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Abstract

Background: Variability in snake venoms is a well-studied phenomenon. However,
sex-based variation of Bothrops atrox snake venom using siblings is poorly investigated.
Bothrops atrox is responsible for the majority of snakebite accidents in the Brazilian
Amazon region. Differences in the venom composition of Bothrops genus have been linked
to several factors such as ontogeny, geographical distribution, prey preferences and sex.
Thus, in the current study, venom samples of Bothrops atrox male and female siblings
were analyzed in order to compare their biochemical and biological characteristics.
Methods: Venoms were collected from five females and four males born from a snake
captured from the wild in Sdo Bento (Maranhao, Brazil), and kept in the Laboratory of
Herpetology of Butantan Intitute. The venoms were analyzed individually and as a pool
of each gender. The assays consisted in protein quantification, 1-DE, mass spectrometry,
proteolytic, phospholipase A, L-amino acid oxidase activities, minimum coagulant
dose upon plasma, minimum hemorrhagic dose and lethal dose 50%.

Results: Electrophoretic profiles of male’s and female’s venom pools were quite
similar, with minor sex-based variation. Male venom showed higher LAAO, PLA,
and hemorrhagic activities, while female venom showed higher coagulant activity. On
the other hand, the proteolytic activities did not show statistical differences between
pools, although some individual variations were observed. Meanwhile, proteomic
profile revealed 112 different protein compounds; of which 105 were common proteins
of female’s and male’s venom pools and seven were unique to females. Despite individual
variations, lethality of both pools showed similar values.

Conclusion: Although differences between female and male venoms were observed,
our results show that individual variations are significant even between siblings,
highlighting that biological activities of venoms and its composition are influenced
by other factors beyond gender.
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Background

Snakebite envenomation is considered a worldwide Category
A neglected tropical disease and constitutes a public health
problem in warmer regions of the developing world [1,2]. In
Latin America, the family Viperidae is responsible for most of the
registered snakebite accidents, and in Brazil, the genus Bothrops
is responsible for 85% of the ophidian envenomation [1-5].

Bothrops atrox (common lancehead) is a pit viper species
widely distributed in the northern region of South America
[7-9] and its natural history is already well documented [10].
This generalist species occurs mostly in rainforests, but can
also be found in disturbed areas. In relation to other Bothrops
species, the common lancehead shows preference towards heavier
preys [11]. Males are smaller than females and are more prone
to higher mortality, considering the active foraging lifestyle
of the species. In fact, B. atrox exhibits a dynamic use of its
habitat, being known as one of the most active hunters of the
Bothrops genus [9,11,12]. B. atrox venom causes mainly local
damage, such as edema, hemorrhage and necrosis, apart from
systemic effects, including blood coagulation disorders [13,14].
In lethal cases, hemorrhage leads to cardiovascular shock and
acute renal failure secondary to acute tubular necrosis and
occasionally glomerulonephritis [7,15]. These symptoms are the
result of individual or synergistic action of different toxins that
comprise the venom of snakes [16,17], such as phospholipases
A, (PLA_s), metalloproteinases (SVMPs), serine proteinases
(SVSPs), L-amino acid oxidases (LA AOs), among others [1,18].
The knowledge about the composition and action of snake
venoms allows us to understand the evolutionary processes in
ophidians [19] and elucidate the mode of action of toxins and the
demand for their antagonists [20]. In addition, as snake venoms
are a rich source of bioactive compounds with pharmaceutical
potential, they can represent an improvement in snakebite
envenoming treatment, which can impact significantly on the
victims symptoms and the quality and efficacy of antivenoms
[21,22].

Individual variability is a well-established concept when
referring to intraspecific variation of snake venom composition
and/or its activities, and may be related to ontogeny [23-25], diet
[26,27], seasonality [28], geographical location [29-31], gender
[32-35], and captivity [22,36]. Within the Bothrops species,
B. jararaca venom is the most studied one regarding gender
differences [32,37], contrary from B. atrox, despite its high
geographic distribution and epidemiological representation.
In this context, the present study aims to compare, for the first
time, the biochemical and biological characteristics of male and
female venom of B. atrox siblings. Both genders were born in
captivity and maintained under controlled conditions, in order to
contribute to the knowledge of changes in venom characteristics
according to sex, as well as the formulation of pharmacological
tools for inhibiting the toxic effects of this venom.

