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Abstract
The COVID-19 pandemic brought attention to studies about viral infections and their 
impact on the cell machinery. SARS-CoV-2, for example, invades the host cells by ACE2 
interaction and possibly hijacks the mitochondria. To better understand the disease 
and to propose novel treatments, crucial aspects of SARS-CoV-2 enrolment with host 
mitochondria must be studied. The replicative process of the virus leads to consequences 
in mitochondrial function, and cell metabolism. The hijacking of mitochondria, on the 
other hand, can drive the extrusion of mitochondrial DNA (mtDNA) to the cytosol. 
Extracellular mtDNA evoke robust proinflammatory responses once detected, that may 
act in different pathways, eliciting important immune responses. However, few receptors 
are validated and are able to detect and respond to mtDNA. In this review, we propose 
that the mtDNA and its detection might be important in the immune process generated 
by SARS-CoV-2 and that this mechanism might be important in the lung pathogenesis 
seen in clinical symptoms. Therefore, investigating the mtDNA receptors and their 
signaling pathways might provide important clues for therapeutic interventions. 
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Background
At the end of 2019, a new severe acute respiratory syndrome 
coronavirus (SARS-CoV-2) emerged, and by the middle of 2020 
it was already a worldwide pandemic [1,2]. SARS-CoV-2 is a RNA 
virus and its viral proteins interact with angiotensin-converting 
enzyme carboxypeptidase 2 (ACE2) and TMPRSS2 proteins of 
the host to enter the cells and begin the viral replication causing 
the COVID-19 disease [3]. The virus is capable of causing a severe 
acute respiratory syndrome lead by an exacerbated immune 
response triggering a cytokine storm profile [4].

Several recent data have directly linked SARS-CoV-2 infection 
with the metabolic status and the mitochondrial function of 
the host cells, and there is commending evidence about an 
intrinsic relationship between the SARS-CoV-2 viral cycle and 
the mitochondrial compartment. Risk groups for COVID-19 
comprehend people with metabolic diseases like diabetes, 
obesity and elder people, that have in common decreased 
mitochondrial function and metabolic alterations [5,6]. Although 
the main immune considerations established so far regarding 
mitochondria are mainly related to the maintenance of metabolism  
in leukocytes [7,8] and the signaling pathways related to the 
detection of viral RNA (by RIG-I/MAVS for example), other 
possible immunomodulatory mechanisms, such as the release 

of mitochondrial damage associated with molecular patterns 
(DAMPs) into the intracellular or extracellular environment 
[9,10], were recently discovered. The main DAMP related to 
this organelle is mitochondrial DNA (mtDNA), the result of the 
endosymbiont origin that occurred more than 1 billion years 
ago [11]. Disruption of mtDNA signaling trough diverse pattern 
recognition receptors (PRRs) is an evolved strategy for a variety 
of RNA viruses, like dengue and influenza, among others.

As discussed throughout this article, mitochondria have 
different effects on immune responses [12,13] as mtDNA can be 
directly recognized as a DAMP, and can be linked to systemic 
inflammation and acute lung injury (Figure 1) [14]. Herein, we 
highlight a possible novel role for mtDNA in the COVID-19 
pathogenesis and give a glimpse about the receptors responsible 
for its detection and how this can be connected with a worse 
prognosis. In this review, we hypothesize that mtDNA can affect 
inflammatory processes and influence SARS-CoV-2 treatment 
approaches.

The pathological roles of mtDNA
mtDNA, unlike genomic DNA, is present in several circular 
copies of approximately 16.4kbp and it is considered rich in 
unmethylated CpG sequences, the target of receptors such as 

