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ABSTRACT: The identification of seeds from native species is a complex assessment due 
to the high Brazilian biodiversity and varied characteristics between species. The objective 
was to apply different machine learning classifiers associated with image analysis to identify 
seeds of forest species. In total, 155 native species belonging to 42 botanical families 
were analyzed. In addition, to determine the appropriate machine learning classifier, five 
supervised learning classification techniques were implemented: decision trees (DT), artificial 
neural networks (ANN), k-nearest neighbors (k-NN), Naive-Bayes classifier (NBC) and support 
vector machine (SVM), which had their performance evaluated. For modeling, 66% of the 
seeds’ morphobiometric data were used to train the classifiers, while 34% were reserved 
for validation. The classifiers are promising tools for identifying species from seed images. 
The decision tree (DT) classifier showed greater accuracy for correct species identification 
(82.8%), followed by ANN (81.7%), k-NN (81.7%), NBC (81.1%) and SVM (78.7%). Therefore, 
it is possible to identify seeds of native species from images and machine learning with a 
satisfactory accuracy rate. Finally, the decision tree classifier is recommended.

Index terms: artificial intelligence, forest seeds, image processing, morphobiometry, seed 
identification.
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RESUMO: A identificação de sementes de espécies nativas é uma avaliação complexa 
devido a elevada biodiversidade brasileira e características variadas entre as espécies. 
Objetivou-se aplicar diferentes classificadores de aprendizado de máquina associado à 
análise de imagens para identificar sementes de espécies florestais. Foram analisadas 
155 espécies nativas pertencentes a 42 famílias botânicas. Para determinar o classificador 
de aprendizado de máquina adequado, cinco técnicas de classificação por aprendizado 
supervisionado foram implementadas: árvores de decisão (DT), redes neurais artificiais 
(ANN), k-vizinhos mais próximos (k-NN), classificador Naive-Bayes (NBC) e máquina de 
vetores de suporte (SVM), os quais tiveram seu desempenho avaliados. Para modelagem, 
66% dos dados morfobiométricos das sementes foram usados para treinamento dos 
classificadores, enquanto 34% foram reservados para validação. Os classificadores são 
ferramentas promissoras para a identificação de espécies a partir das imagens de sementes. 
O classificador por árvores de decisão (DT) apresentou maior acurácia para identificação 
correta das espécies (82,8%), seguido dos classificadores ANN (81,7%), k-NN (81,7%), NBC 
(81,1%) e SVM (78,7%). Portanto, é possível realizar a identificação de sementes de espécies 
nativas a partir de imagens e aprendizado de máquina com taxa satisfatória de acurácia. 
Recomenda-se o classificador por árvores de decisão. 

Termos para indexação: inteligência artificial, sementes florestais, processamento de 
imagens, morfobiometria, identificação de sementes. 
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INTRODUCTION

Seed identification represents a global challenge for researchers for different reasons (Bao and Bambil, 2021), 
especially for native species due to high biodiversity, similarity between seeds of the same genus, and variations in 
color, sizes, and shapes. In Brazil, 35,653 plants with seeds have been recognized, of which 8,320 are tree species 
distributed in 138 families and 938 botanical genera (Reflora, 2020). Generally, the identification and differentiation of 
forest species is carried out by means of botanical and morphological descriptors based on vegetative and reproductive 
structures of the plants (Urbanetz et al., 2010; Costa et al., 2016; Ferreira et al., 2020), such as leaves, flowers, fruits, 
and seeds. However, identifying or differentiating hundreds or thousands of species from seeds is an unfeasible task for 
the analyst or professional in the forestry area.

In recent years, there have been advances in the identification of species from images of seeds and fruits (Farris 
et al., 2020). However, the use of digital images for the differentiation of native seeds is a method that has been little 
explored and has not been validated due to the absence of a dataset. In the forestry sector, artificial intelligence and 
associated technologies have significant potential for allowing faster and greater data processing (Franklin and Ahmed, 
2017; Cao et al., 2018; Xi et al., 2020). For example, with machine learning it is possible to identify complex patterns 
and correlations at different levels of detail, which can be explored in seed studies.

Machine learning techniques from seed images have been successfully explored in studies with agricultural species. 
Examples are the use of a high-resolution scanner to assess the texture of tomato seeds and artificial neural networks 
for the classification of cultivars (Ropelewska and Piecko, 2022), or the classification of barley varieties based on the 
shape, color, and texture of the seeds (Shi et al., 2022), as well as the use of hyperspectral imaging and machine 
learning for detection of varieties of soybean seeds (Tan et al., 2019; Zhu et al., 2019; Zhu et al., 2020) and maize seeds 
(Bao et al., 2019). However, there is a lack of studies with native species of Brazil presenting accessible alternatives of 
equipment and computational resources for the identification of seeds.

The application of freely accessible and easy-to-use tools for image processing is an option to the use of less 
accessible equipment. Thus, tools such as ImageJ® software (Ferreira and Rasband, 2012), which allows the extraction 
of data from an image, can be applied to seeds (Noronha et al., 2018; Felix et al., 2020; Medeiros et al., 2020). In 
addition, employing artificial intelligence with the use of Weka® software, which contains a collection of machine 
learning algorithms for data mining tasks, tools for data preprocessing, classification, regression, clustering, association 
rules, and visualization for further analysis, is a viable option (Weka®, 2018). Weka® software was developed at the 
University of Waikato, New Zealand, with the aim of identifying information of data obtained from agricultural domains 
due to its usability; however, its use has been extended to other fields (Škrubej et al., 2015).

Therefore, it is necessary to prove that the associated use of different descriptors in each seed is capable of 
reducing identification errors due to greater measurement accuracy and low human interference, as well as establishing 
methodologies for capturing and processing seed images in an accessible, efficient and reproducible way. The objective 
of this study was to apply different machine learning classifiers associated with image analysis to identify seeds of 
native forest species in Brazil based on morphobiometric attributes.