Methods

Animals

Mus musculus (Swiss) male mice (18-22 g) were obtained from
Butantan Institute animal house, had access to water and food
ad libitum and were kept under a 12 h light/dark cycle. B. atrox
specimens (5 females and 4 males over 11 years of age) (Additional
file 1) were born from the same snake captured from the wild
(Sao Bento, Maranhio, Brazil), and kept in the Laboratory of
Herpetology of Butantan Institute under controlled conditions.

Venoms

The venom was extracted from nine B. atrox snakes (5 females
and 4 males born from the same mother), centrifuged for 15 min
at 1700 x g, 4 °C, to remove any scales or mucus, lyophilized,
and stored at —20 °C until use. Information regarding the snakes
is available in Additional file 1.

Compositional analysis

Protein quantification

Protein concentration of pools (female and male) and individual
venom samples was determined according to the Bradford
method, using Bio-Rad Protein Assay reagent and bovine serum
albumin (BSA) (Sigma) as standard [38]. These data were only
used as a basis to other experiments.

One-dimensional electrophoresis (1-DE)

Electrophoretic analysis of pools and individual venom samples
was performed using 30 pg of protein in the presence and absence
of B-mercaptoethanol in 15% polyacrylamide gels [39]. The
gels were stained with Coomassie Blue G according to the GE
Healthcare protocol.

Protein identification by mass spectrometry

Identification of proteins was performed by LC-MS/MS in
a Synapt G2 (Waters) coupled to the nanoAcquity UPLC
chromatographic system (Waters) as previously described [40,41].
Briefly, samples of 100 pg of protein from each venom pool were
incubated in 50 mM ammonium bicarbonate with 5 mM DTT
(dithiothreitol) for 25 min at room temperature (RT), followed
by addition of 14 mM IAA (iodoacetamide) and incubation in
the dark for 30 min at RT. Finally, an incubation with 5 mM
DTT for 15 min was performed. Calcium chloride (1 mM) and
1 pug of trypsin (Sigma) in 50 mM ammonium bicarbonate were
added to each sample and incubated for 16 h at 37 °C. After
incubation, the reaction was stopped with 5% TFA (0.5% final
concentration). Aliquots of the resulting peptide mixtures (5 ug)
were injected into a trap column packed with C18 (nanoAcquity
trap Symmetry 180 pm x 20 mm) at 8 pL/min with phase A
(0.1% formic acid. Peptides were then eluted onto an analytical
C18 column (nanoAcquity BEH 75 um x 200 mm, 1.7 m) at a
flow rate of 275 nL/min, using a gradient of 7-35% of phase B
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(0.1% formic acid in acetonitrile) in 90 min. Data were acquired
in the in data-independent mode UDMSE [42] in the m/z range
of 50-2000 and in resolution mode. Collision energies were
alternated between 4 eV and a ramp of 17-60 eV for precursor
ion and fragment ions, respectively, using scan times of 1.25s.
The ESI source was operated in positive mode with a capillary
voltage of 3.0 kV, block temperature of 70 °C, and cone voltage
of 40 V. For lock mass correction, [Glul]-Fibrinopeptide B
solution (500 fmol/mL in 50% acetonitrile, 0.1% formic acid;
Peptide 2.0) was infused through the reference sprayer at 500
nL/min and sampled for 0.5 s at each 60 s.

