Acessibilidade / Reportar erro
Ordenar publicações por
Journal of Venomous Animals and Toxins including Tropical Diseases, Volume: 30, Publicado: 2024
  • Understanding the complexity of Tityus serrulatus venom: A focus on high molecular weight components Review

    Oliveira, Isadora Sousa de; Alano-da-Silva, Nicoly Malachize; Ferreira, Isabela Gobbo; Cerni, Felipe Augusto; Sachett, Jacqueline de Almeida Gonçalves; Monteiro, Wuelton Marcelo; Pucca, Manuela Berto; Arantes, Eliane Candiani

    Resumo em Inglês:

    Abstract Tityus serrulatus scorpion is responsible for a significant number of envenomings in Brazil, ranging from mild to severe, and in some cases, leading to fatalities. While supportive care is the primary treatment modality, moderate and severe cases require antivenom administration despite potential limitations and adverse effects. The remarkable proliferation of T. serrulatus scorpions, attributed to their biology and asexual reproduction, contributes to a high incidence of envenomation. T. serrulatus scorpion venom predominantly consists of short proteins acting as neurotoxins (α and β), that primarily target ion channels. Nevertheless, high molecular weight compounds, including metalloproteases, serine proteases, phospholipases, and hyaluronidases, are also present in the venom. These compounds play a crucial role in envenomation, influencing the severity of symptoms and the spread of venom. This review endeavors to comprehensively understand the T. serrulatus scorpion venom by elucidating the primary high molecular weight compounds and exploring their potential contributions to envenomation. Understanding these compounds' mechanisms of action can aid in developing more effective treatments and prevention strategies, ultimately mitigating the impact of scorpion envenomation on public health in Brazil.
  • Skin secretions of Leptodactylidae (Anura) and their potential applications Review

    Carrillo, Juan F. C.; Boaretto, Amanda Galdi; Santana, Diego J.; Silva, Denise Brentan

    Resumo em Inglês:

    Abstract The skin of anuran species is a protective barrier against predators and pathogens, showing also chemical defense by substances that represent a potential source for bioactive substances. This review describes the current chemical and biological knowledge from the skin secretions of Leptodactylidae species, one of the most diverse neotropical frog families. These skin secretions reveal a variety of substances such as amines (12), neuropeptides (16), and antimicrobial peptides (72). The amines include histamine and its methylated derivatives, tryptamine derivatives and quaternary amines. The peptides of Leptodactylidae species show molecular weight up to 3364 Da and ocellatins are the most reported. The peptides exhibit commonly glycine (G) or glycine-valine (GV) as C-terminal amino acids, and the most common N-terminal amino acids are glutamic acid (E), lysine (K), and valine (V). The substances from Leptodactylidae species have been evaluated against pathogenic microorganisms, particularly Escherichia coli and Staphylococcus aureus, and the most active peptides showed MIC of 1-15 µM. Furthermore, some compounds showed also pharmacological properties such as immunomodulation, treatment of degenerative diseases, anticancer, and antioxidant. Currently, only 9% of the species in this family have been properly studied, highlighting a large number of unstudied species such as an entire subfamily (Paratelmatobiinae). The ecological context, functions, and evolution of peptides and amines in this family are poorly understood and represent a large field for further exploration.
  • Heterologous fibrin biopolymer as an emerging approach to peripheral nerve repair: a scoping review Review

    Muller, Kevin Silva; Tibúrcio, Felipe Cantore; Ferreira Junior, Rui Seabra; Barraviera, Benedito; Matheus, Selma Maria Michelin

    Resumo em Inglês:

    Abstract Nerve injuries present a substantial challenge within the medical domain due to their prevalent occurrence and significant impact. In nerve injuries, a range of physiopathological and metabolic responses come into play to stabilize and repair the resulting damage. A critical concern arises from the disruption of connections at neuromuscular junctions, leading to profound degeneration and substantial loss of muscle function, thereby hampering motor tasks. While end-to-end neurorrhaphy serves as the established technique for treating peripheral nerve injuries, achieving comprehensive morphofunctional recovery remains a formidable challenge. In pursuit of enhancing the repair process, alternative and supportive methods are being explored. A promising candidate is the utilization of heterologous fibrin biopolymer, a sealant devoid of human blood components. Notably, this biopolymer has showcased its prowess in establishing a stable and protective microenvironment at the site of use in multiple scenarios of regenerative medicine. Hence, this scoping review is directed towards assessing the effects of associating heterologous fibrin biopolymer with neurorrhaphy to treat nerve injuries, drawing upon findings from prior studies disseminated through PubMed/MEDLINE, Scopus, and Web of Science databases. Further discourse delves into the intricacies of the biology of neuromuscular junctions, nerve injury pathophysiology, and the broader utilization of fibrin sealants in conjunction with sutures for nerve reconstruction procedures. The association of the heterologous fibrin biopolymer with neurorrhaphy emerges as a potential avenue for surmounting the limitations associated with traditional sealants while also mitigating degeneration in nerves, muscles, and NMJs post-injury, thereby fostering a more conducive environment for subsequent regeneration. Indeed, queries arise regarding the long-term regenerative potential of this approach and its applicability in reconstructive surgeries for human nerve injuries.
  • Molecular genetic association of rs8099917 and rs1800795 polymorphisms in the progression of hepatitis Delta virus liver disease Research

    Passos-Silva, Ana Maísa; Silva, Eugênia de Castro e; Borzacov, Lourdes Maria Pinheiro; Araújo, Adrhyan; Porto, Anita Sperandio; Salcedo, Juan Miguel Villalobos; Vieira, Deusilene

    Resumo em Inglês:

    Abstract Background: The relationship between viral infections and host factors holds high hopes for identifying the role of Interferon Lambda 3 (IFNL3) and Interleukin 6 (IL-6) polymorphisms in the development of Chronic Liver Disease (CLD) in patients infected with hepatitis Delta virus (HDV) in the Western Brazilian Amazon. Methods: Cross-sectional study conducted with a cohort of 40 chronic HDV patients, 27 with CLD and 13 without evident liver damage. Biological samples from the participants were analyzed using the polymerase chain reaction (PCR) technique, followed by sequencing by the automated Sanger method. Results: The rs8099917 T allele, from the IFNL3 gene, showed a higher frequency in both groups; however, it was not possible to establish an association with HDV infection [OR = 1.42 (0.42 - 4.75; p = 0.556 (95% CI). For IL-6, the rs1800795 G allele was superior to rs1800795 C. Analyzing both distributions in the studied groups, any association with HDV was absent (p > 0.05). Conclusion: The results suggest that the rs8099917 T/G (IFNL3) and rs1800795 G/C (IL-6) polymorphisms are not associated with the evolution of HDV in the studied population.
  • Activation of M1 muscarinic acetylcholine receptors by proline-rich oligopeptide 7a (<EDGPIPP) from Bothrops jararaca snake venom rescues oxidative stress-induced neurotoxicity in PC12 cells Research

    Alberto-Silva, Carlos; Pantaleão, Halyne Queiroz; Silva, Brenda Rufino da; Silva, Julio Cezar Araujo da; Echeverry, Marcela Bermudez

    Resumo em Inglês:

    Abstract Background: The bioactive peptides derived from snake venoms of the Viperidae family species have been promising as therapeutic candidates for neuroprotection due to their ability to prevent neuronal cell loss, injury, and death. Therefore, this study aimed to evaluate the cytoprotective effects of a synthetic proline-rich oligopeptide 7a (PRO-7a; <EDGPIPP) from Bothrops jararaca snake, on oxidative stress-induced toxicity in neuronal PC12 cells and astrocyte-like C6 cells. Methods: Both cells were pre-treated for four hours with different concentrations of PRO-7a, submitted to H2O2-induced damage for 20 h, and then the oxidative stress markers were analyzed. Also, two independent neuroprotective mechanisms were investigated: a) L-arginine metabolite generation via argininosuccinate synthetase (AsS) activity regulation to produce agmatine or polyamines with neuroprotective properties; b) M1 mAChR receptor subtype activation pathway to reduce oxidative stress and neuron injury. Results: PRO-7a was not cytoprotective in C6 cells, but potentiated the H2O2-induced damage to cell integrity at a concentration lower than 0.38 μM. However, PRO-7a at 1.56 µM, on the other hand, modified H2O2-induced toxicity in PC12 cells by restoring cell integrity, mitochondrial metabolism, ROS generation, and arginase indirect activity. The α-Methyl-DL-aspartic acid (MDLA) and L-NΩ-Nitroarginine methyl ester (L-Name), specific inhibitors of AsS and nitric oxide synthase (NOS), which catalyzes the synthesis of polyamines and NO from L-arginine, did not suppress PRO-7a-mediated cytoprotection against oxidative stress. It suggested that its mechanism is independent of the production of L-arginine metabolites with neuroprotective properties by increased AsS activity. On the other hand, the neuroprotective effect of PRO-7a was blocked in the presence of dicyclomine hydrochloride (DCH), an M1 mAChR antagonist. Conclusions: For the first time, this work provides evidence that PRO-7a-induced neuroprotection seems to be mediated through M1 mAChR activation in PC12 cells, which reduces oxidative stress independently of AsS activity and L-arginine bioavailability.
  • Cytotoxic effects of crotoxin from Crotalus durissus terrificus snake in canine mammary tumor cell lines Research