MATERIAL AND METHODS

The methodology followed the following work flowchart (Figure 1): (i) acquisition and analysis of images to obtain 
morphobiometric attributes of the seeds, (ii) data processing and application of different machine learning classifiers, 
and (iii) selection of the classifier with superior performance in the task of species identification.
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Acquisition and processing of seed images

Samples of native seeds were photographed and analyzed for size, shape and color. A total of 155 native Brazilian 
species belonging to 42 botanical families were evaluated. The seeds of each species were spatially arranged on an 
ethylene-vinyl acetate (EVA) sheet. Then, the images were captured with a Canon PowerShot SX500 IS (f/4) camera 
with 12 MP lens at a distance of 50 cm from the seeds with millimeter reference template. The images were acquired 
using a mini photographic studio (50 x 50 x 50 cm) with white artificial light (LED) to standardize the lighting conditions. 
The methodological detailing for capturing the images was based on the methodology proposed by Felix et al. (2023) 
for the characterization of forest species. For each photograph, new seed samples were taken by species, totaling 465 
images that made up the seed image base used in this study.

Images in their original format (.JPEG) were transferred to a microcomputer, and the reference scale in millimeters 
was determined in ImageJ® software, version 1.53 (https://imagej.nih.gov/ij/index.html). Next, the Threshold mask 
was applied to contrast the components of the image. In summary, eight attributes were used for size, three for shape, 
and six for color, totaling 17 attributes analyzed (Ferreira and Rasband, 2012) (Table 1).

A set of 1.827 million morphobiometric data were obtained from the processing of images of 101,521 seeds for 155 
species. Files in Comma-separated values format (.CSV) containing the morphobiometric data of the seeds were used 
for processing of the machine learning models in Weka® software, version 3.8.3 (Weka®, 2018).

Machine Learning & Classification

To determine the appropriate machine learning classifier for species identification, five supervised learning 
classification techniques were implemented and compared in this study: decision trees (DT), artificial neural networks 
(ANN), k-nearest neighbors (k-NN), Naive-Bayes classifier (NBC) and support vector machine (SVM). The classifier was 
selected based on the superior performance in accuracy, precision, sensitivity and F-measure (Witten and Frank, 2005) 
derived from the confusion matrix for the classification of species from the validation sets, and which also has the 
highest Kappa correlation coefficient (0.0-1.0). For modeling, 66% of the morphobiometric data of the seeds were used 
for training the classifiers, while 34% of the data not seen by the classifiers were left for validation.

Decision trees: organizes the knowledge extracted from the dataset in a hierarchical structure similar to a tree, 
composed of nodes and branches; each internal node represents an attribute and is associated with a test for data 
classification, while the nodes and leaves of the tree correspond to the classes and the branches represent each of 
the possible results of the tests applied (Quinlan, 1996). A new example can be classified by following the nodes and 

Figure 1. Workflow for acquisition and analysis of images and application and selection of machine learning classifiers.
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branches until a leaf is reached. The decision tree modeling process aims to maximize the correct classification of all 
training data. The J48 algorithm (C4.5) was adopted for this procedure because it is the learning algorithm with this 
approach most used to generate a decision tree.

Artificial neural networks: simulates the behavior of the human brain, composed of a large number of highly 
interconnected processing elements similar to the functioning of biological neurons, linked with weighted connections 
corresponding to brain synapses (McCulloch and Walter, 1943). Multilayer perceptron (MLP) is a common type of artificial 
neural network that is widely used for classification purposes. For neural network architecture, the learning rate value 
was set at 0.3 and the impulse rate at 0.2 (Škrubej et al., 2015). The number of neurons in the input and output layers 
was defined as 17 and 155, respectively, since the number of attributes evaluated was 17 and the total number of species 
analyzed was 155. The middle layer was constructed with 240 neurons and the training time was set at 500 epochs.

K-nearest neighbors: learns based on instances, analyzing the instances or examples around a specific case. This 
model calculates the distance between each training sample and the test case based on the Euclidean distance. After 
classifying all distances, the model selects the nearest k from those that are considered to be the nearest k neighbors 
(Aha et al., 1991). If the algorithm returns more than one k neighbor, these are voted to form the final ranking.

Table 1. Morphobiometric attributes used for analysis of images of native Brazilian forest seeds.

Seed size Description of attributes
Area selection of the seed surface (mm²), calculated from the limits defined by the perimeter.

Perimeter outer limit of seed selection (mm), calculated from the centers of the limit pixels.

Width width measurement (mm) defined by the smallest bounding rectangle that surrounds the 
seed selection.

Height height measurement (mm) defined by the smallest bounding rectangle that surrounds seed 
selection.

Major major axis (mm) fitted to an ellipse that surrounds seed selection.
Minor minor axis (mm) fitted to an ellipse that surrounds seed selection.

Feret greatest distance (mm) between two points along the seed selection boundary set at an 
angle of up to 180°.

MinFeret shortest distance (mm) between two points along the seed selection boundary set at an 
angle of up to 180°.

Seed shape Description of attributes

Circularity scalar value (0.0 to 1.0), indicating a perfect circle when close to 1.0 for the shape of the 
seed relative to its perimeter and an elongated shape when close to zero.

Proportion relationship between the major and minor axes from an ellipse fitted to the seed image.

Solidity scalar value (0.0 to 1.0), indicating the relationship between the area of the seed captured 
in the image and the convex area of each seed.

Seed color Description of attributes

Color mean gray value (0 to 255) resulting from the sum of pixel values from the seed image 
surface selection divided by the number of pixels.

