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Why analyze germination experiments using Generalized Linear Models?1
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ABSTRACT - We compared the goodness of fit and efficiency of models for germination. Generalized Linear Models (GLMs) 
were performed with a randomized component corresponding to the percentage of germination for a normal distribution 
or to the number of germinated seeds for a binomial distribution. Lower levels of Akaikes’s Information Criterion (AIC) 
and  Bayesian Information Criterion (BIC) combined, data adherence to simulated envelopes of normal plots and corrected 
confidence intervals for the means guaranteed the binomial model a better fit, justifying the importance of GLMs with binomial 
distribution. Some authors criticize the inappropriate use of analysis of variance (ANOVA) for discrete data such as copaiba 
oil, but we noted that all model assumptions were met, even though the species had dormant seeds with irregular germination. 

Index terms: AIC, ANOVA assumptions, Copaifera langsdorffii Desf, forest species. 

Por que analisar experimentos de germinação usando os Modelos Lineares 
Generalizados?

RESUMO - A qualidade do ajuste e eficiência de modelos de germinação foram comparadas. Modelos Lineares Generalizados 
(MLGs) foram executados com o componente aleatório correspondendo ao percentual de germinação para a distribuição 
normal e o número de sementes germinadas para a distribuição binomial. Baixos valores do Critério de Informação de 
Akaike (AIC) e do Critério de Informação Bayesiano (BIC), ajuste aos envelopes simulados dos Normal plots e intervalos 
de confiança corretos para as médias justificam a importância do uso dos MLGs com distribuição binomial. Alguns autores 
criticam o uso inapropriado da análise de variância (ANOVA) para dados discretos como a germinação de copaíba, mas todas 
as pressuposições do modelo foram atendidas, mesmo a espécie possuindo sementes dormentes e germinação irregular.

Termos para indexação: AIC, pressuposições da ANOVA, Copaifera langsdorffii Desf, espécies florestais.

Introduction

Analysis of variance (ANOVA) is one of the most applied 
statistical models in agronomic experiments, including 
seed science. Based on a normal linear model, the method 
emphasizes the crucial role of replication, randomization and 
local control for efficient analyses (Sokal and Rohlf, 1995) 
and some assumptions need to be met before its execution. 
The residuals must follow a normal distribution and be 
independent; the variances need to be homogeneous; and the 
blocks should have an additive effect when the experiment 
follows a Randomized Block Design. One of the reasons for 
the prevalence of ANOVA in seed science is the low residual 

variability of crop species with decades of plant breeding, 
generating higher germination standards and contributing 
for to the non-checking of data to a normal distribution. 
However, this fact is not a guarantee for the use of ANOVA, 
and the assumptions always need to be verified. The use of 
techniques, such as data transformation, allowed the use of 
ANOVA for several years, despite its rigid assumptions. With 
confused interpretation and problems in the analysis, data 
transformation received severe criticism from researchers 
(Warton and Hui, 2011; Sileshi, 2012; Stroup, 2015).

Generalized Linear Models (GLMs) include distributions 
with fewer requirements than normal. Therefore ANOVA’s 
assumptions do not necessarily need to be met (Wilson 
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and Hardy, 2002; Crawley, 2007). GLMs are defined by 
a probability distribution that belongs to the exponential 
parametric family (Nelder and Wedderburn, 1972). They are 
the flexibilization of classic linear models for continuous 
variables, extending the whole structure for estimation and 
prediction to models with other distributions, including 
discrete variables (Dobson and Barnett, 2008). 

It is common to analyze germination expressed as 
percentage instead of as the number of germinated seeds. The 
number of germinated seeds represents the original variable 
that is discrete and follows all binomial distribution criteria: 
fixed number of seeds, independence of germination, only two 
possible results (seed germinates or does not germinate) and, 
constant chance of germination (Lee et al., 2006). Based on 
this distribution, other statistical approaches, such as GLMs, 
can be used without data transformation and possibly guarantee 
a better fit (Dobson and Barnett, 2008).

Since ANOVA is a particularization of GLMs, we 
will use a classic experiment involving germinating seeds 
of copaiba oil (Copaifera langsdorffii Desf.), a native 
specie with a wide geographical distribution in the Brazilian 
territory, to show the relation between both methods of 
analysis (GLMs and ANOVA). This experiment also aimed 
to compare the goodness of fit and efficiency for the proposed 
models expressed as seed germination percentage and number 
of germinated seeds.

