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Abstract
Zika virus (ZIKV), an emerging arthropod-borne virus (arbovirus) of the Flaviviridae 
family, is a current issue worldwide, particularly because of the congenital and 
neurological syndromes associated with infection by this virus. As the initial clinical 
symptoms of all diseases caused by this group are very similar, clinical diagnosis is 
difficult. Furthermore, laboratory diagnostic efforts have failed to identify specific 
and accurate tests for each virus of the Flaviviridae family due to the cross-reactivity 
of these viruses in serum samples. This situation has resulted in underreporting of 
the diseases caused by flaviviruses. However, many companies developed commercial 
diagnostic tests after the recent ZIKV outbreak. Moreover, health regulatory agencies 
have approved different commercial tests to extend the monitoring of ZIKV infections. 
Considering that a specific and sensitive diagnostic method for estimating risk and 
evaluating ZIKV propagation is still needed, this review aims to provide an update of 
the main commercially approved serological diagnostics test by the US Food and Drug 
Administration (FDA) and Brazilian National Health Surveillance Agency (ANVISA). 
Additionally, we present the technologies used for monoclonal antibody production 
as a tool for the development of diagnostic tests and applications of these antibodies 
in detecting ZIKV infections worldwide.
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Background
Zika virus (ZIKV) is an RNA virus of the Flavivirus genus, 
Flaviviridae family, that belongs to the arbovirus group, 
which comprises viruses that share a cycle of transmission via 
arthropod vectors, most commonly mosquitoes, ticks and flies 
[1,2]. Other viruses that belong to the Flavivirus genus are also 
some of the most globally relevant viruses in relation to vector-
borne diseases, causing worldwide morbidity and mortality, 
including Dengue virus (DENV) subtypes 1, 2, 3, and 4 and 
Yellow Fever virus (YFV). ZIKV transmission primarily occurs 
through the bite of Aedes mosquitoes infected with the virus. 
One of the most alarming features of ZIKV is that it can be 
transmitted vertically from mother to fetus during pregnancy 
or at the time of birth, which differs from other flaviviruses 
[3]. Moreover, ZIKV exhibits long semen persistence, which is 
associated with its ability to be transmitted sexually, with great 
potential for propagation.

Most people infected with ZIKV have no symptoms, and when 
present, the symptoms are mild, such as headache, skin rash, fever, 
joint pain, muscle ache, retro-orbital pain and conjunctivitis [4]. 
It is important to emphasize that these symptoms are non-specific 
and common to several other infectious diseases, including other 
arboviruses, such as DENV, YFV, Chikungunya virus (CHIKV), 
among others. Since infected individuals generally do not present 
severe illness, they therefore do not seek medical assistance, 
though death due to ZIKV is rare [5,6]. For this reason, many 
people may not realize that they have been infected.

ZIKV was isolated for the first time in 1947 in the Ziika forest 
near Lake Victoria in Uganda [7]. The first documented outbreak 
of ZIKV outside of the African continent was described in 2007 
in Micronesia. However, there were no reports of severe cases 
described in the literature [8,9]. In late 2013, an increase in the 
incidence of Guillain-Barré syndrome was observed in French 
Polynesia after a high number of ZIKV infections were identified 
during the same period [10].

Subsequently, a small outbreak in the Northeastern Brazil 
was described in 2015 [11], and in October of the same year, 
an unusual increase in microcephaly cases in newborns was 
observed in Brazil, especially in the northeastern region [12]. 
In response, the country declared a national public health 
emergency in November [10,13]. On February 1, 2016, the World 
Health Organization (WHO) declared that such complications 
associated with ZIKV infections constitute a Public Health 
Emergency of International Concern [14].

ZIKV can be grouped into two main strains: African and 
Asian. Phylogenetic analysis indicate that ZIKV originated in 
Africa and then spread to Asia, the Pacific islands and throughout 
the Americas. The introduction of ZIKV in the Americas was 
probably due to a single introduction of an Asian strain between 
May and December 2013, more than 12 months before the 
detection of ZIKV in Brazil [15]. Some studies have already 
demonstrated intrinsic differences in pathogenicity/virulence 
between the African and Asian lineages. The Asian strain has a 
lower infection rate, lower viral production and low cell death 

induction that may contribute, at least in part, to the ability 
to cause persistent infections in the central nervous system of 
fetuses [16,17].