Standard deviation 
(StdDev)

calculation of the standard deviation of the gray color values of the seed image surface used 
to generate the mean gray value.

Modal gray value 
(Modal)

gray value (0 to 255) for the color of the most frequently occurring seed surface selection, 
corresponding to the highest peak in the histogram.

Minimum gray level minimum values (0 to 255) for the gray color of the seed surface selection.
Maximum gray level maximum values (0 to 255) for the gray color of the seed surface selection.

Median median value (0 to 255) of pixels for the color of the seed surface selection.
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Naive-Bayes classifier: predicts the class for which the a posteriori probability is higher, given the predictor variables 
of the case to be classified, based on probability theory using Thomas Bayes’ theorem (Shannon, 1948). The Naive-
Bayes classifier is one of the Bayesian learning methods.

Support vector machine: constructs a hyperplane with a decision line for classification of instances widely used in 
various applications (Cortes and Vapnik, 1995; Vapnik, 1995).

Performance Evaluation

Accuracy: percentage of correct predictions made from the tested model when compared with the actual 
classification of the validation dataset, calculated as a function of the number of correctly classified seeds divided by 
the total number of seeds, according to the formula:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇

Where: TP refers to the true positive; TN refers to the true negative; FP refers to the false positive; and FN refers to 
the false negative. Thus, TP + TN + FP + FN is the total number of seeds in the validation set and TP + TN is the number 
of seeds correctly identified.

Precision: proportion of predicted positive cases that are actually the real ones among all seeds that were classified 
for each species, calculated as follows:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃

Where: TP refers to the true positive and FP refers to the false positive. A false positive occurs when the seed is 
incorrectly predicted to be positive when in fact it is negative.

Sensitivity: defined as the ratio of the true positive to the sum of the true positive and false negative, calculated as 
follows:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹

Where: TP refers to the true positive and FN refers to the false negative. False negative occurs when the seed 
predicted as negative is actually positive.

F-measure: defined as a harmonic mean calculated based on precision and sensitivity, calculated as follows:

𝐹𝐹 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 × 𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠
𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠

Kappa coefficient: defined as a metric that evaluates the level of agreement of a classification task between two or 
more datasets, indicating which of those classified data have greater cohesion, calculated as follows:

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 2 × 𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑇𝑇 × 𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇 × 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 × 𝐹𝐹𝑇𝑇 + 2 × 𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇2 + 𝐹𝐹𝑇𝑇 × 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇2 + 𝐹𝐹𝑇𝑇 × 𝑇𝑇𝑇𝑇

Where: TP refers to the true positive; TN refers to the true negative; FP refers to the false positive; and FN refers to 
the false negative.

RESULTS AND DISCUSSION

The machine learning classifiers tested proved to be promising for the identification of native species from image 
processing and obtaining of morphobiometric attributes of forest seeds. The decision tree model showed greater 
accuracy for correct identification of seeds from the validation dataset (82.8%), whose Kappa coefficient was 0.780 
(Table 2), followed by classifiers using artificial neural networks (81.7%; 0.763), k-nearest neighbors (81.7%; 0.760), 
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Naive-Bayes classifier (81.1%; 0.749) and support vector machine (78.7%; 0.699). The other performance parameters 
evaluated were also superior for the decision tree compared to the other classifiers.

The decision tree model proved to be effective for the correct identification of species based on attributes related to 
seed color, size and shape, as evidenced by the higher precision of seed identification for the validation dataset (0.782) 
(Table 2). The use of machine learning to solve some question requires some prerequisites, since not all algorithms 
solve all types of problems, requiring robust dataset and examples, as well as their construction and constant updating 
(Mitchell, 1997). In addition, it is necessary to select the appropriate sets of classifiers for the problem to be solved. 
After training, the validation of the classifiers needs to be measured at a level of precision for the problem being solved.

In a study with machine learning and computer vision techniques to classify watermelon seeds, images were 
captured through a camera, resulting in a classification precision that ranged from 69.5% to 84.3% with the use of 
the support vector machine (Mukasa et al., 2022). On the other hand, using artificial neural networks to detect the 
authenticity of maize seeds, a recognition precision of 98.0% was achieved (Tu et al., 2021). A classification system 
based on alternate circumrotating mechanisms to expose the external characteristics of soybean seeds achieved 97.8% 
precision through deep learning (Zhao et al., 2021). These different results demonstrate the need for validation of the 
techniques, since they may show varying levels of precision according to the problem analyzed.

The Kappa coefficient found for the decision tree classifier is considered high (0.780) (Table 2), on a scale from 
0.0 to 1.0 (Almeida et al., 2022). However, it should be noted that the classifier revealed differences of precision in 
the correct identification of the species evaluated from the analysis of seed images, ranging from low to very high 
precision. The decision tree classifier correctly considered six species with low precision (0.20 to 0.39), 40 species with 
moderate precision (0.40 to 0.69), 72 species with high precision (0.70 to 0.89) and 37 species with very high precision 
(0.90 to 1.00) (Table 3).

Unlike agricultural crops that have mostly homogeneous seeds due to genetic improvement (Duan et al., 2022), 
forest species exhibit significant variation in seed characteristics for the same species. In addition, the proximity of 
botanical genera represents a confounding factor for the correct identification of seeds, by the method proposed using 
a mini studio and a camera.

Within the genera evaluated, the similarity or proximity of seed characteristics was one of the reasons for confusion 
by the decision tree classifier for the correct identification of seeds of species of the genera Annona (A. cacans, A. 
emarginata, A. mucosa and A. sylvatica), Butia (B. capitata and B. eriospatha), Cassia (C. grandis and C. leptophylla), 
Cecropia (C. glaziovii, C. hololeuca, C. pachystachya and C. sciadophylla), Enterolobium (E. contortisiliquum and E. 
timbouva) and Senna (S. macranthera, S. pendula and S. spectabilis), which were correctly classified with moderate 
precision (Table 3). Seeds of Annona (Annonaceae), Cassia (Fabaceae), Enterolobium (Fabaceae) and Senna (Fabaceae) 
are larger and very similar to each other within the genus, while those of Cecropia (Urticaceae) are also similar and very 
small, which may have contributed to a lower effectiveness of correct classification.