Figure 1. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lung pathogenesis. SARS-CoV-2 infected cells express the angiotensin-converting 
enzyme 2 (ACE2) receptor and TMPRSS2, seen in cells of the respiratory tract, among other tissues. The SARS-CoV-2 virus during the replication process hijacks 
the mitochondria, which leads to the release of mitochondrial DNA (mtDNA) into the cytosol of the cell. The mtDNA presented in the cytosol can be recognized 
by several receptors as damage-associated molecular patterns (DAMP), such as cGAS, AIM2, TLR9, activating a signal cascade. The signals activated by the DAMP-
recognition will be identified by other cells, such as neighbor epithelial cells, endothelial cells, macrophages, among others, triggering a pro-inflammatory response. 
Meanwhile, the release of mtDNA is also inducing the NETs formation in neutrophils and increasing the production of reactive oxygen species (ROS) in infected 
monocytes. The activated pro-inflammatory response in different immune cells attracts other cells to the infection site – macrophages, monocytes, T cells – boosting 
the inflammation and enhancing the cytokine production, which leads to the cytokine storm and ultimately damaging the site. The high concentration of immune 
cells and the cytokine reach other organs, which eventually causes multi-organ damage.
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Figure 2. Molecular mechanisms involved in mtDNA recognition on the cytosol and endosome. SARS-CoV-2 infection leads to mtDNA releases. The TLR9, inside 
the endosome, recognizes mtDNA and triggers the Myd88 pathway, consequently inducing the release of pro-inflammatory factors and type-I IFNs, seen as well 
in cGAS pathway, but as a response of STING activation. The mtDNA is recognized by AIM2 leading to inflammasome activation, IL-18 and IL-1β production and 
cleave gasdermin-D. 

TLR9. mtDNA is compartmentalized within the inner membrane 
of the mitochondria in healthy cells. However, in some pathologies, 
cell death events, or mitochondrial stress, mtDNA escapes from 
mitochondrial boundaries and becomes available in the cytosol or 
extracellular environment [15,16]. An overview of the mechanisms 
that lead to the presence of mtDNA outside the mitochondria 
has been extensively recently reviewed [17].

mtDNA can activate immune responses after being extruded 
in classically inflammatory cell death pathways such as necrosis, 
pyroptosis or necroptosis. 

Necroptotic cell death can decrease pathogen replication, but 
it may also release damaged mitochondria in this process [18] 
which possibly increases the level of mtDNA and inflammation. 
Likewise, necroptosis is capable of induce lung pathogenesis. 
It perturbs the bronchial epithelial integrity, as seen in mice 
infected with influenza [19], and, in humans, necrotic cell death 
in response to H1N1 infection is related to Acute Respiratory 
Distress Syndrome (ARDS) [20]. Curiously, necroptosis can be 
induced by accessory protein open reading frame 3a (Orf3a), 

presented in SARS-CoV [21], an protein also present in the 
SARS-CoV-2 genome. Although it has been shown that SARS-
CoV-2 Orf3a can induce apoptosis, it is not clear whether it 
can also stimulate necroptosis [22]. Besides, mtDNA has been 
shown to be important in several other cellular events such as 
inducing apoptosis [23], neutrophil extracellular traps formation 
(NETs) [24], renal fibrosis and chronic and acute renal diseases 
[25,26] and in inflammatory events in the lung and hepatocytes 
(Figure 1) [27–29].

In 2014, two distinct groups showed that, during apoptosis in 
a caspase 3/7 knockout model, through the permeabilization of 
mitochondrial membrane by pores formed by BAK and BAX, 
mtDNA can be released in the cytosol [30,31]. The cytosolic 
mtDNA activates mainly the cGAS-STING pathway (discussed 
below), and this leads to the induction of type I interferons (IFNs) 
production (Figure 2) [30,31]. It was discovered that during 
apoptosis, the effector caspases are responsible for suppressing 
the pro-inflammatory response as they can directly cleave 
IRF3 and cGAS, therefore inhibiting its function as a PRR, 
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consequently decreasing the production of type I IFNs [32]. Also, 
it was observed that even in the presence of effector caspases, 
the permeabilization of the mitochondrial outer membrane by 
BAX-BAK gradually increases, allowing the release of mtDNA 
[33]. mtDNA can also be released by the action of the N-terminal 
portion of the gasdermin-D protein after stimulation of cells 
with LPS [34]. Cleaved gasdermin-D can be formed as part of 
the action of the inflammasome complexes [35]. Interestingly, 
cleaved gasdermin-D can also direct to pyroptotic cell death, 
thus additionally corroborating mtDNA release. This indicates 
that the activation of inflammasome complexes can be directly 
linked to the release of mtDNA in the cytosol, which may suggest 
a new impact of these receptors directly with the mitochondrial 
homeostasis, and consequently with cell metabolism.