The structure of ZIKV is very similar to that of other 
f laviviruses. The structural proteins include the envelope 
protein (E), capsid protein (C), membrane precursor (prM) 
and membrane protein (M). ZIKV protein E is the main viral 
protein involved in cell receptor binding and entry and, therefore, 
is considered to be one of the major determinants of ZIKV 
pathogenesis [18]. Each monomer of protein E contains three 
ectodomains: domains I, II and III (DI, DII and DIII). These 
domains are involved in such functions as cell receptor virus 
binding and fusogenic properties and play a critical role in 
neutralizing antibody stimulation [19].

The nonstructural protein 1 (NS1) protein is also considered 
an important antigenic marker of ZIKV and other flaviviruses. 
NS1 is a glycoprotein that exists as a membrane-associated 
dimer after translocation to the lumen of the endoplasmic 
reticulum of virus-infected cells. As the genetic material and 
viral replication complex are also located in the endoplasmic 
reticulum, this host cell organelle is essential for flavivirus 
RNA replication [20]. In addition, infected cells secrete NS1 as 
a hexameric lipoprotein that interacts with complement system 
proteins and has many immune system modulation functions 
that contribute to evasion [20].

The incidence of ZIKV in the Americas peaked in 2016 and 
decreased substantially over the course of 2017 and 2018, with 
a slight increase in 2019 [21]. ZIKV transmission has been 
identified in all North and South American countries, except 
for Canada. It is noteworthy that in Brazil, 17,041 suspected 
cases of growth and developmental changes in fetuses that 
were possibly related to ZIKV infections and other infectious 
etiologies were reported between 2015 and 2018, with 2865 
confirmed cases [22]. Since 2015 until epidemiological week 53 
of 2019, the number of cumulative cases across the Americas 
was 857,648 [23]. In Brazil, 10,768 probable cases were reported 
throughout 2019 [24]. 

Epidemiological data contribute to assessing the incidence 
of infections and their context and complexity, assisting in the 
setting of goals and selection of necessary interventions [25]. 
Nonetheless, obtaining reliable epidemiological data is directly 
related to the efficiency of adequate diagnosis of infections. 
Concerning flavivirus infections, there is a limitation due to 
its co-circulation in certain areas, high similarity in clinical 
symptoms and cross-reactivity in laboratory diagnostic methods. 
Studies using the Notification Disease Information System 
(SINAN) database during the period from 2015 to 2017 showed 
that an increase in individuals reported having ZIKV infections 
may have contributed to a rise in misreported DENV cases, 
indicating a scenario in which people infected with Zika were 
erroneously classified as having DENV infection and vice versa 
[26].

Overall, inadequate diagnosis can interfere with the risk 
estimation, propagation, and determination of the true impact 
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of ZIKV infection on other arboviruses and, consequently, on 
an efficient response from public health agencies. Accordingly, 
this review aims to provide an update of the main commercial 
serological diagnostic test approved by the US Food and 
Drug Administration (FDA) and Brazilian National Health 
Surveillance Agency (ANVISA). This review also aims to present 
the advantages of monoclonal antibodies as tools for diagnosis, 
their recent applications in the detection of ZIKV infections and 
other perspectives regarding ZIKV diagnosis.

Zika Virus Diagnostics
The most appropriate diagnostic test for the detection of viral 
infections is dependent on the stage of the disease, which is 
divided into acute and convalescent phases. The acute phase 
is characterized by the early stages of infection when viruses 
replicate in infected cells and the host develops viremia. After the 
onset of clinical manifestations, there is an initial response to the 
infection by the production of IgM antibodies against the virus; 
this immune response is also considered part of the acute phase. 
The convalescent phase occurs in the late stages of infection, and 
a more specific and persistent IgG antibody response against 
the virus develops [27,28]. The ideal diagnostic test should have 
high sensitivity and specificity, which is the ability of the test to 
correctly identify an individual with the disease and the ability to 
correctly classify an individual without the disease, respectively. 
These terms are also defined by the equations: sensitivity = true 
positives/(true positives + false negatives) and specificity = true 
negatives/(true negatives + false positives). However, in general, 
these measures are inversely proportional, meaning that the 
higher the sensitivity, the lower the specificity, and vice versa 
[29]. Diagnostic tests can consist of molecular or serological 
assays. The former are direct assays used for detection and/or 
quantification of genetic variants, i.e., they are based on the 
presence of viral nucleic acids in bodily fluids [30]. In contrast, 
serological assays can be employed to indirectly identify the 
previous circulating virus and to measure the patient’s immune 
response against the virus by detecting antibodies against the 
virus in serum. Demonstration of the causative organism or a 
specific antibody is required for diagnosis of any infection [31]. 
ZIKV RNA may be detectable in serum for approximately 4-7 
days following the onset of symptoms. However, it has been 
demonstrated that ZIKV RNA remains detectable in serum 
for approximately 54 days after symptom onset, in urine for 39 
days, and in semen for 120 days [32]. Indeed, semen appears to 
be the fluid in which the virus persists the longest. Nicastri et al. 
[33] and Barzon et al. [34] reported the detection of viral RNA 
in semen 188 and 370 days after symptom onset, respectively.