Table 2. Performance of machine learning classifiers tested for identification of native forest seeds based on 
morphobiometric attributes.

Classifiers tested Accuracy (%) Precision Sensitivity F-measure Kappa coefficient
Decision trees 82.8 0.782 0.783 0.782 0.780

Artificial neural networks 81.7 0.767 0.766 0.767 0.763
K-nearest neighbors 81.7 0.762 0.763 0.762 0.760

Naive-Bayes classifier 81.1 0.754 0.753 0.750 0.749
Support vector machine 78.7 0.703 0.703 0.704 0.699
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Table 3. Level of precision in the correct identification of native forest seeds from image analysis associated with 
machine learning using the decision tree classifier.

Precision for correct 
identification n Species

Very low
0.00 to 0.19 0 None

Low
0.20 to 0.39 6 Cenostigma pyramidale (0.283), Mimosa ophthalmocentra (0.340), Croton blanchetianus (0.361), 

Manihot carthagenensis (0.364), Albizia niopoides (0.374) and Genipa americana (0.398).

Moderate
0.40 to 0.69 40

Vitex megapotamica (0.402), Bixa orellana (0.408), Annona cacans (0.418), Annona 
emarginata (0.428), Jatropha molissima (0.429), Mimosa bimucronata (0.431), Cassia grandis 
(0.446), Cecropia hololeuca (0.451), Enterolobium contortisiliquum (0.465), Cnidoscolus 
quercifolius (0.473), Butia eriospatha (0.489), Cenostigma microphyllum (0.500), Annona 
sylvatica (0.517), Butia capitata (0.529), Lophanthera lactescens (0.540), Senna macranthera 
(0.541), Croton floribundus (0.542), Senna pendula (0.556), Cecropia pachystachya (0.559), 
Senna spectabilis (0.570), Cecropia glaziovii (0.575), Cecropia sciadophylla (0.581), Dalbergia 
ecastaphyllum (0.585), Mimosa tenuiflora (0.599), Handroanthus heptaphyllus (0.613), 
Enterolobium timbouva (0.614), Euphorbia heterophylla (0.615), Euterpe edulis (0.620), 
Lonchocarpus cultratus (0.626), Alchornea glandulosa (0.626), Schinus terebinthifolia 
(0.629), Piptadenia gonoacantha (0.633), Annona mucosa (0.638), Lafoensia glyptocarpa 
(0.638), Ceiba speciosa (0.641), Leptolobium dasycarpum (0.643), Poecilanthe parviflora 
(0.647), Cordia superba (0.655), Copernicia prunifera (0.676) and Cassia leptophylla (0.680).

High
0.70 to 0.89 72

Inga lentiscifolia (0.703), Erythroxylum argentinum (0.704), Mabea fistulifera (0.705), 
Allophylus guaraniticus (0.709), Astronium urundeuva (0.712), Gymnanthes klotzschiana 
(0.716), Libidibia ferrea (0.717), Platypodium elegans (0.721), Diospyros inconstans (0.727), 
Solanum lycocarpum (0.73), Manilkara elata (0.731), Handroanthus chrysotrichus (0.738), 
Guazuma ulmifolia (0.738), Neocalyptrocalyx longifolium (0.740), Clitoria fairchildiana 
(0.740), Handroanthus impetiginosus (0.743), Psidium myrtoides (0.743), Pachira glabra 
(0.743), Erythrina speciosa (0.747), Sesbania punicea (0.752), Terminalia mameluco (0.753), 
Ilex paraguariensis (0.755), Senegalia bonariensis (0.755), Allophylus edulis (0.757), Helietta 
apiculata (0.760), Dimorphandra mollis (0.763), Hymenaea courbaril (0.763), Psidium guajava 
(0.767), Mimosa flocculosa (0.769), Cassia ferruginea (0.770), Mimosa scabrella (0.772), 
Bauhinia forficata (0.774), Calopogonium mucunoides (0.774), Anadenanthera colubrina 
(0.775), Leucochloron incuriale (0.776), Nectandra lanceolata (0.778), Sarcomphalus joazeiro 
(0.780), Dalbergia frutescens (0.781), Mucuna pruriens (0.790), Pityrocarpa moniliformis 
(0.792), Solanum viarum (0.795), Lithraea molleoides (0.798), Stryphnodendron adstringens 
(0.800), Jatropha curcas (0.801), Balfourodendron riedelianum (0.803), Matayba elaeagnoides 
(0.803), Monteverdia ilicifolia (0.804), Sesbania virgata (0.818), Campomanesia xanthocarpa 
(0.819), Gallesia integrifolia (0.824), Cryptocarya aschersoniana (0.833), Aegiphila integrifolia 
(0.833), Drimys brasiliensis (0.838), Podocarpus lambertii (0.840), Phytolacca dioica (0.843), 
Pleroma raddianum (0.843), Hymenaea altissima (0.847), Parapiptadenia rigida (0.851), 
Berberis laurina (0.851), Cupania vernalis (0.855), Abrus precatorius (0.857), Cecropia peltata 
(0.858), Xiquexique gounellei (0.860), Handroanthus ochraceus (0.870), Zanthoxylum rhoifolium 
(0.876), Machaerium acutifolium (0.882), Calliandra brevipes (0.884), Cereus jamacaru (0.885), 
Encholirium spectabile (0.886), Peltophorum dubium (0.889), Ormosia arborea (0.89) and 
Syagrus romanzoffiana (0.892).

