fields 

The element formulation used in this work is the hybrid-Trefftz. The term hybrid means two independent field 
approximations are made. One field is approximated in the domain, and the other on its boundary. Since the element 
formulated is of the stress model, the generalized stresses are directly approximated in the domain and the 
displacements in the boundary. The stress approximation is 

𝝈𝝈 = SX in V,  (6) 

while the boundary displacement approximation is 

uΓ = Zq in Γó ,  (7) 

where S and Z contain the approximation stresses and displacements and X and q their unknown weights, respectively. 

2.2 Trefftz constraint 

The Trefftz constraint is enforced in the domain equilibrium stress approximation Eq. (6) by requiring it to satisfy 
locally the system of differential equations. This requirement renders the following condition: 

DS = 0 in V,  (8) 

which means that S must represent a self-equilibrated stress field. Equation (1) can also be written in terms of the domain 
displacement, generating the well known Navier’s equation of compatibility. It is obtained by substituting the 
compatibility equation Eq. (2) and the constitutive relation Eq. (3) written in terms of rigidity into the equilibrium 
equation Eq. (1), following: 
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𝝈𝝈 = kDTu in V, and  (9) 

DkDTu = 𝟎𝟎 in V.  (10) 

The Trefftz constraint is based on a self-equilibrated approximation field S directly associated to the domain 
displacements u. The displacements u in the domain is approximated by 

u = UX + uΓ  (11) 

where U collects the functions associated with the displacement basis, X is the displacement vector and uĆ collects the 
rigid-body motion. Substituting Eq. (11) into Eq. (9) results in the stress basis S, based in the domain displacement field 

SX = kDTUX and S = kDTU .  (12) 

3 ON THE CHOICE OF U 

According to Fu et al. (2012) some 3-D isotropic elasticity fundamental analytical solutions are available in the 
literature, as for instance the Boussinesq-Galerkin (Wang, 2002), Papkovitch-Neuber and quasi Hu Hai-Chang (Hu, 2008). 
However, Fu et al. (2012) reached the conclusion that from these presented solutions only a modified version of 
Papkovitch-Neuber’s proposed by Wang et al. (2012) is able to directly formulate a linear independent and complete set 
of displacement approximation functions. Papkovitch (1932) and Neuber (1934) independently proposed a three-
dimensional solution to the Navier equation Eq. (10) for isotropic materials, which has the form 

2Gu = −  4(1 −  ķ)Ψ + ∇(rΨ + φ),  (13) 

where ϕ and Ψ are a scalar and vector harmonic displacement potentials, respectively, r is the position vector, ∇ is the 
gradient operator, ķ is the Poisson ratio and G is the shear modulus. 

Naghdi and Hsu (1961) and Mindlin (1936) shown that the Papkovitch-Neuber solution can provide complete 
solution of the Navier equation. This means the solutions are capable of representing every elastic displacement field 
possible in a three-dimensional problem. However, Eq. (13) can provide redundant solutions, and therefore not unique, 
so it is necessary to verify for linear dependencies. The choice resides in which harmonic potential is used to generate 
the displacement field to be substituted into Eq. (12). Four independent set of functions exist in the proposed solution 
(Ψ1, Ψ2, Ψ3 and ϕ), each of them to be substituted for the desired harmonic function set. 

Moreover, Papkovitch (1932) also claimed the displacement potential ϕ could be set to zero without compromising 
the generality of the solution. Neuber (1934) claimed that any of the four harmonics could be set to zero with the same 
effect described by Papkovitch, but both statements were showed unsupported and inconclusive (Eubanks and 
Sternberg, 1956; Sokolnikoff, 1956), generating great discussion over the exact conditions that the four harmonic 
potentials could be turned into three. According to the investigation performed by Eubanks and Sternberg (1956) and 
followed by Naghdi and Hsu (1961) and Cong and Steven (1979) over the generality of the Papkovitch-Neuber potential, 
some of the conclusions found were: 

•  if the domain is convex, any of the harmonic functions in Ų could be set equal to zero (regardless of the value of ķ) 
without loss of completeness; 

•  the scalar function ϕ can be dropped if: 

o the domain is finite and star-shaped with respect to the origin; 

o if 4ķ is not an integer. 