Although IgM levels vary, they are generally positive from the 
fourth day after the onset of symptoms until up to 12 weeks, and 
the levels may persist for even longer. The IgG response develops 
shortly after the IgM response, and it has been shown that IgG 
levels remain high for at least 2 years after infection [35]. When 
patients have symptoms and visit clinics, viremia is often already 

low or undetectable, imposing a narrow diagnostic window 
for the detection of viral components [36]. Thus, serological 
diagnosis via antibody detection is an efficient approach to 
determining infection status over long periods. Serological 
assays are able to detect ZIKV infection in cases in which virus 
nucleic acids are no longer detectable. This is partly due to the 
period in which patients seek medical attention after the onset of 
symptoms or return from traveling to a ZIKV-affected country 
[37]. Despite evidence of prolonged persistence of ZIKV nucleic 
acids in body fluids [38], this genetic material is generally not 
consistently detectable in serum and urine for prolonged periods. 

Zika virus shares approximately 55.6% amino acid sequence 
identity with DENV, 46.0% with YFV, 56.1% with Japanese 
Encephalitis virus (JEV) and 57.0% with West Nile virus (WNV) 
[39]. This large similarity between flaviviruses often display 
antibody cross-reactivity, as they share multiple conserved 
epitopes that can act as a key target for cross-reactive human 
antibody responses [40]. Considering the co-circulation of 
flaviviruses in certain geographic areas, the pre-existence of 
antibodies against some flaviviruses represents a great challenge 
for understanding the immune response to and pathogenesis 
of the viruses. Thus, detection tests for IgG against ZIKV are 
not reliable due to the potential cross-reactivity in those with 
previous infections by other flaviviruses [37], hindering the 
ability to fully assess a patient’s serological profile. Studies made 
using Tick-Borne Encephalitis (TBE) and/or YFV vaccinated 
individuals’ samples evaluated the effect on the patterns of 
antibody responses in primary ZIKV infections. The results 
showed that pre-existing cross-reactive immunities had a strong 
influence on the antibody responses in primary ZIKV infections, 
resulting in higher titers of broadly flavivirus cross-reactive 
antibodies and alteration in ZIKV-specific antibodies levels [41]. 

Although ZIKV and DENV show approximately 41% to 46% 
differences in envelope protein amino acid sequence [42], the 
similarities are sufficient to allow cross-reaction between ZIKV 
and DENV, and a number of reports demonstrate the difficulty in 
distinguishing DENV and ZIKV infections serologically [43-46]. 
Furthermore, the cross-reactivity of f lavivirus antibodies 
associated with co-circulation represents a great challenge 
in obtaining specific and sensitive diagnostic tests for each 
virus of the Flaviviridae family. In addition, similar clinical 
manifestations, and even the presence of many asymptomatic 
patients, make it even more difficult to accurately diagnose ZIKV.

Public health surveillance monitors infectious diseases in the 
population. Thus, diagnostic tests has a strong role in providing 
accurate results that allow pathogen occurrence identification 
so that measures can be executed to control and prevent them 
from reappearing. Particularly, serological test is a way to 
better understand the expansion of the infection through the 
population, allowing a serosurveillance on a herd level. Tests 
should be easy to use and provide a rapid result to have a positive 
impact on care [47]. The dynamics of testing infectious diseases 
needs to act as a bridge between the laboratory and public 
health organs to support surveillance activities. Surveillance 
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case data applied to perform epidemiological mapping, using 
geographical information system (GIS) approach, can be helpful 
for a preventive and control strategies [48].

Approved and Commercial Serologic Tests 
for Zika Virus
Given the necessity of establishing strategies for the control 
and dispersion of ZIKV, the Centre for Disease Control and 
Prevention (CDC) has established recommended guidelines 
for ZIKV diagnosis. The diagnostic tools consist of reverse 
transcriptase reaction assays followed by real-time polymerase 
chain reaction (RT-qPCR), ZIKV IgM antibody capture 
immunoenzyme assays (MAC-ELISAs) and plate reduction 
neutralization tests (PRNTs) [8,49].