Very high
0.90 to 1.00 37

Psidium cattleyanum (0.900), Prunus brasiliensis (0.900), Gaylussacia brasiliensis (0.900), 
Machaerium villosum (0.901), Aspidosperma parvifolium (0.910), Spondias tuberosa 
(0.910), Mimosa pigra (0.911), Araucaria angustifolia (0.921), Commiphora leptophloeos 
(0.921), Luehea divaricata (0.922), Sapindus saponaria (0.924), Pleroma sellowianum 
(0.925), Schizolobium parahyba (0.933), Terminalia glabrescens (0.937), Pterogyne nitens 
(0.939), Ateleia glazioveana (0.942), Handroanthus albus (0.942), Hevea brasiliensis (0.947), 
Lafoensia pacari (0.949), Solanum granulosoleprosum (0.951), Machaerium stipitatum 
(0.957), Vassobia breviflora (0.958), Dalbergia brasiliensis (0.958), Aspidosperma subincanum 
(0.960), Tabebuia aurea (0.961), Schinopsis brasiliensis (0.963), Cochlospermum orinocense 
(0.965), Aspidosperma pyrifolium (0.970), Amburana cearenses (0.973), Cedrela fissilis 
(0.983), Dictyoloma vandellianum (0.990), Styrax leprosus (0.990), Vernonanthura discolor 
(0.991), Miconia theaezans (0.992), Senna multijuga (0.994), Myrocarpus frondosus (0.999) 
and Pterocarpus rohrii (0.999).

Total 155

n: number of species identified using the decision tree classifier.
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On the other hand, seeds of the genera Allophylus (A. edulis and A. guaraniticus), Aspidosperma (A. parvifolium, A. 
pyrifolium and A. subincanum), Dalbergia (D. brasiliensis and D. frutescens), Handroanthus (H. albus, H. chrysotrichus, 
H. impetiginosus and H. ochraceus), Hymenaea (H. altissima and H. courbaril), Machaerium (M. stipitatum and M. 
villosum), Pleroma (P. raddianum and P. sellowianum), Psidium (P. cattleyanum, P. guajava and P. myrtoides), Sesbania 
(S. punicea and S. virgata), Solanum (S. granulosoleprosum, S. lycocarpum and S. viarum) and Terminalia (T. glabrescens 
and T. mameluco) were correctly identified by the decision tree classifier with high or very high precision (Table 3).

It is worth pointing out that Aspidosperma (Apocynaceae), Handroanthus (Bignoniaceae), Machaerium (Fabaceae) 
and Terminalia (Combretaceae) have seeds with dispersal structures (anemochory), while Pleroma (Melastomataceae) 
has tiny seeds. Therefore, these results denote the potential in the identification of forest seeds of the same genus, 
based on morphobiometric attributes obtained with image analysis and machine learning. However, it is not possible 
to make generalizations about the effectiveness of correct classification within the botanical genera.

The genera Cenostigma and Croton were classified with low (Cenostigma pyramidale and Croton blanchetianus) 
and moderate (Cenostigma microphyllum and Croton floribundus) precision by the decision tree classifier for seed 
identification (Table 3). There was greater confusion of the classifier for these species, due to the similar morphobiometric 
characteristics of the seeds captured by image. In turn, seeds of the genus Mimosa were classified with different 
levels of precision, being low precision for Mimosa ophthalmocentra, moderate precision for M. bimucronata and M. 
tenuiflora, and high precision for M. flocculosa, M. pigra and M. scabrella. It is worth noting that the classifier may not 
have correctly identified some seeds of the species mentioned, but considered them within the genus Mimosa.

The decision tree classifier confused seeds of Cenostigma pyramidale, for which it showed low precision (0.283), 
mainly with Cassia leptophylla, and to a lesser extent for Annona cacans, Dalbergia ecastaphyllum, Piptadenia 
gonoacantha, Anadenanthera colubrina, Poecilanthe parviflora and Annona sylvatica. Except for the genus Annona, 
the other species belong to the Fabaceae family, which may have contributed to the lower precision of correct 
identification of Cenostigma pyramidale seeds, as verified by the confusion matrix. A point to be considered is the fact 
that the extraction of characteristics analyzed for the species in question was not enough to correctly differentiate it 
by images of seeds.

For Mimosa ophthalmocentra (0.340), greater confusion occurred with Mimosa bimucronata, a species of the same 
genus and with similar morphobiometric characteristics of seeds. The genus Mimosa is known to be rich in species 
diversity, with about 378 native species occurring in Brazil, 42 of which are arboreal (Reflora, 2020). The differentiation 
of species of this genus by seed images is a challenge and should be explored in future studies covering more species. 
High precision of correct identification from seed images was achieved for differentiation of M. bimucronata, M. 
tenuiflora, M. flocculosa, M. pigra and M. scabrella. 

Croton blanchetianus (0.361) showed greater confusion with Croton floribundus, Mimosa bimucronata, Gymnanthes 
klotzschiana, Euphorbia heterophylla, Senna spectabilis, Mimosa ophthalmocentra, Schinus terebinthifolia and 
Monteverdia ilicifolia. Seeds of the Euphorbiaceae family stand out, except for Mimosa bimucronata (Fabaceae). The 
higher rate of confusion for C. blanchetianus, C. floribundus, G. klotzschiana and E. heterophylla can be attributed to 
the fact that the seeds have a caruncle, a type of aril that persists after seed maturation, remains adhered and confers 
distinct characteristics of color and shape to the seeds, also influencing their position at the time of image acquisition.