Eubanks and Sternberg (1956) demonstrated through a counter example that if 4ķ is an integer, ϕ cannot be 
dropped; 

•  if 4ķ is non-integer and ϕ is a harmonic polynomial in x, y and z then ϕ can be dropped regardless of the form of 
the domain. 
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The finite element geometry proposed to be used in is this work is a hexahedron, a convex three-dimensional 
domain. According to the conclusions presented above the potential ϕ can be dropped without any loss. Therefore, if 
potential ϕ is dropped the Papkovitch-Neuber solution Eq. (13) applied to Eq. (9) can be expressed by 

⎩
⎪
⎨

⎪
⎧

 

σ11
σ22
σ33
τ23
τ13
τ12

 

⎭
⎪
⎬

⎪
⎫

=

⎩
⎪⎪
⎨

⎪⎪
⎧

 

(x1∂11 - A∂1)Ψ1
(x1∂22 - B∂1)Ψ1
(x1∂33 - B∂1)Ψ1

x1∂23Ψ1
(x1∂13 - C∂3)Ψ1
(x1∂12 - C∂2)Ψ1

(x2∂11 - B∂2)Ψ2
(x2∂22 - A∂2)Ψ2
(x2∂33 - B∂2)Ψ2
(x2∂23 - C∂3)Ψ2

x2∂13Ψ2
(x2∂12 - C∂1)Ψ2

(x3∂11 - B∂3)Ψ3
(x3∂22 - B∂3)Ψ3
(x3∂33 - A∂3)Ψ3
(x3∂23 - C∂2)Ψ3
(x3∂13 - C∂1)Ψ3

x3∂12Ψ3

 

⎭
⎪⎪
⎬

⎪⎪
⎫

,  (14) 

with: 

A = 2(1 - ν); 

B = 2ν; 

C = 1 - 2ν, 

considering (x1, x2,  x3) the point coordinates and ∂1, ∂2, ∂3 the partial differential operators in the three cartesian 
directions. 

3.1 Legendre and Chebyshev harmonic potentials 

Freitas and Bussamra (2000) assigned a polynomial stress basis derived from Legendre and Chebyshev hierarchical 
and orthogonal polynomials. The sparsity levels they are able to generate is paramount to the hybrid-Trefftz element 
due to the high number of degrees of freedom each element has, which leads to large linear system of equations. Their 
affinity with p- refinement is also an important and desired feature in hybrid formulations as it can exploit hierarchical 
function sets. Legendre and Chebyshev potentials generate complete sets of approximation functions, but only up to the 
sixth degree, as showed by Freitas and Bussamra (2000). The Legendre polynomials are given by 

(n + 1)Pn+1(x)=(2n + 1)xPn  −  nPn-1 , n ≥ 1, 

with 

P0(x) = 1, 

P1(x) = x. 

The potentials generated from these functions are: 

ϕk
Legendre = rnPn(𝜉𝜉k) k=1, 2, 3  (15) 

with 

r = �x1
2 + x2

2 + x3
2 

ξk = xk

r
 . 

It can be proven that this potential is harmonic if Pn is a Legendre polynomial of degree n by performing 

𝛻𝛻2φk
Legendre = 0 k=1, 2, 3 
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The Chebyshev harmonic potentials were proposed by Freitas and Bussamra (2000), and can be separated into two 
subdivisions: Chebyshev ö and Chebyshev ϕ potentials, as follows: 

φs
z = rnsen(nθ)

φc
z = rncos(nθ)      with      r = �x2 + y2,      θ = arctan(y x⁄ ),  (16) 

φs
y = rnsen(nθ)

φc
y = rncos(nθ)      with      r = √x2 + z2,      θ = arctan(z x⁄ ),  (17) 

φs
x = rnsen(nθ)

φc
x = rncos(nϑ)      with      r = �y2 + z2,      θ = arctan(z y⁄ ),  (18) 

ϕs
z = zrnsen(nθ)

ϕc
z = zrncos(nθ)

      with      r =  �x2 + y2,   θ = arctan(y x⁄ ),  (19) 

ϕs
y = yrnsen(n𝜃𝜃)