The RT-PCR assay is only applicable during the acute phase of 
infection, when viral RNA is still detectable in body fluids, and 
the persistence of viral RNA varies according to the biological 
material examined. The sensitivity of the RT-PCR assay is 
very important to avoid false negative results [50]. Up to ten 
mismatches have already been identified between the nucleotide 
sequences reported in published assays and the consensus 
sequence of the Asian ZIKV strain, in addition to mismatches 
in primers and probes used in the RT-PCR amplification. Such 
inconsistencies are a potential limiting factor for the sensitivity of 
the test due to the existing genetic variability in the Asian strain 
[50,51]. Therefore, there must be a continuous surveillance to 
detect new ZIKV variants and an update in molecular methods 
by modifying the primer and probe sequences to overcome the 
impact of the mismatches mutations and improve the detection 
sensitivity.

MAC-ELISA is a serologic test used for qualitative detection of 
IgM antibodies in the serum or cerebrospinal fluid. Nonetheless, 
the results can be difficult to interpret due to the possible non-
specific reactivity of antibodies. Consequently, tests determined 
to be positive, equivocal or inconclusive should be confirmed 
by PRNT, a serological test based on the ability of specific 
antibodies present in the serum of patients to neutralize viruses 
by preventing plaque formation in a cell monolayer. PRNT 
is currently considered the “gold standard” for differential 
flavivirus serodiagnosis due to its high specificity. However, 
this assay has a high cost, requires highly specialized laboratories 
with adequate equipment to maintain cell culture, and special 
regulations for working with the active virus; it is also difficult to 
perform, and 5 to 10 days are required to obtain results [49,52].

Among the available serological commercial tests, the tests 
developed by Euroimmun AG (Germany) and InBios (USA) are 
noteworthy. The Euroimmun assay was the first commercially 
available serological test for ZIKV detection, and it has been 
extensively evaluated in the literature [53-56]. The anti-Zika 
virus IgM/IgG/IgA ELISA is based on an ELISA using the Zika 
virus NS1 protein for the detection of IgM, IgG and IgA in serum 
samples. Studies such as those by Huzly et al. [53] reported high 
specificity of this test using different serum samples from patients 
with previous flavivirus infections. Additionally, L’Huillier et 

al. [54] conducted a comparative study between Euroimmun 
IgM and IgG ELISAs and MAC-ELISA and subsequent PRNT 
for the confirmation of positive or inconclusive results. It was 
demonstrated that Euroimmun’s combined IgG/IgM test 
presented good specificity (95%) that was even better than that of 
MAC-ELISA, though the sensitivity of this test was significantly 
lower than that of MAC-ELISA (39.5%).

The InBios assay, also known as the ZIKV Detect 2.0 The 
IgM Capture ELISA kit, is an assay based on capture ELISA 
for qualitative detection of IgM antibodies against ZIKV using 
the viral envelope protein as an antigen. This assay was the 
first commercial serological test to receive FDA marketing 
authorization in the USA, granted in May 2019 [57]. Granger 
et al. [58] and Safronetz et al. [59] demonstrated that the InBios 
test provides diagnostic results comparable to those of the CDC 
MAC-ELISA and still exhibited high sensitivity (100%). The low 
sensitivity observed with the Euroimmun assay may be due to 
the high specificity of ZIKV antibodies. Specificity is a critical 
factor for a diagnostic test, as sensitivity is an important feature 
in determining its usefulness, and low sensitivity can lead to 
false negative results. Although additional studies with a larger 
panel of samples are still needed, these tests have great potential 
for the serological evaluation of ZIKV infections with reduced 
time for confirmation of infection, and these tests may decrease 
the need for PRNT confirmation tests.

The ADVIA Centaur Zika test was the second Zika diagnostic 
test that the FDA has allowed to be marketed in the USA for 
detecting ZIKV IgM antibodies. The third and last authorized 
test to be marketed was LIAISON XL Zika Capture IgM 
Assay II. Previously, these tests had only been authorized for 
emergency use under the FDA’s Emergency Use Authorization 
(EUA) authority. A unique serological test that is still under 
the FDA’s EUA is DPP Zika IgM Assay System from Chembio 
Diagnostic Systems [60]. In Brazil, ANVISA has also approved 
the registration of some of these commercial tests to broaden 
access to diagnosis and allow for greater monitoring of ZIKV 
infection. Currently, there are 48 tests approved by ANVISA; 
36 are serologic tests, some of which are described in Table 1 
[61]. Most of them present elevated sensitivity and specificity. 
However, these tests are generally not validated using samples 
from more than two different countries or regions, limiting their 
use in a wide and universal way due to the different circulating 
strains of ZIKV. Different ZIKV isolates may present genotypic 
and phenotypic variations that influence the manner by which 
the immune system responds and thus the antibody response to 
the virus [62]. Overall, these assays have good prospects for use 
in routine diagnostic laboratories if they pass for a systematic 
clinical evaluation.