On the other hand, winged seeds or seeds with dispersal structures that confer different shapes due to the 
conformation of the wings were classified with high rates of correct identification of the species, as in the case of the 
genera Aspidosperma, Handroanthus, Machaerium, Tabebuia and Terminalia (Table 3). The differentiation of species of 
the Bignoniaceae family (Handroanthus and Tabebuia) may be more complex compared to other botanical families, due 
to the similar morphology of their seeds, and because they have 29 genera and 414 native species (Reflora, 2020). For 
Manihot carthagenensis (0.364), greater confusion occurred with Dalbergia ecastaphyllum and Cenostigma pyramidale, 
while Albizia niopoides (0.374) showed greater confusion with Euphorbia heterophylla, and Genipa americana (0.398) 
with Vitex megapotamica, Cenostigma microphyllum and Cordia superba.
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Genipa americana seeds do not have a standard shape and size, so seeds with different characteristics can occur. 
Thus, the skewness coefficient of this species indicates that smaller seeds predominate in the sample, while kurtosis 
(k<3) indicates that there is a greater amplitude of distribution of the frequency of their biometric characteristics 
relative to a normal curve (Sobrinho et al., 2017). This fact justifies the low capacity of the decision tree classifier to 
recognize this species only with the morphobiometry of the seed.

It is worth noting that the use of the proposed methodology for capturing images with a camera associated with 
a mini studio, image processing in open access software and the use of machine learning proved to be adequate for 
more than 70% of the species studied. Therefore, it is relevant to consider that image processing and machine learning 
to identify native forest seeds involve additional challenges and complexities.

Among the challenges encountered, we highlight the variety of seed sizes of the same species, similar characteristics 
for some botanical genera, minute seeds that cannot be photographed by common means, and the presence 
of diaspores or dispersal structures linked to the seeds that give them distinct characteristics, such as wings, arils, 
caruncles, and persistent pericarps. In addition, it is important to perform the extraction of relevant attributes and the 
proper selection of these to feed the classifier, and the availability of a representative and high-quality training dataset 
is critical to obtain reliable results.

Among the possibilities explored, the implementation of applications with machine learning techniques for seed 
identification stands out, which can bring significant benefits in terms of automation, inspection, and taxonomic 
identification. Therefore, it is important to consider conducting future studies using advanced deep learning techniques 
in native seeds, with a view to the creation of applications or integrated tools for capturing and processing images 
aimed at identification.

Deep learning can play a prominent role in identifying seeds in future studies, through complex algorithms and 
artificial neural networks. The capacity to handle variations in lighting, viewing angles, and noise in images makes it 
extremely efficient in recognition tasks. However, it is important to highlight the requirement of advanced programming 
knowledge, robust computational resources, and interpretation skills of the researcher.

Finally, the proposed method, which involves the use of a digital camera and a mini studio, is applicable for the 
identification of forest seeds. However, it should be noted that in cases of species with a low rate of recognition by the 
classifier or a higher degree of confusion, the proposed method may not be adequate. In these cases, further research 
and improvements in the methodology are needed to meet the demands of the native forest species in question, such 
as exploring alternatives for image capture, larger sample sizes, and deep learning techniques.

CONCLUSIONS

Image processing and the use of machine learning techniques make it possible to identify native forest seeds with 
a satisfactory accuracy rate. Classifiers based on decision trees are recommended.

ACKNOWLEDGEMENTS

To CNPq (National Council for Scientific and Technological Development) for granting a scholarship and financial 
support to the first author, and to the national and regional research, production and teaching institutions that 
provided seeds used in this study: (i) Embrapa Forests, (ii) Water and Land Institute (IAT/PR), (iii) Chauá Society, 
(iv) Forest Seed Laboratory (UFPR), (v) Bolsa de Sementes Program (AFUBRA/UFSM), (vi) Biodiversity Conservation 
Center of the São Paulo State Environmental Research Institute, and (vii) Ecology and Environmental Monitoring 
Center (NEMA/UNIVASF).



Journal of Seed Science, v.46, e202446002, 2024

10 F.C. Felix et al.

REFERENCES

AHA, D.W.; KIBLER, D.; ALBERT, M.K. Instance-based learning algorithms. Machine Learning, v.6, n.1, p.37-66, 1991. https://link.
springer.com/article/10.1007/BF00153759

ALMEIDA, F.A.; ROMÃO, E.L.; GOMES, G.F.; GOMES, J.H.F.; PAIVA, A.P.; FILHO, J.M.; BALESTRASSI, P.P. Combining machine learning 
techniques with Kappa–Kendall indexes for robust hard-cluster assessment in substation pattern recognition. Electric Power 
Systems Research, v.206, e107778, 2022. https://doi.org/10.1016/j.epsr.2022.107778 

BAO, F.; BAMBIL, D. Applicability of computer vision in seed identification: deep learning, random forest, and support vector machine 
classification algorithms. Acta Botanica Brasilica, v.35, n.1, p.17–21, 2021. https://doi.org/10.1590/0102-33062020abb0361

BAO, Y.; MI, C.; WU, N.; LIU, F.; HE, Y. “Rapid classification of wheat grain varieties using hyperspectral imaging and chemometrics.” 
Applied Sciences, v.9, n.19, e4119, 2019. https://doi.org/10.3390/app9194119

CAO, J.; LIU, K.; LIU, L.; ZHU, Y.; LI, J.; HE, Z. Identifying mangrove species using field close-range snapshot hyperspectral imaging and 
machine-learning techniques. Remote Sensing, v.10, n.12, e2047, 2018. https://doi.org/10.3390/rs10122047

CORTES, C.; VAPNIK, V. Support-vector network. Machine Learning, v.20, n.3, p.273–297, 1995. http://dx.doi.org/10.1007/
BF00994018.