ϕc
y = yrncos(n𝜃𝜃)

 with r = √x2 + z2, 𝜃𝜃 = arctan(z x⁄ ),  (20) 

ϕs
x = xrnsen(n𝜃𝜃)

ϕc
x = xrncos(n𝜃𝜃) with r = �y2 + z2, 𝜃𝜃 = arctan(z y⁄ ).  (21) 

Legendre polynomials generate 3 different harmonic sets of functions producing a maximum of 9 independent 
fields. Chebyshev’s generates 12 harmonic sets which produce a maximum of 36 independent fields. Together, they 
produce a maximum of 45 possible fields for each degree of approximation but there may exist linear dependent modes 
and these must be eliminated. This information is shown later in Tables 1 and 2.  

3.2 Homogeneous Harmonic Polynomials 

Aiming to build a harmonic polynomial set of independent functions derived from Pascal’s pyramid trinomial 
distribution, Wang et al. (2012) applied the Laplace operator (the condition for a function to be harmonic) to the 
following polynomial, for a given degree of approximation n: 

f = (x + y + z) n.  (22) 

As an example, consider n = 2, where ai, i = (1, …, 6) are constant coefficients, then 

f = a1x2 + a2xy + a3xz + a4y2 + a5yz + a6z2.  (23) 

Applying the 3D Laplace operator: 

𝛻𝛻2f2 = 2a1 + 2a4 + 2a6 = 0.  (24) 

The result in Eq. (24) implies there is only one restriction, or dependency, among coefficients ai. Substituting Eq. 
(24) into Eq. (23) it is possible to notice five independent terms arise. Factoring them according to the coefficients 𝑎𝑎𝑖𝑖, i = 
(1, …, 5) results in the five independent terms of this polynomial set, namely 

x1
2 - x2

2,          x2
2 - x3

2,          x1x2,          x1x3,          x2x3 

The main advantage of using this harmonic set of polynomials as approximation functions lies in its full completeness 
for every desired degree of approximation n, as shown by Wang et al. (2012) and Martins et al. (2018). 

RETRACTED ARTICLE



On the sparsity of linear systems of equations for a new stress basis applied to three-dimensional Hybrid-
Trefftz stress finite elements 

Felipe Alvarez Businaro et al. 

Latin American Journal of Solids and Structures, 2020, 17(7), e307 7/17 

4 FINITE ELEMENT MATRICES 

As stated by Freitas (1998) and Bussamra et al. (2001) there are different approaches to establish the finite element 
equations from the fundamental relations Eqs. (1-5) and the basic field approximations Eqs. (6-7), namely the duality, 
principle of virtual work and well-established variational statements. Here the virtual work approach is followed. 

The element is based in the virtual work equation: 

∫ σTε dV 
V  = ∫ bTu dV 

V  + ∫ tTu dΓσ
 

Γσ
 + ∫ uTt dΓu

 
Γu

  (25) 

This requires the stress field approximation ó to be in point-wise equilibrium within the element, and the boundary 
displacement field approximation u� to be the same along adjacent elements’ common boundaries. As mentioned before, 
the generalized body forces are considered absent in this work. Substituting Neumann Eq. (4) and Dirichlet Eq. (5) 
conditions into Eq. (24) follows: 

∫ σTε dV 
V  = ∫ (Nσ)Tu dΓσ

 
Γσ

 + ∫ (Nσ)Tu�Γ dΓu
 

Γu
.  (26) 

Taking the first variation in terms of the generalized stresses of Eq. (26) leads to 

∫ δσTε dV 
V  = ∫ (Nδσ)Tu dΓσ

 
Γσ

 + ∫ (Nδσ)Tu�Γ dΓu
 

Γu
.  (27) 

Substituting approximations Eqs. (6) and (7) into Eq. (27) follows 

∫ SδXTε dV 
V  = ∫ (NSδX)TZq dΓσ

 
Γσ

 + ∫ (NSδX)Tu�Γ dΓu
 

Γu
.  (28) 

As the solution is not trivial, δX ≠ 0. Substituting the constitutive relation Eq. (3) into Eq. (28) the following system 
of equations rises: 

� ∫ STfS dV 
V  � X = � ∫ (NSδX)TZq dΓσ  

Γσ
� q + ∫ (NSδX)Tu�Γ dΓu

 
Γu

.  (29) 