On mitochondria, mtDNA and SARS-CoV-2
The SARS-CoV-2 infection might be directly related with the 
mitochondrial status on the cells that are being infected, what 
could help explain why people with chronic diseases are on higher 
risk groups. Glycolysis and HIF-1α stabilizations have been 
shown to be fundamental to the replicative process of the virus in 
monocytes, with their inhibition abruptly decreasing the viral load 
in these cells [36]. Importantly, SARS-CoV-2 infected monocytes 
had an increased level of mitochondrial reactive oxygen species 
(mtROS) [36]. mtROS can directly oxidize the mitochondrial 
DNA, and therefore reduce mitochondrial bioenergetics and ATP 
supply for the cell [37]. Oxidized mtDNA and mtROS are both 
strong inductors of the NLRP3 inflammasome, a multiproteic 
complex that leads to the active forms of the cytokines IL-1β 
and IL-18 by cleaving pro-caspase1 into active caspase1 [38,39]. 
In COVID-19 patients, NLRP3 has been shown to be strictly 
associated with disease severity. NLRP3 is activated in patients 
with COVID-19 and both IL-18 and active caspase 1 can be 
associated with distinct levels of the disease [40]. Additionally, 
mtDNA when oxidized fails to undergo clearance by enzymatic 
repair mechanism, thus becoming more persistent in the cell 
and increasing their chances of activating an immune response.

SARS-CoV-2 is also proposed to have direct contact with 
mitochondria. SARS-CoV infection alter the functionality of the 
mitochondria and their accessory protein open reading frame 9b 
(Orf9b) is localized in the mitochondria [41]. SARS-CoV Orf3b, 
Orf7a and Orf8a are also in direct contact with mitochondria 
[42]. These proteins are mainly related to inducing apoptotic 
pathways in the infected cells [43,44]. Curiously, SARS-CoV-2 
also presents amino acid sequences for the proteins Orf7a, 
Orf8a, and Orf9b, analogous to SARS-CoV [42]. In fact, a 
relationship of SARS-CoV-2 with mitochondria may be even 
more intricate, given that the predicted localization of the viral 
RNA is both the nucleus an the mitochondria, suggesting that 
this relationship is important to viral replication, with the virus 
being able to hijack the mitochondria and replicate inside this 

organelle [45]. It is very possible that if this really happens 
mtDNA can be easily released by exosomes, one of the main 
mechanism that the SARS-CoV-2 uses to exit the cell [46,47]. 
These circulating exosomes containing mtDNA can be a trigger 
to a more pronounced systemic inflammation. 

There is an association of a higher mtDNA plasma levels 
with ARDS in patients during critical conditions like sepsis or 
trauma [48]. Interestingly, circulating free mtDNA has also been 
shown as a predictive marker for COVID-19 pathogenesis [49]. 
It presented itself as a very accurate predictor of the principal 
severe outcomes of COVID-19, mortality, intensive care unit 
admission and intubation. In the article that proposed this 
marker, the levels of mtDNA were a more precise biomarker 
than the current clinically utilized, like D-dimer and C reactive 
Protein [49]. This data indicates that this DAMP can be, in fact, 
pivotal for the observed lung pathogenesis.

Regarding the interactome of SARS-CoV-2 proteins with the 
host cell, Gordon et al. [50] showed that the proteins Orf9c, NSP4 
and NSP8 can also directly interact with mitochondria. Among 
the proteins found to interact with SARS-CoV-2 proteome there 
are mitochondrial ribosomal proteins, assembled proteins of 
the NADH dehydrogenase complex and proteins with intrinsic 
relationship with variety of mitochondrial metabolic pathways 
[42,50]. The article also presented results showing that a very 
considerable amount of the interactome was directed to pathways 
regarding endomembrane compartments and vesicle trafficking 
[50]. In addition, the SARS-CoV protein NSP3 was found to 
interact with the structural mitochondrial protein prohibitin 
(PHB) and modulate the cell survival signaling [51]. Although 
the result of most of the interactions presented above are still 
unknown, there is a clear presence of the SARS-CoV-2 in the 
mitochondria, inferring an important role of this organelle for 
the viral replication. 