Material and Methods

A study with seeds from 13 individuals of copaiba oil 
was chosen to represent a classic germination experiment 
involving a species distributed in almost all Brazilian 
biomes (Atlantic and Amazon forests, Cerrado, Caatinga and 
Pantanal), with extensive genetic variability and dormant 
seeds. Copaiba oil seeds were arranged in a completely 
randomized design with four replications (r=4) of 25 seeds 
per plot (n=25) in a factorial scheme 4 x 3, with the first factor 
being the methods to overcome dormancy. The second factor 
was three samples differentiated by their physiological quality 
(high, intermediate and low quality), totaling 48 experimental 
plots (t=48). The methods to overcome dormancy consisted 
of disinfection of seeds with 0.05% of sodium hypochlorite 
for 5 minutes (1), soaking the seeds in water for 24 hours 
(2) and for 48 hours (3). One treatment was used as a control 
group (4). Seeds were distributed alternately in two sheets 
of filter paper, covered with another two to make the rolls. 
The rolls were distributed in a BOD germinator according 
to the experimental design and incubated at 25 °C under 
continuous fluorescent white light. The number of germinated 

seeds was quantified 35 days after  sowing and the criterion 
adopted was normal seedlings. 

The GLMs were performed with a randomized component 
corresponding to the percentage of germination for normal 
distribution or to the number of germinated seeds for 
binomial distribution; a systematic component corresponding 
to methods, samples and interaction in the form of a linear 
structure for both distributions; and a link function. It should 
be noted that the application of GLMs can be extended to 
any species and germination experiments with a factorial 
structure, such as germinability, normal seedlings, abnormal 
seedlings, dead seeds among others. Linear combination of 
the effects was given by:
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of explanatory components (methods, samples and 
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ix  is the ith row of experimental matrix X, 

T
p ),...,,( 21 ββββ =   is the vector of parameters and 
T

n ),...,,( 21 ηηηη =  is the linear predictor. 
The linear predictor η  appears in the linear model as the 

sum of each term of the p parameters and it was obtained by 
transforming the percentage of germination or the number of 
germinated seeds with their respective link functions. The 
expected value of y was obtained by applying the inverse of 
the link function in η :

ijjip γδαµη +++= ; where pµ  is the mean of the 

predictor, iα  the effect of the ith method, jδ  the effect of  the 

jth sample and ijγ  the effect of the interaction of the ith method 

and the jth sample.
The identity link function was applied to the percentage of 

germination where iig µµ =)( . This model requires residuals 
normality and independence, tested by the Shapiro-Wilk 
(Shapiro and Wilk, 1965) and Durbin-Watson test (Durbin and 
Watson, 1950), respectively, as well as variance homogeneity, 
checked by Levene’s test (Levene, 1960). 

The normal model was defined by: εβ += Xy  for 

βµ T
iii xYE ==)(   ),(~ 2σµii NY ; where y  =  ( NYYY ,...,, 21 ) 

is the vector composed of the percentage of germination,  
T

nxxxX ),...,,( 21=  is the matrix of the model composed 

of explanatory components (methods, samples and 

interaction), T
p ),...,,( 21 ββββ = is the vector of parameters 

and ),...,,( 21 Nεεεε =  is the vector composed of residuals.

The logit link function was applied for the number 

of germinated seeds with the binomial model defined 



283GLM for seed science

Journal of Seed Science, v.40, n.3, p.281-287, 2018

as: βπ T
ii xg =)( and ii nYE π=)( ; where iπ  is the vector 

composed of germinated seed proportions, T
ix  the ith row of 

experimental matrix X and n  number of seeds per replication.
The deviances were estimated according to data 

distribution for each factor (method and sample) and 
interaction, as well as for null and saturated models, whence 
residual deviance derives. Inferences of the deviance analysis 
for binomial distribution were based on chi-square statistic, 
because the dispersion parameter is known. All the analysis 
were performed with software R version 3.4.1, considering 
the significance level of α=0.01 for all applied tests. 

Results and Discussion

The non-significant effect for method and the significant 
effect for sample and interaction reveals equal inference about 
the sources of variation for both models (binomial and normal) 
(Table 1). Nevertheless, the p-value associated with mean effects 
and interaction were different between models. For example, 
probability for the method factor was 0.166 at the normal and 
0.300 at the binomial distribution, which showed discrepancies 
between models. It is worth mentioning that a normal distribution 
could only be used because residuals from the germination 
percentage converged to this distribution (W = 0.976; P = 0.424) 

and the variances were homoscedastic (F = 2.517; P = 0.018).
The D² values from both models were slight equal, with 

91.97% and 89.39% of the deviance explained by the insertion 
of the factors and interaction, for the normal and binomial 
model, respectively. The Sample variation was the factor with 
more deviation in the germination process, justified by the 
large germination difference between the three samples.