Alternatively, the element equation Eq. (29) can be represented in the following form: 

FX −  Aq = v  (30) 

where, 

F =∫ STfS dV 
V   (31) 

 A = ∫ (𝑵𝑵𝑵𝑵)TZ dΓσ
 

Γσ
  (32) 

 v = ∫ (𝑵𝑵𝑵𝑵)Tu�Γ dΓu
 

Γu
  (33) 

Analyzing the equilibrium in the static boundary, given by the Neumann condition Eq. (4), and considering that the 
virtual work of the internal forces must be equal to the virtual work of the external forces 𝛿𝛿𝑊𝑊𝑖𝑖 = 𝛿𝛿𝑊𝑊𝑒𝑒  the following 
equation is obtained: 

∫ δuΓ
TNσ dΓσ

 
Γσ

 = ∫ δuTtΓ̅ dΓσ
 

Γσ
 .  (34) 

Applying the domain stress approximation Eq. (6) and the boundary displacement approximation Eq. (7) in the 
following form 

δu = Zδq 

RETRACTED ARTICLE



On the sparsity of linear systems of equations for a new stress basis applied to three-dimensional Hybrid-
Trefftz stress finite elements 

Felipe Alvarez Businaro et al. 

Latin American Journal of Solids and Structures, 2020, 17(7), e307 8/17 

into Eq. (34) results in 

− ATX = −  Q  (35) 

with 

 Q = ∫ ZT tΓ̅ dΓσ
 
Γu

 .  (36) 

Equations (30) and (35) render the system of equations in matrix form shown below: 

� F  − A
− AT 𝟎𝟎  �  � Xq � = � 

v
− Q �  (37) 

Matrix N is the normal operator related to the differential operator D. Vectors v and Q depend on the geometry of 
the element due to the prescribed displacements and prescribed tractions on its surface, respectively. Matrix A, vectors 
v and Q must be calculated for each unconstrained face. Matrix F of a given element is a square matrix of size equal to 
the number of accumulated stress fields generated by Papkovitch-Neuber solution. For each degree n Eq. 14 generates 
an approximation field that composes the stress approximation matrix S as shown in Eq. 38. The only exception is S0, 
which is a 6x6 identity matrix. 

S = [S𝟎𝟎, S1, S2, …, Sn]  (38) 

Matrix Z contains the boundary displacement approximation basis defined in Eq. (7). Its functions are built from 
simple binomial distribution, defined in each face’s local coordinates (ī1, ī2). Considering n as the boundary displacement 
approximation degree, the number of fields obtained is given by Eq. (39), where each row represents the displacement 
approximation in one specific direction. 

nZ = 3 � 1
2

(n+1)(n+2) �  (39) 

For n = 2: 

Z = � 
1
0
0

   
ξ1
0
0

   
ξ2
0
0

   
ξ1

2

0
0

   
ξ1ξ2

0
0

  
ξ2

2

0
0

   
0
1
0

   
0
ξ1
0

   
0
ξ2
0

   
0
ξ1

2

0
   

0
ξ1ξ2

0
   

0
ξ2

2

0
   

0
0
1

   
0
0
ξ1

   
0
0
ξ2

   
0
0
ξ1

2
   

0
0

ξ1ξ2

   
0
0
ξ2

2
  �  (40) 

Equation (40) represents an unconstrained face. As an example, to simulate a simply supported case in a given face 
one of the rows representing the desired constraint direction should be removed, maintaining the remaining fields. In 
case of a clamped face, where movement in the three directions are restricted, the whole face is left out of the 
calculations and it is not accounted for in Eq. (31) nor in Eq. (36). This approximation does not satisfy face-to-face and 
edge continuity between elements. This effect is lessened as the exact solution is approached. An advantage of having 
this non-conformity is the higher continuity obtained in the stresses, which is desired in a stress element Freitas (1998). 

In general, matrices F, A and vectors v, Q are defined for each element, and all of them depend either on the stress 
approximation S or displacement approximation Z. 