Raw data were processed in ProteinLynx Global Server 3.0.1
(Waters) by the Apex3D module using low energy threshold
of 750 counts and elevated energy threshold of 50 counts. MS/
MS spectra were submitted to searches a Serpentes database
(downloaded from Uniprot in March 1%, 2019, 2608 reviewed
sequences). The following search parameters were used: automatic
fragment and peptide mass tolerances, carbamidomethylation
of cysteines as fixed modification, oxidation of methionine,
N-terminal acetylation, glutamine and asparagine deamidation
as variable modifications, up to 2 missed cleavage sites were
allowed for trypsin digestion. The following criteria were set for
protein identification: a minimum of 1 fragment ion per peptide,
5 fragment ions per protein and 2 peptides per protein, and a
maximum false discovery identification rate of 1%, estimated
by a simultaneous search against a reversed database. Label-free
quantitative assessments were based on the average intensities of
the three most intense peptides of each identified protein [43].
Each pooled sample was analyzed in technical triplicate. Data
of the spectra are available in Additional file 2.

Enzymatic activities

Caseinolytic activity

Caseinolytic activity was determined as described [44] using
azocasein (Merck) as substrate. Briefly, 85 uL of a 4.25 mg/mL
azocasein solution were incubated with 10 pL of each venom (1
mg/mL), both diluted in 50 mM Tris-HCI buffer, pH 8.0. The
reaction was stopped by adding 200 uL of 5% trichloroacetic acid
(TCA). The samples were centrifuged at 1000 x g and 100 uL of
the supernatant were homogenized with 100 pL of 0.5 M NaOH.
The absorbance was measured at 450 nm in a SpectraMax i3
microplate reader (Molecular Devices). One unit of activity was
determined as the amount of venom that induces an increase
of 0.005 units of absorbance.

Collagenolytic activity

Collagenolytic activity over azocoll was determined according
to Vachova and Moravcova [45] and modified by Antunes et al.
[46]. Venoms (6.25 pg) were incubated with 50 uL of a 5 mg/
mL azocoll (Sigma) solution, both diluted in Tyrode buffer (137
mM NaCl, 2.7 mM KCl, 3 mM NaH,PO,, 10 mM HEPES, 5.6
mM dextrose, I mM MgCl,, 2 mM CaCl,, pH 7.4) for 1 h in
constant shake, at 37 °C. The samples were centrifuged for 3 min

at 5000 x g and the absorbance of the supernatants (200 pL)
was measured at 540 nm in a SpectraMax i3 microplate reader
(Molecular Devices). One unit of activity was determined as
the amount of venom that induces an increase of 0.003 units
of absorbance.

L-amino acid oxidase activity

Pools and individual venom samples were analyzed by measuring
the hydrogen peroxide generated during the oxidation of
L-amino acids [47]. For this, 5 ug of the venom were added to
the 90 uL reaction mixture containing 50 mM Tris-HCI, 250
mM L-methionine, pH 8.0, 2 mM o-phenylenediamine and 0.8
U/mL of horseradish peroxidase, and the mixture incubated at
37 °C for 60 min. The reaction was stopped using 50 pL of 2 M
H,SO, and the absorbance measured on a spectrophotometer
(SpectraMax i3, Molecular Devices) at 492 nm. Results were
expressed as 1 uM of H,O,/minute/ug of venom.

Phospholipase A, activity

The phospholipase A, (PLA)) activity of pools and individual
venom samples was determined based on the assay developed
by Holzer and Mackessy [48] using the monodisperse synthetic
substrate 4-nitro-3-octanoyloxy-benzoic acid (NOBA). Twenty
pg of venom (dissolved in 0.85% NaCl), 20 uL of deionized water
and 200 uL of 10mM Tris-HCI, 10 mM CaCl,, 100 mM NaCl, pH
8.0 were mixed in a 96 well microplate. Then, 20 uL of NOBA
(4.16 mM in acetonitrile) was added in a final concentration of
0.32 mM. After incubating for 20 min at 37 °C, the absorbance
at 425 nm was recorded in a microplate reader (SpectraMax i3,
Molecular Devices). A change of 0.1 absorbance unit at 425 nm
was equivalent to 25.8 nmoles of chromophore release.