COSTA, M.F.; LOPES, A.C.A.; GOMES, R.L.F.; ARAÚJO, A.S.F.; ZUCCHI, M.I.; PINHEIRO, J.B.; VALENTE, S.E.S. Characterization and 
genetic divergence of Casearia grandiflora populations in the Cerrado of Piaui State, Brazil. Floresta e Ambiente, v.23, n.3, p.387-
396, 2016. https://doi.org/10.1590/2179-8087.007115

DUAN, Z.; MIN, Z.; ZHIFANG, Z.; SHAN, L.; LEI, F.; XIA, Y.; YAQIN, Y.; YI, P.; GUOAN, Z.; SHULIN, L.; ZHIXI, T. Natural allelic variation 
of GmST05 controlling seed size and quality in soybean. Plant Biotechnology Journal, v.20, n.9, p.1807-1818, 2022. http://dx.doi.
org/10.1111/pbi.13865

FARRIS, E.; ORRÙ, M.; UCCHESU, M.; AMADORI, A.; PORCEDDU, M.; BACCHETTA, G. Morpho-colorimetric characterization of the 
Sardinian endemic taxa of the genus Anchusa L. by seed image analysis. Plants, v.9, n.10, p.1–14, 2020. https://doi.org/10.3390/
plants9101321

FELIX, F.C.; MEDEIROS, J.A.D.; FERRARI, C.S.; VIEIRA, F.A.; PACHECO, M.V. Biometry of Pityrocarpa moniliformis seeds using digital 
imaging: implications for studies of genetic divergence. Brazilian Journal of Agricultural Sciences, v.15, n.1, e6128, 2020. https://
doi.org/10.5039/agraria.v15i1a6128

FELIX, F.C.; KRATZ, D.; RIBEIRO, R.; NOGUEIRA, A.C. Characterization and differentiation of forest species by seed image analysis: a 
new methodological approach. Ciência Florestal, v.33, n.3, e73427, 2023. https://doi.org/10.5902/1980509873427 

FERREIRA, R.L.A.; CERQUEIRA, R.M.; CARDOSO-JUNIOR, R.C. Analysis of botanical identification in forest inventories of sustainable 
management plans on wester Pará state, Brazil. Nature and Conservation, v.13, n.3, p.136-145, 2020. https://doi.org/10.6008/
CBPC2318-2881.2020.003.0014 

FERREIRA, T.; RASBAND, W. ImageJ: user guide (IJ 1.46r), 2012. 198p.

FRANKLIN, S.E.; AHMED, O.S. Deciduous tree species classification using object-based analysis and machine learning with unmanned 
aerial vehicle multispectral data. International Journal of Remote Sensing, v.39, p.5236-5245, 2017. https://doi.org/10.1080/0143
1161.2017.1363442

McCULLOCH, W.S.; WALTER, P. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 
v.5, n.4, p.115-133, 1943.

MEDEIROS, A.D.; PINHEIRO, D.T.; XAVIER, W.A.; SILVA, L.J.; DIAS, D.C.F.S. Quality classification of Jatropha curcas seeds using 
radiographic images and machine learning. Industrial Crops and Products, v.146, p.112-162, 2020. https://doi.org/10.1016/j.
indcrop.2020.112162

MITCHELL, T. M. Machine Learning. McGraw–Hill Science/Engineering/Math, 1997. 421p.

MUKASA, P.; WAKHOLI, C.; FAQEERZADA, M.A.; AMANAH, H.Z.; KIM, H.; JOSHI, R.; SUH, H.K.; KIM, G.; LEE, H.; KIM, M.S.; BAEK, I.; 
CHO, B.K. Nondestructive discrimination of seedless from seeded watermelon seeds by using multivariate and deep learning image 
analysis. Computers and Electronics in Agriculture, v.194, e106799, 2022. https://doi.org/10.1016/j.compag.2022.106799

https://doi-org.ez22.periodicos.capes.gov.br/10.1023/A:1022689900470
https://link.springer.com/article/10.1007/BF00153759
https://link.springer.com/article/10.1007/BF00153759
https://doi.org/10.1016/j.epsr.2022.107778
https://doi.org/10.1590/0102-33062020abb0361
https://doi.org/10.3390/app9194119
https://doi.org/10.3390/rs10122047
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00994018
https://doi.org/10.1590/2179-8087.007115
http://dx.doi.org/10.1111/pbi.13865
http://dx.doi.org/10.1111/pbi.13865
https://doi.org/10.3390/plants9101321
https://doi.org/10.3390/plants9101321
https://doi.org/10.5039/agraria.v15i1a6128
https://doi.org/10.5039/agraria.v15i1a6128
https://doi.org/10.5902/1980509873427
https://doi.org/10.6008/CBPC2318-2881.2020.003.0014
https://doi.org/10.6008/CBPC2318-2881.2020.003.0014
https://doi.org/10.1080/01431161.2017.1363442
https://doi.org/10.1080/01431161.2017.1363442
https://doi.org/10.1016/j.indcrop.2020.112162
https://doi.org/10.1016/j.indcrop.2020.112162
https://doi.org/10.1016/j.compag.2022.106799


Journal of Seed Science, v.46, e202446002, 2024

11Identification of native seeds by images

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited.

NORONHA, B.G.; PEREIRA, M.D.; FLORES, A.V.; DEMARTELAERE, A.C.F.; MEDEIROS, A.D. Morphometry and physiological quality of 
Moringa oleifera seeds in the function of their fruit position. Journal of Experimental Agriculture International, v.25, n.6, p.1-10, 
2018. https://doi.org/10.9734/JEAI/2018/43375

QUINLAN, J.R. Learning decision tree classifiers. ACM Computing Surveys, v.28, n.1, p.71-72, 1996. https://doi.
org/10.1145/234313.234346 

REFLORA. Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/

ROPELEWSKA, E.; PIECKO, J. Discrimination of tomato seeds belonging to different cultivars using machine learning. European Food 
Research and Technology, v.248, n.3, p.685–705, 2022. https://doi.org/10.1007/s00217-021-03920-w

SHANNON, C.E. A mathematical theory of communication. Bell System Technical Journal, v.27, n.4, p.623-656, 1948.