5 COMPLETENESS OF THE STRESS BASIS 

Observing Eq. (37), F is the only part of the linear system strictly dependent of the stress approximation S. Since the 
face integral A has influence from the boundary displacement Z, which is commonly constructed with simple independent 
polynomials, the sparsity analysis of integral A can be inconclusive in terms of the effects each proposed stress 
approximation functions have. 

As h- and p- refinements are applied to increasingly complex problems, the linear system given by Eq. (37) can 
become very large and cumbersome to solve. Therefore, a common base for comparison must be established in order to 
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obtain meaningful results regarding the sparsity levels of the LC and HHP functions. In order to do that, each of this 
function sets are evaluated in its completeness and in the independency of the generated approximation fields. 

5.1 Completeness and independency of the stress fields 

Considering that a three-dimensional complete field approximation of degree n, which has been defined by 
trinomial distribution in Eq. (22), has its size given by equation 

P (n) = 
1
2

(n + 1)(n + 2)(n + 3), 

it is necessary to subtract from this group of possible solutions the ones that do not fulfill the imposed restrictions in 
Navier’s equation 

PNavier(n) = 1
2

(n −  1)n(n + 1). 

The resulting number of accumulated independent fields after eliminating six rigid-body terms is given by 

Paccumulated(n) = 3(n + 1)2 –  6.  (41) 

Since a differentiation is applied at the Papkovitch-Neuber solution, the degree of S relates to the degree of n in the 
following manner 

ns = n −  1 . 

Table 1 shows, for each degree n, the number of independent approximation fields that are obtainable from Eq. 14 
and the accumulated amount of approximation fields carried over from the previous degrees, which is given by Eq. 41. 
The Papkovitch-Neuber solution provides 45 approximation fields for each degree of S. Out of the 45 obtained fields 
there exists linear dependencies among them which once eliminated will form the subset of linear independent fields 
that are used in Eq. (38). 

From Tables 2 and 3, it is possible to note that the approximation basis formed by: 

• Legendre + Chebyshev ϕ is complete up to 1st degree; 

• Legendre + Chebyshev φ is complete up to 3rd degree; 

• Chebyshev φ + Chebyshev ϕ is complete up to 4th degree; 

• Legendre + Chebyshev φ and ϕ is complete up to 6th degree. 

Table 2 shows how each orthogonal harmonic function set behaves when observed separately, in terms of 
independent approximation fields. In Table 3 these function sets are combined and have its completeness analyzed. It is 
possible to notice that the LC associated functions is able to generate complete stress approximation fields, according to 
Eq. (41), only up to the sixth degree. In the other hand, the HHP functions are able to generate complete sets of 
independent fields for any desired degree (Wang et al., 2012). 

Table 1. Expected number of independent fields of functions under the Trefftz constraint. Gray areas represent incomplete degrees. 

Degree of S Maximum independent fields Accumulated fields with HHP Fields obtained with Legendre-
Chebyshev 

Accumulated fields with 
Legendre-Chebyshev 

0 6 6 6 6 
1 15 21 15 21 
2 21 42 21 42 
3 27 69 27 69 
4 33 102 33 102 
5 39 141 39 141 
6 45 186 45 186 
7 51 237 45 231 
8 57 294 45 276 
9 63 357 45 321 

10 69 426 45 366 
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Table 2. Number of independent fields out of a total of 45. Each set of functions evaluated separately. Gray areas represent 
incomplete degrees. 

Degree of S Legendre Chebyshev ϕ Chebyshev φ 

0 6 6 6 
1 6 15 9 
2 9 18 12 
3 9 18 18 
4 9 18 15 
5 9 18 18 
6 9 18 18 

Table 3. Number of independent fields out of a total of 45. Functions evaluated in pairs and in trio. Gray areas represent incomplete 
degree. 