Monoclonal Antibodies Used in Zika Virus 
Diagnosis
Monoclonal antibodies (MAbs) are products of individual B-cell 
clones. They have broad applicability in therapies and drug 
targeting, and have a profound impact on the immunodiagnostics 
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Table 1. Main currently approved ANVISA tests.

Test Company Test format ZIKV 
antigen Sensitivity Specificity

DPP Zika IgM/IgG 
Assay System

Chembio Diagnostic 
Systems (USA) Immunochromatographic NS1 IgM: 89.5%

IgG: 97.5%
IgM:97.7%
IgG: 98.3%

RecombiLISA Zika 
IgM ELISA Kit CTK Biotech (USA) ELISA NS1 94.7% 98.5%

ZIKV IgM ELISA kit DIA.PRO Diagnostic 
Bioprobes Srl (Italy) ELISA – IgM: 69%

IgG: 80.5
IgM: 96%
IgM: 94%

LIAISON XL Zika 
Capture IgM Assay

DiaSorin 
(Italy)

Microparticle 
antibody capture 

chemiluminescence 
immunoassay

NS1 100% 91.2%

Zika ELISA IgM/ IgG Vircell S. L. 
(Spain) ELISA – IgM and IgG: 91% IgM and IgG: 99%

ZIKV-DENV-CHIKV 
IgM/IgG IFA Immunofluorescence Infected cells IgM: 93.3%

IgG: 94.7
IgM: 94.4%
IgG: 94%

Anti-Zika virus 
ELISA IgM/IgG

Euroimmun 
(Germany) ELISA NS1 IgM: 87%

IgG: 100% IgM and IgG: 97%

IIFT Arboviral Fever 
Mosaic 2 IgM/IgG Immunofluorescence Infected cells IgM: 96.9%

IgG: 96.8%
IgM: 98.1%
IgG: 93.4%

NovaLisa Zika Virus 
IgM µ-capture

NovaTec 
Immunodiagnostica GmbH 

(Germany)
ELISA NS1 98.5% 100%

Elecsys® Zika IgG Roche Diagnostics 
(Switzerland) ELISA – 93.11% 99.82%

STANDARD E 
Zika IgM

SD Biosensor Inc. 
(South Korea) ELISA – 100% –

STANDARD Q 
Zika IgM/IgG Immunochromatography – IgM: 98%

IgG: 75.9%
IgM: 100%
IgG: 70%

Zika IgG/IgM Ebram Laboratory 
Products (Brazil) Immunochromatography – 99.9% 98.9%

Imuno-Rapid Zika 
IgG/IgM

Wama Laboratory 
Products (Brazil) Immunochromatography ZIKV 

inactivated 96.2% IgG: 99.1%
IgM: 98.2%

Allserum Zika IgM Mbiolog Diagnostic 
(Brazil) ELISA NS1 100% 94.4%

Kit Xgen Zika Virus 
IgG/IgM

Mobius Life Science 
Industry and Commerce 
of Laboratory Products 

(Brazil)

ELISA NS1 IgG: 100%
IgM: 98%

IgG: 98%
IgM: 98%

OL Zika Ag NS1 Orangelife Commerce and 
Industry (Brazil) Immunochromatography – 90.2% 99.5%

OL Zika IgM/IgG Immunochromatography – IgM: 93%
IgG: 94%

IgM: 97%
IgG: 98%

Zika IgG/IgM Rapid Test Diagnostic Industry and 
Commerce (Brazil) Immunochromatography – – –

ECO F Zika IgG/IgM Eco Diagnostic Ltda 
(Brazil) Immunofluorescence – 98% 99%

ECO F Zika Ag Immunofluorescence NS1 97% 97%

ZiKa IgG/IgM ECO Teste Immunochromatography – 97.38% IgM: 100% e IgG: 
96.34%

NS1: Nonstructural protein 1.
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of infections. MAbs interact with a single antigenic determinant, 
allowing for specific reactivity and accurate identification of the 
organism of interest. This feature confers a great advantage to 
MAbs versus polyclonal antibodies, which have different epitope 
specificities and affinities [63,64]. Moreover, MAbs are relatively 
easy to use and introduce into trials.