Biological functions

Coagulant activity

The coagulant activity of the venom pools was assessed in citrated
human plasma, according to Theakston and Reid [49]. Briefly,
100 pL of plasma were incubated at 37 °C for 60 s. After the
incubation, 50 pL of various concentrations of venom samples
were mixed and clotting times were measured in a coagulometer
(MaxCoag, MEDMAX). The Minimum Coagulant Dose (MCD)
was defined as the minimum amount of venom that induced
coagulation of plasma in 60 s at 37 °C.

Hemorrhagic activity

The hemorrhagic activity was obtained by the determination of
Minimum Hemorrhagic Dose (MHD). Groups of five male Swiss
mice of 18-22 g were injected with 100 uL of several doses of
venom pool samples, diluted in 0.89% NaCl, intradermally into
the venter of the mice, and a control group received 100 uL of
NaCl solution under identical conditions. After 3 h, the animals
were euthanized in a CO, chamber, the venter skin was removed,
and the hemorrhagic areas were measured [50]. The MHD was
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defined as the amount of venom that produced hemorrhages
with a mean diameter of 10 mm after 3 h [51].

Median lethal dose (LD,,)

The LD, of venom pool samples were determined by
intraperitoneal injection in 18-22 g male Swiss mice with 500
uL of varying doses of venoms (66-381 ug/animal) in 0.89%
NaCl. Five mice were used per group and the number of deaths
occurring within 48 h after injection was recorded. The LD, and
95% confidence intervals were calculated by Probit analysis [52].

Immunorecognition by antibothropic serum

Individual venoms and pools (30 pL) were submitted to 1-DE
(15%) under reducing conditions (as described in the section
“One-dimensional electrophoresis (1-DE)”) and transferred to
PVDF membranes (Bio-Rad) in a semi-dry system (Trans-Blot
Turbo Transfer System, Bio-Rad) at 25 V for 35 min. As described
by Harlow and Lane [53], the membranes were blocked with
Tris-buffered-saline containing 5% fat free milk (TBS-milk)
overnight at 4 °C. The membranes were incubated with 1:2,000
commercial antibothropic serum (batch 1305077, expiration
date due to 2016) for 2 h at room temperature. After washing
with TBS-milk containing 0.1% Tween 20, the membranes were
exposed to 1:10,000 peroxidase-labelled anti-horse IgG (Sigma)
for 2 h at room temperature. Unbound secondary antibodies
were washed off and immunoreactive bands were visualized
using diaminobenzidine (Sigma) and H,O,. The commercial
antibothropic serum is produced at Butantan Institute by
hyperimmunization of horses using a mixture of five Bothrops
species venoms: B. jararaca (50%), B. alternatus (12.5%), B.
jararacussu (12.5%), B. moojeni (12.5%) and B. neuwiedi (12.5%).

Statistical analysis

Results are expressed as mean + SD of triplicates. The significance
of differences between the means of the venoms was determined

by one-way ANOVA with Tukey as a posteriori test and venom
pools were analyzed using Student’s ¢-test using GraphPad
Prism 7.03 software, where p < 0.05 was considered significant.

Results and Discussion

Differences in the composition and activity of snake venoms
from the same species are a worldwide researchers concern. These
differences can influence directly in the antivenom production
and in the success of patient treatment [54-57].

Compositional analysis

Although B. atrox venom has been analyzed in several aspects
[30,58-60], this work showed, for the first time, a comparative
study of the venom extracted from female and male siblings,
born in captivity and kept under controlled environmental
conditions.

Electrophoretic profiles were evaluated, showing similar band
patterns with few differences between individuals and pools.
Individual analysis of non-reduced venoms showed a common
band of ~35 kDa (Figure 1A), which is only present in the venoms
of females and of Ba8 among males, and another band of ~30
kDa that is present only in the venom of males, except for Ba8.
These two bands might be associated to P-II SVMP and SVSP
respectively, in accordance with their molecular masses [24], and
their presence and absence are reflected in the pool, although
faint (especially the ~35 kDa band). Moreover, it is possible to
observe bands of less intensity between 25-50 kDa (probably
CRISP, GPC, P-I and P-III SVMP and SVSP) and over 100 kDa
(most likely PDE). These results have been observed not only
in B. atrox but also in other snakes of the Bothrops genus, and
are supported by several works [31,61-63].