Degree of S Chebyshev ö and ϕ Legendre and 
Chebyshev ϕ 

Legendre and 
Chebyshev φ 

Legendre and 
Chebyshev φ, ϕ 

0 6 6 6 6 
1 15 15 15 15 
2 21 18 21 21 
3 27 18 27 27 
4 33 27 24 33 
5 36 21 27 39 
6 36 27 27 45 

6 NUMERICAL IMPLEMENTATIONS 

Each element’s local coordinates are mapped on a master element, an 8-node hexahedron element, through a set 
of trilinear isoparametric functions. Its natural coordinates axes defined as [q, r, t], ranging from -1 to 1 from face to face 
and with its origin situated in the center of the element. The transformation functions are defined as 

Φi = 1
8

(1 + qiq)(1 + rir)(1 + tit),                               i = 1, …, 8  (42) 

where 𝑞𝑞𝑖𝑖, 𝑟𝑟𝑖𝑖 and 𝑡𝑡𝑖𝑖  are the ith node coordinates of the master element. These functions are applied as shown below, 
where xlocal are the element’s coordinates in each element’s local system, and xmaster are the master’s hexahedron 
element coordinates 

xlocal = Φxmaster  (43) 

All surface and volume integrals are exactly calculated in the domain [1, -1] by using the Gauss-Legendre quadrature, 
as suggested by Zienkiewicz et al (2013). 

7 SPARSITY RESULTS 

Both LC and HPP potentials are compared in terms of the resulting linear systems of equations’ sparsity. As 
previously mentioned, hybrid-Trefftz finite element analysis may generate very large linear systems, where the sparsity 
feature is more than desired. In this work sparsity is defined as the number of null terms in relation to the total number 
of terms present in the linear system. A 99% sparsity level implies that only 1% of the linear system terms are non-zeros. 
The following numerical examples were programmed using the software MATLAB© 2019b. Its finite element matrices 
are transformed to its sparse form through the sparse function, and the mldivide function is used as solver for the linear 
system of equations. 

7.1 Bi-clamped beam under distributed bending load 

A bi-clamped beam under a distributed bending load q = 1 applied on the top face is used to verify the accuracy of 
the results obtained by both proposed approximation basis, and to observe how the sparsity levels change when more 

RETRACTED ARTICLE



On the sparsity of linear systems of equations for a new stress basis applied to three-dimensional Hybrid-
Trefftz stress finite elements 

Felipe Alvarez Businaro et al. 

Latin American Journal of Solids and Structures, 2020, 17(7), e307 11/17 

elements are added. The beam has length of L and a square section of 0.2L, as shown in Fig. 1. The material is considered 
linear and isotropic with Young’s Modulus E = 1 and Poisson’s ratio ķ = 0.2. Three sets of degrees of approximations are 
used: [5,2], [7,3] and [9,4], where the first number is the domain stress approximation S degree and the second is the 
boundary displacement approximation Z degree. The displacement on the middle-bottom of the beam is evaluated and 
compared to the result obtained by a commercial finite element software analysis with 22,500 quadratic hexahedron 
displacement elements, v = 5.509qL/E. 

 
Figure 1: Bi-clamped beam under distributed force q. On the right, meshes 1×1×1, 2×1×1, 3×1×1 and 5×1×1. 

 
Figure 2: Convergence analysis of bi-clamped beam using: a) LC functions; b) HHP functions. 
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Table 4. Sparsity analysis for matrix F (Eq. 31). 

FEM degrees Number of 
elements 

LC approximation functions HHP approximation functions 
F size Sparsity (%) F size Sparsity (%) 

[5,2] 1 141 × 141 87.5 141 × 141 87.3 
2 141 × 141 87.5 141 × 141 87.3 
3 141 × 141 87.5 141 × 141 87.3 
5 141 × 141 88.6 141 × 141 87.6 

20 141 × 141 87.5 141 × 141 87.3 
[7,3] 1 231 × 231* 87.6 237 × 237 87.4 

2 231 × 231* 87.6 237 × 237 87.4 
3 231 × 231* 87.6 237 × 237 87.4 
5 231 × 231* 88.5 237 × 237 87.6 

20 231 × 231* 87.6 237 × 237 87.4 
[9,4] 1 321 × 321* 87.6 357 × 357 87.4 

2 321 × 321* 87.6 357 × 357 87.4 
3 321 × 321* 87.6 357 × 357 87.4 
5 321 × 321* 88.3 357 × 357 87.6 

20 321 × 321* 87.6 357 × 357 87.4 

*Incomplete stress basis 

Table 5. Sparsity analysis for linear system of equations (Eq. 37). 