The mtDNA receptors and their role 
in inflammatory processes – do they 
constitute a possible link with SARS-CoV-2?
In viral diseases, it is thought that the activation of mtDNA 
receptors are not restricted only to DNA viruses, since important 
pathological events such as mitochondrial stress [52] and cell 
death in the inflammatory microenvironment are triggered with 
reasonable frequency in these situations. The extravasation of 
mtDNA into the cytosol or into the extracellular environment 
is observed in infections involving RNA viruses, such as dengue 
[53], Zika (ZIKV) [54], influenza virus [55], and even possibly 
in the infection caused by SARS-CoV-2 [49,56].

As mtDNA presence in the cytosol can develop several 
different immune responses. The study of different receptors 
involved in mtDNA sensing can affect directly in our knowledge 
of the inflammatory processes. Here, we briefly describe the 
mechanisms involved in the receptors that already have been 
shown to elicit an immune response to mtDNA (Figure 3).
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Cyclic GMP-AMP synthase – stimulator of 
interferon genes (cGAS)
One of the main mechanisms that evolved to respond to the 
detection of cytosolic DNA is the protein cGAS and its downstream  
pathway. cGAS is currently regarded as the cytosolic DNA 
sensor that most corroborates with the detection and signaling 
of DNA - both endogenous and exogenous - as well as with the 
production of type I IFNs in the most diverse conditions and cell 
[57–60]. Upon recognizing DNA, cGAS catalyzes the formation 
of cyclic GMP-AMP (cGAMP) from cytosolic ATP and GTP [61]. 
The cGAMP produced by cGAS is a peculiar cyclic dinucleotide 
containing mixed phosphodiester linkages, connecting the 2’ 
hydroxyl and 5’ phosphate regions of GMP, with the 5 ‘phosphate 
and 3’ hydroxyl regions of AMP, respectively [58, 60–62]. Once 
recognized it leads to the activation of STING, an endoplasmic 
reticulum protein. After being activated STING leads to the 
activation of the transcription factors Interferon Responsible 
Factor 3 (IRF3) and NF-kB and to the induction of type I IFNs 
and inflammatory cytokines, respectively [60,63–65]. 

The conformational mechanisms that activate STING, as well 
as those that lead to the recruitment of transcription factors in its 
pathway, are not yet fully established. It was shown that STING 
needs to be phosphorylated in its Ser366 residue by the Tank 
Binding Kinase 1 (TBK1), and that TBK1 is also responsible 

for the subsequent phosphorylation and activation of the IRF3 
transcription factor [57,63,66,67]. Additionally, STING can 
recruit IKK kinase complex and lead to phosphorylation and 
translocation of NF-kB to the nucleus (Figure 2) [57]. 

The extravasation of mtDNA into the extracellular environment, 
or into the cytosol is a process seen in different RNA viruses. 
Therefore several viral strategies have emerged to try to circumvent 
the cGAS-STING pathway [68]. The Dengue Virus for example is 
capable of expressing the NS2B protease, responsible for leading 
to lysosomal degradation of cGAS [69], ZIKV is also capable 
of degrading cGAS by the action of NS1 and caspase-1 [54], 
and SARS-CoV and HCoV-NL63, two coronaviruses, express 
papain-like proteases capable of inhibiting STING-mediated 
IRF3 activation [70]. Interestingly, the SARS-CoV-2 virus also 
expresses a similar papain-like protein [71]. 

Still, in a more general context, it was recently discovered 
that the cytokine IL-1β, present in a plethora of inflammatory 
processes and derived from inflammasome cleavage of pro-IL-
1β, is capable of inducing the release of mtDNA and consequent 
activation of the cGAS-STING pathway in pulmonary epithelial 
cells A549 and the myeloid lineage THP-1 [72]. Additionally, 
Gkirtzimanaki et al. [73] also showed that INF-α leads the release 
of mtDNA in monocytes derived from patients with lupus. In this 
case, cytosolic mtDNA is derived from changes in mitochondrial 

Figure 3. DNA receptors and SARS-CoV-2 mechanisms upon infection. Scheme showing the hijacking of mitochondria due SARS-CoV-2 entry. The mitochondria 
release mtDNA as consequence of different process, such as necrosis, pyroptosis, necroptosis and apoptosis. The mtDNA can be recognized by TLR9, cGAS, 
AIM, ZBP1.
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metabolism, inducing an increase in ROS and lysosomal pH, 
culminating in an inefficient mitophagy in the monocytes 
analyzed. mtDNA in this case also induces the cGAS-STING 
pathway and leads to an increase in the cellular inflammatory 
profile [73]. Although in this case patients with untreated lupus 
were compared with healthy controls, representing in this a 
condition of chronic inflammation vs homeostasis, it would be 
important for a better understanding of the immune system to 
delimit the temporal variable and what is the necessary basal 
level of chronic inflammation for this phenotype to be observed. 
These responses may indicate fundamental insights into diseases 
where type I IFNs are important, as apparently is the case with 
SARS-CoV-2 disease.