Regarding MAb production, advances in molecular biology 
and genetic engineering over the years have led to different 
methods of producing and modifying these antibodies, as 
opposed to the traditional technique of hybridoma production. 
Some of these MAbs are produced through cell-free libraries, 
combinatorial synthetic libraries, affinity maturation, and 
production in transgenic animals and plants, as well as several 
other technologies, allowing for great robustness and interaction 
efficiency with a specific target [64]. 

The development of MAbs has been mainly focused on the 
development of therapies for cancer, autoimmune diseases, and 
inflammatory conditions. However, the application of MAbs 
for infectious diseases still has limitations [65]. One of the 
main reasons for this scenario is the economic viability for 
MAb production against targets that may cause an episodic 
disease, hindering their continued production. MAb production 
generally involves stages of establishment and optimization of 
cell culture process, following antibody production, purification, 
and polishing steps. The costs of the final product can still be 
a limiting factor for commercial manufacturing. Meanwhile, 
alternatives have been made to maximize product yield and to 
improve the robustness [66], in order to enable MAbs application 
expansion in the field of infectious diseases.

Figure 1 illustrates an antibody-capture assay, representing 
how monoclonal antibodies can be used for a serology assay 
to detect IgM or IgG antibodies in patient’s serum samples. 
The capturing method typically employs a capture antibody, 
anti-IgG or anti-IgM, coated in a surface, then serum sample is 
incubated, followed by addition of ZIKV antigen and a specific 
anti-ZIKV MAb conjugated with an enzyme. A substrate for 
the enzyme is then added and, after a short incubation, the 
signal is measured.

Despite the worldwide effort to facilitate flavivirus diagnostics, 
no fully validated serological test shows good sensitivity and 
specificity without the interference of false positive or negative 
results and is also robust and rapid. Accordingly, the search for 
MAbs that specifically recognize each virus of this family is 
extremely relevant and has been addressed by many researchers. 
Table 2 presents the main monoclonal antibodies against 
ZIKV currently reported in the literature. To date, there are 21 
MAbs that mainly target ZIKV E protein, with DIII being the 
predominant epitope. All these MAbs demonstrate neutralizing 
activity or specific detection. Table 3 lists selected studies in 
which some of these MAbs have been applied in diagnostic 
tests for ZIKV.

Among the tests referred in Table 3, the rapid test developed 
by Kim et al. [77] was the first rapid test to be developed and the 
first test to receive approval from ANVISA with cooperation of 
BahiaFarma (Bahia, Brazil) and GenBody Inc. (Cheonan, Korea). 
Regarding MAb obtention techniques, hybridoma production 
is the most well established, is considered the most traditional 
methodology and is still the most widely used. This technique 

Figure 1. Schematic representation of an antibody capturing serology method for detection of IgG and IgM antibodies in serum sample using a monoclonal 
antibody that recognizes ZIKV antigen.
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Table 2. Main monoclonal antibodies against ZIKV.

Source MAb Epitopes

Murine 1 (2A10G6) [67] Fusion Loop

Human 1 (ZKA64) [68] DIII

Murine 2 (ZK54/ZV67) [69] DIII/DIII

Human 3 (Z3L1/Z23/Z20) [70] DI, DII/
DIII, DI/DIII

Human 1 (ZIKV-117) [71] DII

Murine 1 (ZV-2) [72] E

Human 1 (Z004) [73] DIII

Human 1 (ZKA35) [74] NS1

Human 2 (m301/m302) [75] DIII

Murine 1 (1F12) [76] NS1

Murine 2 (J5E1/J2G7) [77] E/NS1

Human 1 (ZK2B10) [78] DIII

Human 3 (P1F12/P1H09/P1804) [79] E

Human 1 (ZIKV-195) [80] DI/DII

MAb: monoclonal antibody; E: envelope protein; DI: envelope domain I; DII: 
envelope domain II; DIII: envelope domain III; NS1: nonstructural protein 1.

is based on the fusion of B lymphocytes with myeloma cells to 
generate hybrid cells that continuously produce antibodies in vitro 
[82]. However, the steps for producing hybrid cells are laborious 
and dependent on immune response induction. Alternatively, 
techniques involving isolation of infected plasmoblasts or 
memory B cells from infected individuals have been widely 
employed. The great advantage of these methodologies is the 
isolation of antibodies from donors who carry antibodies 
derived from cells that were activated naturally, allowing for 
full exploration of the strength of the human antibody response 
to a pathogen [83].