FEM 
degrees 

Number of 
elements 

LC approximation functions HHP approximation functions 

Linear system size Sparsity 
(%) 

Solving 
time (s) Linear system size Sparsity 

(%) 
Solving 
time (s) 

[5,2] 

1 213 × 213 86.2 0.004 213 × 213 85.0 0.004 
2 444 × 444 92.6 0.021 444 × 444 92.0 0.018 
3 675 × 675 95.0 0.025 675 × 675 94.6 0.026 
5 1137 × 1137 97.2 0.047 1137 × 1137 96.8 0.052 

20 4188 × 4188 99.1 0.285 4188 × 4188 99.0 0.268 

[7,3] 

1 351 × 351* 85.8 0.011 357 × 357 84.7 0.014 
2 732 × 732* 92.4 0.053 744 × 744 91.8 0.057 
3 1113 × 1113* 94.9 0.075 1131 × 1131 94.4 0.083 
5 1875 × 1875* 97.0 0.121 1905 × 1905 96.7 0.130 

20 6900 × 6900* 99.1 0.926 7020 × 7020 99.0 1.045 

[9,4] 

1 506 × 506* 85.6 0.025 537 × 537 84.4 0.030 
2 1057 × 1057* 92.3 0.109 1119 × 1119 91.7 0.136 
3 1608 × 1608* 94.8 0.162 1701 × 1701 94.4 0.208 
5 2710 × 2710* 97.0 0.258 2865 × 2865 96.6 0.317 

20 9940 × 9940* 99.1 2.194 10560 × 10560 99.0 3.472 

*Incomplete stress basis 

Table 4 displays the size and sparsity of matrix F (Eq. 31) of each element. This matrix is calculated only through the 
stress approximation function S, which results in a direct assessment of the sparsity level these functions can generate. 
In addition, the size of F is an important information since expressive computing time can be saved in the assembly of 
matrices F exploiting the fact that elements with the same material and size have the same F. In addition, the assembly 
the linear solving system (Eq. 37) is well suited to parallel processing. These two proprieties were not exploited in this 
work. The size and sparsity of the resulting linear system of equations (Eq. 37) is shown in Table 5. It is possible to verify 
that LC stress functions generated a slightly higher level of sparsity when compared to the HPP (the greatest difference, 
1,42%, is found in the 1-element mesh of [9,4] degrees). 

Table 5 also presents the computation time spent to solve the linear system of equations. The increasing of the 
approximation degree (p- refinement) has more impact than h- refinement. It is also possible to note that HHP has, in 
most cases, a higher processing time. The two main reasons for that is the higher number of non-zero terms (lower 
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sparsity) and since HHP is a complete basis for every approximation degree there are more equations in the resulting 
linear systems. This analysis ran with an Intel® Core™ i5-8400 CPU @ 2.80GHz processor. 

By analyzing figure 2, it is possible to observe that p- refinement had a higher impact when less elements were 
present. When h- refinement was performed, very good results were obtained with few elements for the approximation 
sets used. Another remark is that both potentials reached very similar results. Taking LC approximation results as a 
benchmark, Table 6 shows the relative difference compared with HHP functions. 

Table 6. Relative difference between LC and HHP approximation functions results. 

Mesh [5,2] [7,3] [9,4] 

1 × 1 × 1 1.0000 0.9871 0.9997 
2 × 1 × 1 1.0000 1.0002 0.9998 
3 × 1 × 1 1.0000 0.9998 1.0000 
5 × 1 × 1 1.0000 1.0000 1.0000 

7.2 Cracked flat plate under traction load 

In the subject of crack analysis, stress concentration and singular fields, the hybrid-Trefftz elements were applied 
by Bussamra et al. (2014, 2016) in a generalized framework with associated Legendre and Chebyshev polynomials, and 
by Kaczmarczyk and Pearce (2009) in a nodal framework with Airy functions. To verify the accuracy of the stress 
predictions of the proposed finite element, a structure with high level of stress gradient is analyzed. In this Section, a 
p- and h- refinement analyses of the results of stress intensity factor (K) of a cracked flat plate are shown. The plate is 
under a uniform far field tension ó = 1, with a crack oriented 90° from the stress application direction. The material is 
considered homogeneous and isotropic, with E = 1, ķ = 0.3, with dimensions according to Fig. 3. 