Toll-like 9 (TLR9)
TLR’s comprehend a family of several membrane associated 
PRRs capable of sensing a variety of different stimuli, ranging 
from pathogen associated molecular patterns like LPS to damage 
associated molecular patterns like extracellular ATP. TLR9 is 
normally present in endosomes and is activated in the presence 
of unmethylated CpG of both double and single strand DNA 
structures [74]. DNA rich in unmethylated CpG structures is 
a common characteristic of several different pathogens as well 
as of mtDNA, and it is present in viruses such as Epstein-Barr 
virus [75], Herpes Simplex viruses (HSV-1 and HSV-2)[76,77] and 
Cytomegalovirus (CMV) [78]. After the recognition and binding 
of DNA by TLR9, the receptor dimerizes and allow the binding 
of the adaptor protein MyD88 [74,79,80]. This complex activates a 
signaling cascade that stimulates the translocation of NF-κB and 
IRF3 to the nucleus, leading to the expression of genes responsible 
for the production of cytokines and chemokines, such as type I 
IFNs (Figure 2) [81,82]. The detection of mtDNA by the TLR9 
receptor, similar to cGAS, also leads to a plethora of different 
responses. The recognition of mtDNA by TLR9 in the lung 
induces inflammation via NF-kB pathway [83,84]. The mtDNA/
TLR9 axis was also shown to be able to be important in the 
induction of cardiomyopathy [85], promote ischemia-reperfusion 
injury [86], induce apoptosis [87], muscle inflammation [88], 
and vascular disfunction [89,90].

Absent in melanoma 2 (AIM2)
The AIM2 sensor was initially described in 2008 [91] after 
observations that macrophages deficient in the ASC protein, 
an essential protein for the function and activity of the 
inflammasome complexes, failed to induce the cytokine IL-1β  
and cell death after the cells were transfected with double 
stranded DNA (dsDNA) [91,92]. It was observed that this event 
did not happen to macrophages lacking the NLRP3, NLRP6 or 
NLRP12 inflammasome proteins, therefore giving rise to the 
AIM2 function [92]. 

AIM2 is a multimeric cytoplasmic sensor, belonging to the 
AIM2 like receptors protein family [93] and is able to recognize 
double-stranded DNA both from self, viruses and bacteria, and 
thus form the inflammasome complex. AIM2 is able to induce 

the active forms of caspase-1 and the cytokines IL-1β and IL-
18 and also lead to cell death by pyroptosis via cleavage of the 
gasdermin-D protein [94]. 

AIM2 can be activated independent of the DNA sequence 
or GC content [95,96]. Interestingly, AIM2 binds directly to 
the two DNA strands, both between the larger and the smaller 
grooves, which explains, in theory, why their activation does 
not occur with single-stranded DNA [96]. Interestingly, in 
patients with type 2 diabetes the level of circulating mtDNA is 
significantly higher compared to healthy patients [97]. It was 
observed that this extracellular mtDNA is the driver for the 
activation of macrophages, and the subsequent induction of 
the cytokine IL-1β, contributing to the establishment of chronic 
inflammation [97]. AIM2 has also been observed to sense mtDNA 
from events of mitochondrial stress, such as increased cell levels 
of cholesterol, which lead to the extravasation of mtDNA [98], 
and in non-alcoholic fatty liver disease, driving inflammation 
and hepatocyte pyroptosis [99].

ZBP1
Z-DNA binding protein 1 (ZBP1), also referred as DAI (DNA-
dependent activator of IFN-regulatory factors), is a cytosolic 
DNA sensor related to the initiation of the innate immune 
response. It activation can lead to programmed cell death and 
inflammation [100,101]. ZBP1 when associated with DNA recruits 
TBK1 that regulates the activation of IRF3 and induces the 
expression of type I IFNs [101]. ZBP1 needs oligomerization/
multimerization to initiate its signaling transduction [102]. 