The MAb developed by Balmaseda et al. [74] is derived from a 
panel of MAbs produced by immortalization of memory B cells 
using Epstein-Barr virus from four infected ZIKV donors of the 

recent epidemic. Robbiani et al. [73] and Sapparapu et al. [71] 
also isolated MAbs by expanding memory B cell clones from 
ZIKV-infected individuals. Prior characterization of these clones 
was performed based on their ability to bind viral proteins, such 
as NS1 and E, and their ability to neutralize ZIKV infection.

In addition to the methodologies for MAb obtention, phage 
display has emerged as one of the main alternatives for the 
generation of human recombinant MAbs. Phage display enables 
to select human MAbs without in vivo immunization through 
the selection of combinatorial libraries of human antibodies 
displayed on filamentous phage surfaces against a target antigen, 
allowing for rapid and economical MAbs generation [84]. The 
phage display biopanning process mimics B cell clonal selection 
of the immune system by enriching phage particles that express 
antibodies with a desired specificity [85]. Therefore, the technique 
is highly robust due to the high stability of the phages, allows for 
the control of biochemical parameters throughout the selection 
process, and can shape the specificity profile of an antibody 
from the beginning. Wu et al. [75] identified a panel of human 
MAbs with high affinity and specificity for ZIKV DIII from a 
phage display naïve antibody library.

Phage display is also considered an important tool for 
mapping the epitopes of monoclonal antibodies. In this regard, 
Ravichandran et al. [85] explored different approaches using 
whole-genome fragment phage display libraries covering the 
entire ZIKV genome. From this library, the authors mapped 
some ZIKV-specific MAbs, selected ZIKV-E-specific antibodies 
from the serum and urine of infected patients and performed 
comprehensive antibody repertoire analyses of these samples, 
allowing for the assessment of the immune response against viral 
infections and the identification of targets for serodiagnosis.

The abovementioned techniques include different antibody 
formats, such as whole antibodies, fragment antigen binding 
(Fab) or single-chain variable fragments (scFv). Each of 
these formats has advantages and disadvantages based on 
the desired application. For diagnostic methods, such as 
immunohistochemistry, the lack of Fc ensures the reduction 

Table 3. Monoclonal antibodies used in ZIKV diagnostic tests.

MAb Molecule(s) 
detected Test format Method of MAb 

isolation Sensitivity Specificity

ZV-2 [72] E protein Electrochemiluminescence Hybridoma 1 PFU in 100 μl of 
samples –

Anti-ZIKV NS1 [81] NS1 protein Immunochromatography Hybridoma 81% 86%

ZKA35 [74] NS1 protein Blockade-of-binding ELISA Memory B cells from 
infected individuals 95% 91.9%

1F12 [76] NS1 protein Double-antibody sandwich 
ELISA Hybridoma 99.8% –

J5E1 and J2G7 [77] IgG and IgM Immunochromatography Hybridoma 99% IgG
96.7% IgM

99.3% IgG
98.7% IgM

P1F12, P1H09 and 
P1804 [79] Zika particles ELISA Plasmablast from 

infected individuals – –

MAb: monoclonal antibody; E: envelope protein; NS1: nonstructural protein 1; PFU: plaque-forming unit.
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of non-specific binding in addition to a good tissue distribution 
[86]. Given this advantage, single-domain antibodies (sdAbs) 
have emerged with great potential for diagnostic applications, 
mainly due to their high stability and ability to recognize cavities 
and cracks in the surface of proteins that cannot be recognized by 
conventional recombinant antibody formats. In addition, these 
antibodies have a low cost and are relatively easy to produce 
compared with other antibody formats [87]. Considering the 
need to develop rapid and effective diagnostic methods and the 
increasing use of antibody-based health products, sdAbs can be 
considered an important biotechnological tool for application 
in the diagnosis of infections with the ability to cause sudden 
outbreaks, as in ZIKV infection.