SHI, Y.; PATEL, Y.; ROSTAMI, B.; CHEN, H.; WU, L.; YU, Z.; LI, Y. Barley variety identification by IPhone images and deep learning. 
Journal of the American Society of Brewing Chemists, v.80, n.3, p.215-224, 2022. https://doi.org/10.1080/03610470.2021.1958602

ŠKRUBEJ, U.; ROZMAN, C.; STAJNKO, D. Assessment of germination rate of the tomato seeds using image processing and machine 
learning. European Journal of Horticultural Science, v.80, n.2, p.68-75, 2015. http://dx.doi.org/10.17660/eJHS.2015/80.2.4

SOBRINHO, S.P.; ALBUQUERQUE, M.C.F.; LUZ, P.B.; CAMILI, E.C. Physical characterization of fruits and seeds of Lafoensia pacari, 
Alibertia edulis and Genipa americana. Revista de Ciências Agrárias, v.40, n.2, p.382-389, 2017. https://doi.org/10.19084/RCA16034

TAN, K.; RUNTAO W.; MINGYING L.; ZHENPING G. Discriminating soybean seed varieties using hyperspectral imaging and machine 
learning. Journal of Computational Methods in Sciences and Engineering, v.19, n.4, p.1001-1015, 2019. http://dx.doi.org/10.3233/
JCM-193562

TU, K.; WEN, S.; CHENG, Y.; ZHANG, T.; PAN, T.; WANG, J.; WANG, J.; SUN, Q. A non-destructive and highly efficient model for 
detecting the genuineness of maize variety ‘JINGKE 968’ using machine vision combined with deep learning. Computers and 
Electronics in Agriculture, v.182, e106002, 2021. https://doi.org/10.1016/j.compag.2021.106002

URBANETZ, C.; TAMASHIRO, J.Y.; KINOSHITA, L.S. Chave de identificação de espécies lenhosas de um trecho de floresta ombrófila 
densa atlântica, no sudeste do Brasil, baseada em caracteres vegetativos. Biota Neotropica, v.10, n.2, p.350-388, 2010. https://doi.
org/10.1590/S1676-06032010000200036

VAPNIK, V.N. The nature of statistical learning theory. Springer, New York. 1995. 188p. http://dx.doi.org/10.1007/978-1-4757-2440-0

WEKA, Waikato Environment for Knowledge Analysis, versão 3.8.3. Universidade de Waikato, Nova Zelândia. 2018. https://
weka.softonic.com.br/

WITTEN, I.; FRANK, E. Data mining: practical machine learning tools and techniques, Morgan Kaufmann, 2005. 629p.

XI, Z.; HOPKINSON, C.; ROOD, S.B.; PEDDLE, D.R. See the forest and the trees: effective machine and deep learning algorithms for 
wood filtering and tree species classification from terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 
v.168, p.1-16, 2020. https://doi.org/10.1016/j.isprsjprs.2020.08.001

ZHAO, G.; QUAN, L.; LI, H.; FENG, H.; LI, S.; ZHANG, S.; LIU, R. Real-time recognition system of soybean seed full-surface defects based 
on deep learning. Computers and Electronics in Agriculture, v.187, e106230, 2021. https://doi.org/10.1016/j.compag.2021.106230

ZHU, S.; CHAO, M.; ZHANG, J.; XU, X.; SONG, P.; ZHANG, J.; HUANG, Z. Identification of soybean seed varieties based on hyperspectral 
imaging technology. Sensors, v.19, n.23, e5225, 2019. http://dx.doi.org/10.3390/s19235225

ZHU, S.; ZHANG, J.; CHAO, M.; XU, X.; SONG, P.; ZHANG, J.; HUANG, Z. A rapid and highly efficient method for the identification 
of soybean seed varieties: hyperspectral images combined with transfer learning. Molecules, v.25, n.1, e152, 2020. http://dx.doi.
org/10.3390/molecules25010152

https://doi.org/10.9734/JEAI/2018/43375
https://doi.org/10.1145/234313.234346
https://doi.org/10.1145/234313.234346
http://floradobrasil.jbrj.gov.br/
https://doi.org/10.1007/s00217-021-03920-w
https://doi.org/10.1080/03610470.2021.1958602
http://dx.doi.org/10.17660/eJHS.2015/80.2.4
https://doi.org/10.19084/RCA16034
http://dx.doi.org/10.3233/JCM-193562
http://dx.doi.org/10.3233/JCM-193562
https://doi.org/10.1016/j.compag.2021.106002
https://doi.org/10.1590/S1676-06032010000200036
https://doi.org/10.1590/S1676-06032010000200036
http://dx.doi.org/10.1007/978-1-4757-2440-0
https://weka.softonic.com.br/
https://weka.softonic.com.br/
https://doi.org/10.1016/j.isprsjprs.2020.08.001
https://doi.org/10.1016/j.compag.2021.106230
http://dx.doi.org/10.3390/s19235225
http://dx.doi.org/10.3390/molecules25010152
http://dx.doi.org/10.3390/molecules25010152

	_Hlk127176212
	_Hlk136437970
	_Hlk127176357
	_Hlk148879964
	_Hlk148881049
	_Hlk127176439
	_Hlk130200773
	_Hlk130200788
	_Hlk130200807
	_Hlk130200825
	_Hlk130200935
	_Hlk130200960
	_Hlk130201003
	_Hlk130201033
	_Hlk130201267
	_Hlk130201071
	_Hlk130201241
	_Hlk130201308
	_GoBack
	_GoBack