    Pedro, Giovana; Brasileiro, Felipe César da Silva; Macedo, Jamile Mariano; Soares, Andreimar Martins; Mafra, Gabriel Caporale; Alves, Carlos Eduardo Fonseca; Laufer-Amorim, Renée

    Resumo em Inglês:

    Abstract Background: Mammary gland tumors are the most prevalent neoplasm in intact female dogs, and they are good natural models to study comparative oncology. Most canine mammary malignancies, as in women, are commonly refractory to conventional therapies and demand continuous new therapeutic approaches. Crotalus durissus terrificus, also called rattlesnake, has more than 60 different proteins in its venom with multiple pharmaceutical uses, such as antitumor, antiviral, and antimicrobial action. Crotoxin, a potent β-neurotoxin formed by the junction of two subunits, a basic subunit (CB-PLA2) and an acidic subunit (crotapotin), has already been reported to have anticancer properties in different types of cancers. Methods: In this work, we describe the cytotoxic potential of crotoxin and its subunits compared to doxorubicin (drug of choice) in two canine mammary carcinoma cell lines. Results: Crotoxin, CB-PLA2, crotalic venom, and doxorubicin decreased cell viability and the ability to migrate in a dose-dependent manner, and crotapotin did not present an antitumoral effect. For all compounds, the predominant cell death mechanism was apoptosis. In addition, crotoxin did not show toxicity in normal canine mammary gland cells. Conclusion: Therefore, this work showed that crotoxin and CB-PLA2 had cytotoxic activity, migration inhibition, and pro-apoptotic potential in canine mammary gland carcinoma cell lines, making their possible use in cancer research.
  • An overview of some enzymes from buthid scorpion venoms from Colombia: Centruroides margaritatus, Tityus pachyurus, and Tityus n. sp. aff. metuendus Research

    Mendoza-Tobar, Leydy Lorena; Clement, Herlinda; Arenas, Iván; Sepulveda-Arias, Juan Carlos; Vargas, Jimmy Alexander Guerrero; Corzo, Gerardo

    Resumo em Inglês:

    Abstract Background: In Colombia, several species of Buthidae scorpions belonging to the genera Centruroides and Tityus coexist, and their stings are considered life-threatening to humans because of their venom neurotoxins. Despite previous studies focusing on neurotoxins from these scorpion genera, little is known about the enzymes present in their venoms and their relationship with whole venom toxicity. Methods: Here, using proteomic and biochemical protocols the enzymatic activities of the venoms of three Colombian scorpion species, C. margaritatus, T. pachyurus, and T. n. sp. aff. metuendus, were compared to establish the presence and absence of enzymes such as phospholipases, hyaluronidases, and proteases that could be related to venom toxicity. Results: C. margaritatus was positive for hyaluronidases, T. n. sp. aff. metuendus for proteases, and T. pachyurus exhibited activity for all three mentioned enzymes. Conclusion: This information provides valuable insights into the specific enzyme diversity of each species’ venom and their potential role in venom toxicity, which could contribute to the development of better treatments and prevention strategies for scorpion envenomation.
Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP) Av. Universitária, 3780, Fazenda Lageado, Botucatu, SP, CEP 18610-034, Brasil, Tel.: +55 14 3880-7693 - Botucatu - SP - Brazil
E-mail: editorial.jvatitd@unesp.br