Other Perspectives in the Development of 
Serological Diagnoses for Zika Virus
Other innovative methodologies have been applied for the 
development of serological diagnostics with the potential to 
outperform conventional methodologies in terms of speed 
and sensitivity. The reporter virus neutralization test (RVNT) 
represents a very promising alternative to the PRNT. RVNT 
uses luciferase-labelled ZIKV and DENV, and neutralizing 
antibodies can be quantified within 24 h instead of the typical 
7-day period required for plaques to be visible with the PRNT 
method [57]. Wang et al. [88] developed a capacitive biosensor 
using microwires coated with the ZIKV envelope protein for 
the detection of serum antibodies; this biosensor represents a 
robust label-free assay that enables rapid diagnosis of infection 
at the point of care (POC). Mishra et al. [89] used a designed 
platform of peptide array to identify discriminant epitopes for 
serodiagnosis of ZIKV infection. Based on results obtained with 
peptide array, they developed a ZIK NS2B peptide ELISA that 
presented high sensitivity (96%) and specificity and (95.9%). 

In addition, Kareinen et al. [90] developed a time-resolved 
Förster resonance energy transfer (TR-FRET) assay involving 
two chromophore-labelled proteins (ZIKV NS1 protein and a 
superantigen) that bind simultaneously to an antibody present 
in a patient’s serum. This technique showed high sensitivity and 
specificity, with the potential to be applied in POC diagnoses. 
Zhang et al. [91] also constructed a highly multiplexed and 
programmable peptide array platform containing the ZIKV 
NS1 and DENV2 antigens on a nanostructured plasmonic gold 
(pGOLD) platform. The chip can capture IgG and IgA antibodies 
against ZIKV and DENV antigens in patient serum. The pGOLD 
platform is capable of amplifying near-infrared fluorescence by 
up to ~ 100 times, allowing for the sensitive analysis of multiple 
analytes.

Final Considerations
ZIKV infections constitute a major public health problem in 
Brazil and around the world, mainly due to the magnitude 
of its complications, and there are still major challenges in 
our understanding of ZIKV infection mechanisms. Among 

them, the lack of complete understanding regarding the risk 
of complications according to different strains of the ZIKV, 
possible environmental, genetic or other cofactors that may 
increase the risk of complications and the lack of knowledge 
of the role of asymptomatic infections and other modes of 
transmission play in the general dynamics of circulation. This 
scenario makes it difficult to fully characterize the damage that 
ZIKV infections can cause. 

Despite the great advances in serological assays in the last 
years, the incomplete knowledge about the pre-existing immunity 
for other flavivirus of the population in endemic countries, 
may impose difficulties in diagnosis [92]. Some improvements 
allowing multiplexing of detection assays to numerous 
arbovirus, providing a serological panel of an individual and 
high throughput testing, would increase the quality of serologic 
data generated. Moreover, the implementation of tests that 
present portable, rechargeable devices and the possibility to be 
conducted without extensive technical skills in the communities 
reality, may also facilitate determination of infection spread and 
the level of care [93]. 

Since the beginning of the ZIKV epidemic, many efforts 
from health care organizations around the world have been 
applied to the development of plans for ZIKV control. In 2016, 
the WHO implemented the Zika Strategic Response Plan, 
which involves four main objectives to support governments 
in preventing and managing the complications caused by this 
virus and mitigating the socioeconomic consequences, including 
detection, prevention, care and support, and research [94]. In 
Brazil, different strategies were developed by the Ministry of 
Health, including developing a National Microcephaly Coping 
Plan through the mobilization and control of Aedes aegytpi, 
updating surveillance protocols and responding to ZIKV 
infections and its resulting complications. Moreover, for the 
first time, the Ministry of Health has organized a network of 
integration between managers, researchers and civil society to 
cope with the disease: Renezika. The creation of this network has 
demonstrated the ability of the Brazilian scientific community to 
respond to major international health problems and to propose 
relevant activities such that future emergencies can be prevented 
with rapid and effective action.

Conclusion
Despite the limitations in flavivirus serological assays due to 
high cross-reactivity, many advancements have been made 
in ZIKV diagnosis, even with the decrease in the number of 
infected patients. Investment in the development of innovative 
methodologies to obtain immunobiological products quickly and 
effectively represents a crucial factor for the advancement of public 
health systems worldwide. Contemporary molecular biology 
and molecular immunology technologies, such as antibody 
engineering and phage display, allow for the possibility of 
producing a specific human antibody with relatively high affinity 
to a target molecule in vitro without in vivo immunization. The 
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application of these biomolecules in innovative technologies, such 
as biosensor chips, with potential application in POC diagnosis 
may enable increased epidemiological control efficiency. These 
tests may ensure accurate evaluation of ZIKV infection rates, 
contributing to the development of efficient public policies to 
combat this infection.
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