A cracked plate behavior can be described by the stress intensity factor (K), which defines the crack tip stress state 
with help of the energy release rate (ÄG) that is related with the variation of deformation energy (ÄU) in the process of 
crack growth (Äa), say (Tada et al., 1973): 

K2 = ΔGE  (44) 

ΔG= 1
h

ΔU
Δa

 .  (45) 

Therefore, the stress intensity factor can be calculated through Eqs. (44) and (45) by increasing the crack length and 
calculating the variation of the energy release rate. The result can be compared with the one obtained by Tada et al. 
(1973), given by 

K = σ√πa F( a H⁄ ),  (46) 

where F(a/H) for the given geometry is given by 

F(a H⁄ ) = �2H
πa

tan �πa
2H
�

 0.752+2.02(a H⁄ )+0.37�1- sin�πa
2H��

3

cos�πa
2H�

 .  (47) 

The analysis of the proposed beam was made using only the HHP functions. Approximation degrees  
of [5, 2], [7, 3], [9, 4], [10, 3] and [10, 4] were used, where the first term is the domain stress approximation degree and 
the latter is the boundary displacement approximation degree. Five coarse meshes were analyzed, with 4, 12, 24, 48 and 
72 elements (Fig. 3). For the given geometry and crack length the solution provided by Tada et al. (1973) is K = 5.0812. 
Results are displayed in Figure 4 and Table 7. 
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Figure 3: Clamped cracked plate under tension, and meshes with a) 4 elements; b) 12 elements; c) 24 elements; d) 48 elements; 
e) 72 elements. 

 

Figure 4: Convergence analysis of cracked plate with HHP functions. 

Table 7. Stress intensity factor K for cracked plate using HHP stress approximation functions. 

FEM degrees Mesh Linear system size Sparsity (%) K Error 

HHP [10,3] a 2274 × 2274 95.8 4.7159 -7.54% 
b 6702 × 6702 98.5 4.9607 -2.75% 
c 13314 × 13314 99.2 5.0526 -0.94% 
d 26478 × 26478 99.6 5.0630 -0.74% 
e 39702 × 39702 99.7 5.0733 -0.54% 

 Tada et al. (1973) ― ― 5.0812 ― 

RETRACTED ARTICLE



On the sparsity of linear systems of equations for a new stress basis applied to three-dimensional Hybrid-
Trefftz stress finite elements 

Felipe Alvarez Businaro et al. 

Latin American Journal of Solids and Structures, 2020, 17(7), e307 15/17 

8 CONCLUSIONS 

Orthogonal set of polynomials have been used to derive stress bases in hybrid-Trefftz finite elements by many 
authors. Legendre and Chebyshev (LC) potentials generate complete sets of orthogonal approximation functions, but 
only up to the sixth degree. In this work, a new stress basis (HHP) derived from the non-orthogonal polynomials from 
Pascal’s pyramid is proposed for generating a 3-D hybrid-Trefftz finite elements. The numerical results obtained are 
compared to the results from Legendre and Chebyshev orthogonal and hierarchical stress approximation basis in terms 
of accuracy and linear system of equations sparsity. 

The results showed that the HHP stress basis produces accurate stress and displacement approximations. When 
compared to the results produced by LC functions in the first example, the vertical displacement in the center of the 
bottom face of the beam varied less than 1,5% in maximum when compared with a benchmark solution obtained from 
displacement finite elements found in commercial softwares, but most results were around 0% when considering 4 
decimal places. In terms of sparsity, HHP produced a very sparse linear system. It stayed slightly below the levels of the 
LC functions but the sparsity levels generated are close enough to justify its use, along with very good accuracy of the 
results. 

The second numerical test showed that coarse meshes can produce very good stress intensity predictions. 
Approximation sets [5, 2], [7, 3] and [9, 4] produced good results, with less than 3% of error relative to the analytical 
solution and approximations [10, 3] and [10, 4] displayed the best results, with less than 1% of error when 24 elements 
or more are used. 

In conclusion, HHP functions are a valid option to derive the stress approximation basis for the hybrid-Trefftz 
formulation, as it produces very sparse linear systems, showed good results, is complete for every approximation degree 
and its polynomial terms are hierarchical and easily generated. 
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