Murine L929 fibroblasts lacking ZBP1 express less NF-kB after 
infection with HSV-1, which reveals a possible importance of this 
sensor for activating a proinflammatory response [101]. However, 
the role of ZBP1 as an important DNA sensor has been questioned, 
as mice lacking ZBP1 (Zbp1 -/-) were able to generate an innate 
and adaptive immune response after DNA vaccination and after 
exposition to double-stranded B-form of DNA [103,104].

Recently, the ZBP1 DNA sensor was included in the select 
group of direct mtDNA receptors. Low levels of chronic oxidative 
stress in smoking-derived tissue damage models, have also 
been shown to be able to not only cause damage to mtDNA but 
also lead to its presence in the cytosol [52]. In this case, ZBP1 
is capable of binding to mtDNA in pulmonary epithelial cells 
and induce inflammation via TBK1 and by stabilizing the IRF3 
transcription factor [52].

It is of paramount importance for immunology to unveil 
how and when each receptor is preferentially activated to seek 
possible new therapeutic approaches, as well as to unravel the 
processes of why and how mtDNA is released from cells.

Finally, recent data is linking each one of the mtDNA receptors 
presented above with the SARS-CoV-2 infection.

In array analysis, the level of TLR9 was upregulated in 
response to SARS-CoV infection, even more than other TLRs 
such as TLR2 and TLR4 [105]. TLR9 can in fact explain a 
huge variety of the symptoms observed in COVID-19, and 
in specific cases be hypothesized as the leading cause of the 
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hyperinflammatory process [106]. AIM2 can be activated in 
monocytes infected with SARS-CoV-2 in an antibody mediated 
manner, causing pyroptotic cell death [107] and in pangolins, 
carriers of coronaviruses and together with bats, focus of studies 
of the SARS-CoV-2 zoonotic transmission to humans, lack the 
ZBP1 protein [108]. The authors of this study hypothesize that this 
difference in the innate immune system is probably a selection 
factor for pangolins to carry out coronaviruses, switching from 
a mechanism of immune virus combat and resistance, to a more 
tolerogenic state.

Regarding cGAS, SARS-CoV-2 proteins Orf3a and 3CL are 
able to interact and inhibit cGAS-STING activity. Orf3a bind 
to STING independently of it C or N terminal regions, and 
inhibit NF-kB activity and downstream gene expression [109]. 
3CL protein inhibit K63-ubiquitin-mediated modification of 
STING and also decreases the function of NF-kB. Interestingly 
in the study that reported this results, both Orf3a and 3CL did 
not interfered with IRF3 activity [109].

Conclusion
The relationship of mitochondria with the immune system is 
complex as different mitochondrial dynamics and metabolic 
pathways result in very different phenotypes of immune cells [7]. 
In addition, mitochondria can serve as inner DAMP generator, 
releasing ATP, mtDNA, and other molecules that can activate 
the immune system [10]. We have focused in the present study 
in the mtDNA, which have been shown to elicit a powerful 
proinflammatory response upon its detection. A large number of 
processes can be responsible for its extrusion of the mitochondrial 
compartment, including a variety of RNA viruses that have even 
evolved mechanisms to circumvent the mtDNA detection. 

As novel functions and interactions are discovered almost on 
a daily basis, the receptors here reviewed can possibly contribute 
to the understanding of the inflammatory process in the SARS-
CoV-2 lung pathogenesis. The presence of mtDNA in cytosol 
or in the extracellular environment is highly associated with an 
exacerbated inflammation in the lungs, one of the principal clinical 
manifestations of SARS-CoV-2 [28,110–113]. Furthermore, a vast 
number of the receptors reviewed here are directly associated 
with lung inflammatory diseases [111,112]. Additionally, each of 
the receptors reviewed here have presented significant evidence 
of relationship with COVID-19. The release and presence of 
mtDNA outside mitochondria due to SARS-CoV-2 infection 
might reflect one important pathogenic mechanism and exploring 
the role of mtDNA in clinical patients together with its receptors 
can be beneficial to unravel a new mechanism of the disease and 
to open new treatment possibilities.
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