Similarities in inferences can lead to a misunderstanding 
that both models could be applied for germination of copaiba 
oil seeds. This similarity is apparent and must be contested. It 
is also necessary to consider the combination of descriptive 
and graphic measurements to assess the goodness of fit from 
models. The lowest values of AIC (205.87) and BIC (266.95) 
from the binomial compared to the normal distribution 
indicated that the first distribution was more generalist than 
the second (Table 1). Therefore, generalist models explain all 
the data extensions more efficiently. 

Normal plot graphs complemented what was previously 
observed by AIC and BIC, and presented better adjustment 
of studentized residuals in the binomial model, with fewer 
points distant from the linear line, including the points close 
to and far from the mean (Figure 1a). Better accommodation 
of values in the simulated envelopes was also verified in the 
binomial model. For Cook’s distance, all values associated 
were lower than 0.25 (Figure 1b) revealing no outliers (sensu 

Table 1.	 Analysis of deviance (ANODEV) to seed germination of copaiba oil (Copaifera langsdorffii Desf.), for normal 
distribution with identity link and binomial distribution with logit link planned in a completely randomized design 
factorial scheme (method, sample and interaction).

 

 

Source of variation df df 
dif. 

Normal distribution/identity link (ANOVA) 

Deviance Deviance 
Difference % of ED F P 

Null   0 47 27456.0     
Method   3 44     329.0 27127.0   1.20     1.79    0.166 
Sample   2 42 22483.0   4644.0 81.89 183.62 < 0.001 

Interaction   6 36   2440.0   2204.0   8.89     6.64 < 0.001 
Saturated 11 36   2204.0  91.97*   

  AIC   345.91     
  BIC   370.23     

Source of variation df df 
dif. 

Binomial distribution/logit link 

Deviance Deviance 
Difference % of ED P 

Null   0 47 349.10    
Method   3 44     3.67 345.44   1.05    0.300 
Sample   2 42 275.40   70.04 78.89 < 0.001 

Interaction   6 36   33.01   37.03   9.46 < 0.001 
Saturated 11 36   37.03  89.39*  

  AIC 205.87    
  BIC 266.95    

df: degrees of freedom; F: statistic of Snedecor distribution; ED: Explained deviance.*Also called D2.
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Normal plots (a)

Cook’s distance (b)

Figure 1.	 Normal plots including simulated envelopes of 95% confidence interval (a) and Cook’s distance for discrepant data 
diagnosis (b) of copaiba oil (Copaifera langsdorffii Desf.) for normal and binomial distributions. 

Cook and Weisberg, 1982). In the copaiba experiment, Cook’s 
distance did not prove effective to distinguish the models 
because the data did not presented outliers.

The confidence intervals (CI) for the means of 
binomial model were more reliable than those from normal 
model, where treatments with larger variation had higher 
CI, differing from the normal model that sets the same 
CI for all means (Figure 2). It occurred because standard 
error for binomial model is calculated as n)1( ππ − , 
where π  is the germination seed proportion. In the normal 
model, standard error is calculated as            , where σ  
is the standard deviation of the sample, not considering 
the treatment variation but the experimental variation. 
Another advantage of the binomial model is that the 
estimated means were in the range of 0 to 100, because 

it is a discrete distribution. Normal follows a continuous 
distribution, varying from -∞ to +∞ , and the treatments 
with germinations close to zero and 100, can have their 
values extrapolated, as example the methods 2 and 3 for 
the third sample (Figure 2).

Lower levels of AIC and BIC combined and data adherence 
to simulated envelopes of Normal plots guaranteed the binomial 
model a better fit, justifying the importance to select models 
with better adjustment to the data through GLMs. However, the 
purpose of this research was not only to increase the successful 
list of binomial models for categorical data (Jaeger, 2008; 
Sileshi, 2012), but also to propose a critical analysis of why 
these suitability models are sometimes ignored by researchers 
and why ANOVA is still prevalent for germination data.