In order to compare the composition of female and male
B. atrox venoms, they were pooled according to gender and
submitted to in-solution trypsin digestion followed by LC-

Figure 1. One-dimensional electrophoresis (1-DE) profile of B. atrox venoms under (A) non-reducing and (B) reducing conditions. Individual female (Ba1 to
Ba5), male (Ba6 to Ba9) and respective pools were used and are indicated above the gel.
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MS/MS analysis on a Synapt G2 mass spectrometer (Waters).
The results obtained allowed to identify 112 different protein
compounds (Table 1 and Additional file 3), of which 105 were
common proteins between female and male venom pools and
7 were unique to females. Proteins identified belong to the

following families: SVMPs, SVSPs, LAAOs, CTLs, PLA_s,
nucleotidase (N'T), phospholipase B (PLB), glutaminyl-peptide
cyclotransferases (GPCs), cysteine-rich secretory protein
(CRISP), and disintegrin-like protein (DISL) (Figure 2, Table 1
and Additional file 3); the first five families are the main

Figure 2. Graphical overview of toxin classes identified in B. atrox (A) female and (B) male venom pools by in nanoESI-qTOF. CRISP: cystein-rich secretory
protein; CTL: C-type lectin; DISL: disintegrin-like protein; GPC: glutaminyl-peptide cyclotransferases; LAAO: L-amino acid oxidase; NGF: nerve growth factor;
NT: nucleotidase; PDE: phosphodiesterase; PLA,: phospholipase A,; PLB: phospholipase B; SVMP: snake venom metalloproteinase; SVSP: snake venom serine

protease.
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compounds in Bothrops venoms [32,64-66]. The unique proteins
identified in the female venom were one LAAO, one P-I SVMP,
one P-IIT SVMPs, one DISL, one CRISP, and two fragments of
SVSPs. The Bpic-LAAO is a high weight protein of 65 kDa that
causes edema and inhibition of platelet aggregation [67]; the
P-I SVMP (barnettlysin-1) is non-hemorrhagic and is known to
cleave many substrates, including fibrin(ogen), but not collagen
[68]; VAP-1 is a P-III SVMP related to hemorrhagic activity,
but is unable to cleave collagen [69]; leberagin-C is a DISL that
inhibits platelet aggregation [70]; the exclusive CRISP found in
the female venom was catrin-2, which weakly blocks muscle
contraction induced by K* and Ca?* channels [71].

Sousa et al. [30] examined the venom composition of B. atrox
according to their habitats and the proteomics analyses showed
some differences in comparison to our study, such as the presence
of hyaluronidases, which were not identified in this work. It is
interesting to note that the relative percentages of LAAOs and
SVSPs obtained by our group by MS analysis were higher than
the aforementioned study, 16% in comparison to ~9% for LAAOs,
and 21% in comparison to 10% to 14% for SVSPs, respectively.
Another study indicates higher percentages of SVMPs than
found here and have not detected any PLB [60].

Functional analysis

Proteolytic activities over casein and collagen did not show
statistical difference between female and male pools, although
some individual variations were observed. For caseinolytic
activity (Figure 3A), only Ba4 and Ba6 showed statistical
difference. As for collagenolytic activity (Figure 3B), individual
variability was more evident. Caseinolytic activity may be
associated with SVMP and SVSP, since casein is a substrate
degraded by these families of proteins [72,73] and, in this study,
neither of these two protein families differed between the pools
analyzed by MS (Figure 2).

LAAOs have the ability to induce or inhibit platelet
aggregation, in addition to promoting hemorrhage, hemolysis,
the appearance of edema, and other biological activities [74-76].
The percentage of LAAOs found in female venom pool analyzed
by MS was slightly higher than for males. However, male venom
pool showed higher activity compared to the female pool (Figure
3C). Although contrasting, the same behavior was observed in
B. moojeni [34]. Similar to collagenolytic activity, LAAO activity
differed individually.

PLA, activity (Figure 3D) of B. atrox venom showed a strong
individual variation, but, overall, the venom of males presented
higher activity than female venoms. This was also reflected in the
pools: male pool had a higher activity than female pool. Similar
results were also observed in other species, like B. jararaca
and B. moojeni [34,77]. This result was corroborated by mass
spectrometry identification, in which a higher percentage of PLA
was found in the male pool. In Viperidae, the PLA s found in
snake venoms have been divided into two groups: with catalytic
activity (Asp49 - D49) and without catalytic activity (Lys49 -
K49). The substitution of the amino acid residue Asp-49 for

Lys-49 consequently causes loss of calcium binding, primordial
for its enzymatic activity [78].

In MCD analysis (Figure 3E), female venoms showed very
similar activity among them, as well as the pool. As for males,
Ba8 showed the highest activity, comparable to females, while the
others presented much lower activity in comparison to females.
The MCD is most likely attributed to procoagulant SVMPs and
SVSPs, relating to activation of prothrombin and factor X of
the clotting cascade [79,80]. Despite similarities in abundance
between the groups, the female pool showed, altogether, slightly
more SVSP than male pool in proteomic analysis. Besides,
female venom pool had slightly higher amount of thrombin-like
than the male pool (11.0% and 10.6%, respectively) (Figure 2,
Table 1 and Additional file 3). Also, if we consider that 112
proteins were identified in the mass spectrometry of B. atrox
snake venoms used in this study and that each protein-protein
interaction responds differently depending on the compounds
involved [16,17], this difference may also be attributed to the
synergy between protein families in local and systemic damage.
It is important to highlight the limitations of the use of plasma
without recalcification in this work because this may influence
the time of clotting of each venom. Although it is known that
SVMPs from the group A are not dependant of cofactors
(including calcium) to activate prothrombin [81], a recent study
[82] showed that the procoagulant effects of Bothrops genus snake
venoms are highly dependant of calcium and that the dependency
varies between populations. Although the results obtained herein
show that, in the absence of calcium, the venom of females B.
atrox is prone to be more coagulant, it is important to consider
the role of calcium upon snake venom coagulopaties, even for
independent calcium prothrombin activators [83], which may
result in a misinterpretation of the relative toxicities.

Individual differences were observed in enzymatic activities,
highlighting the importance of individual analysis when possible.
Despite some individual differences, a pattern between the
activities of females and males can be correlated, so, for in vivo
tests, the pool was chosen for analysis. Galizio et al. [84] reinforce
the importance of the individual analysis, but for ethical issues
pools were used to reduce the number of animals utilized in
the in vivo experiments.

MHD of male venoms was lower when compared to females
(2.7 and 4.8 pg/animal, respectively), indicating that female
venom pool needs more than 43.8% of venom to generate the
corresponding hemorrhagic halo to MHD, than male venom
pool. Saldarriaga et al. [51] found 1.8 pg/animal as MHD for adult
(3 years old) B. atrox, a minor dose than the one found in this
work. Although considered adults, these snakes were younger
than the ones in our work. Guércio et al. [24] analyzed the
ontogenetic variation in the proteome of B. atrox and identified
more P-IIT SVMPs in younger snakes than in adults, which could
explain the higher hemorrhagic effects observed elsewhere [51].
The difference in MHD observed between female and male
pools in our work may be attributed to the different abundance
of P-III SVMPs identified in the venom pools.
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Figure 3. Enzymatic activities of B. atrox venom (individual and pool). The data were expressed as mean * SD, n = 3. Different letters indicate statistical
difference (ANOVA, p < 0.05). (A) Caseinolytic activity; (B) collagenolytic activity; (C) LAAO activity; (D) PLA, activity; (E) MCD.

LD, of female venom pool of B. atrox (104.3 ug/animal;
CI: 73.3-151.2 pg/animal) was slightly lower than that of the
male (118.4 pg/animal; CI: 87.2-164.8 pg/animal), but with
no statistical difference. Although differences were observed
in some activities, this is not reflected in the venom lethality.
Saldarriaga et al. [47] found 81.4 ug/mice as LD, for adult B.
atrox, a minor dose than found in this work. Also, Sousa et al.

[30] compared the geographic variation of B. atrox and reported
alower LD, than herein observed and suggested a correlation
with the lower hemorrhagic activity. This is consistent with the
results of the procoagulant and hemorrhagic activities, which
are apparently related to the lethality of the venom [85,86].
Another study relates a lack of hemorrhagic activity associated
with a higher lethality in Daboia russelii [87].
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There was a marked difference between hemorrhagic and
procoagulant activities between the venom of males and females,
and these results may relate with the metabolic requirements of
each sex. The metabolic rate of males and females is different,
and it has been previously shown in viperids that females have a
higher oxygen consumption, which is related to the animal’s mass
[88]. Since B. atrox is a species displaying sexual dimorphism,
in which females are usually larger than males, it is possible that
females have a higher energy demand due to their larger size, in
addition to the need of extra energy reserved for reproduction
[89].

Regarding MHD, the variation may have been caused by the
relative abundance of proteins with hemorrhagic activity, which
is slightly lower in the female venom pool than in the male venom
pool. This activity may be under the influence of other proteins
and/or the synergistic effect of other compounds in the venom.

Immunorecognition by antibothropic serum

The antivenom produced at Butantan Institute is composed by
antibodies raised in horses, using a mixture of B. jararaca (50%),

B. jararacussu (12.5%), B. alternatus (12.5%), B. moojeni (12.5%)
and B. neuwiedi complex (12.5%) venom. Although B. atrox is
not included in the venom pool used to produce the antivenom,
it seems to have a moderate reaction with the serum (Figure 4).

Overall, the antibothropic serum produced at Butantan
Institute recognized all venoms similarly, especially the ones
with higher and lower molecular weights (Figure 4). Curiously,
the band between 20 and 25 kDa were not well recognized by
the serum in all groups, although it’s very strong in the gel
(Figure 1B). Analyzing the MS (Table 1 and Additional file 3),
it is concluded that this band probably represents a PI-SVMP.
Other studies concerning B. atrox venom that also tested the
immunerecognition using the antibothropic serum produced
at Butantan Institute, showed that this reaction is not as strong
as with other species’ venom; and geographic variation seems
to have great influence in the reactivity of the venoms to the
antivenom [51,58,62,90]. Moreover, Sousa and colleagues [30]
found striking differences in the neutralization of in vivo
activities of B. atrox venoms from different habitats, regardless
of the similarity in the reaction observed by ELISA.

Figure 4. Immune interaction between the proteins of B. atrox venoms and the antibothropic serum by western blotting. Individual female (Ba1 to Ba5), male

(Baé to Ba9) and respective pools were used and are indicated above the gel.

Conclusion

Several studies have shown that B. atrox venom may have
variability in their biological activity and protein composition.
This work extends the outlook regarding this variability, showing
that female and male venoms of B. atrox siblings, under the same
controlled environmental conditions, present subtle differences
in their composition and activities. Moreover, it was observed
individual variability in the characteristics of venoms, indicating
that, in addition to aspects such as, geographical location,
ontogeny, sex and diet, there are several unknown factors that
result in the venom plasticity and physiological effects.
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liquid chromatography-mass spectrometry/mass spectrometry;
LD, lethal dose 50%; MCD: minimum coagulant dose; MHD:
minimum hemorrhagic dose; NOBA: 4-nitro-3-octanoyloxy-
benzoic acid; NT: nucleotidase; PDE: phosphodiesterase; PLA :
phospholipase A ; PLB: phospholipase B; PVDF: polyvinylidene
difluoride; RP-HPLC: reverse-phase high performance liquid
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