One of the reasons for misuse of modern statistics may 

𝜎𝜎 √𝑛𝑛⁄  
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Figure 2.	 Germination means with confidence intervals of copaiba oil (Copaifera langsdorffii Desf.) of three samples submitted 
by four methods to overcome seed dormancy. Green lines represent the means from normal model and blue lines from 
the binomial model. 

lie in the fact that among the models that are part of GLMs, 
a normal distribution and identity link are only appropriate 
if ANOVA assumptions are met. ANOVA is part of GLMs, 
so it is reasonable to assume that Fisher had already applied 
modern statistics since 1925. Most of the published articles 
performing GLMs are not very precise, since the assumptions 
and model requirements were not checked. Generalization 
does not suggest unconcern for checking assumptions, but a 
distribution flexibility to ensure the best model for the data at 
hand (Crawley, 2007; Dobson and Barnett, 2008).

The non checking of ANOVA assumptions is a recurrent 
problem in seed science. In germination articles published 
between 2000 and 2011, only 20% of those checked the 
normality assumption (Sileshi, 2012). However, this problem 
is not a peculiarity of germination experiments and recurs in 
several areas of biological, agricultural and environmental 
sciences. The affirmation that the normal distribution is 
not prevalent in forest species (Austin, 1987; Biondini et 
al., 1988) was debunked by the copaiba oil results. Some 
authors criticize the inappropriate use of ANOVA for discrete 
data such as copaiba oil (Jaeger, 2008; Sileshi, 2012), but 
we note that all model assumptions were met, even though 
the species had dormant seeds with irregular germination. 
Moreover, when the number of observations is large, binomial 
distribution tends to a normal distribution. In this context, the 
angular transformation of data was discarded, minimizing 

any criticism regarding this approach. The meeting of all 
assumptions enabled the use of ANOVA to analyze the 
germination of the species.

One of the reasons for ANOVA’s prevalence may be 
the vast literature on scientifically recognized Post hoc tests 
(Tukey, SNK, Scott-Knott, Duncan, Dunnett, among others) 
unlike binomial, which is restricted to orthogonal contrasts.  It 
is unquestionable that contrasts are efficient in the comparison 
of means, but they are difficult to interpret when compared 
to classical tests. Futhermore, ANOVA specialized in more 
complex factor models, such as split plot in time and space, 
additional treatments, among others, which are easily found by 
researchers in statistical programs. In this context of GLMs, 
these factor structures will probably require more modeling, 
which would limit the autonomy of researchers.

ANOVA remained absolute in germination experiments 
because of the lack of quality indicators for the model. The 
coefficient of variation prevailed and still prevails as the main 
indicator of experimental precision, but it does not bear any 
relation to the goodness of fit. The coefficient of variation 
supremacy is a reflection of Snedecor and Cochran’s 
approach (1967) that used the measurements proposed by 
Karl Pearson in 1895 to compare the relative variation of 
different crops. As a consequence of this widespread use, 
reference values were determined for various crops, and when 
lower than 15%, the experiments were considered to have 
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high experimental precision, an insufficient adjective to make 
any assumptions regarding the goodness of fit.

It is important in our discussion to report overdispersion 
in the analysis of discrete data. Overdispersion occurs 
because the mean and variance components of a GLM are 
related and depends on the same parameter that is being 
predicted through the independent vector. For binomial data, 
overdispersion occurs when the discrepancies between the 
observed responses and their predicted values are larger than 
what the model would predict. There is no overdispersion 
in ordinary linear regression because variance is estimated 
independently of the mean function (Agresti, 2012).

It is expected that residual deviance is approximately 
equal to the residual degrees of freedom, applying GLMs with 
a known scale parameter (the case for binomial and Poisson 
distributions). binomial data of copaiba oil germination did not 
express overdispersion because the relation between residual 
deviance and residual degrees of freedom was approximately 
equals to one (Table 1), eliminating any problem for the model. 

Overdispersion makes the standard errors obtained from 
the model incorrect and may be seriously underestimated. 
Consequently, we may incorrectly assess the significance of 
individual regression parameter. Interpretation of the model 
will be incorrect and any predictions will be too inaccurate. 
A number of different models and associated estimation 
methods have been proposed to overcome overdispersion 
(Collett, 1991; Piepho, 1999). 

With the normal distribution, estimates of the mean and 
variance require distinct calculations; with the binomial, a 
single calculation, the estimate of p, determines both the mean 
and variance. In general, for germination percentages higher 
than 50%, a normal distribution of the observations will be 
left-skewed; for percentages lower than 50%, the distribution 
will be right-skewed. The skewness increases as the probability 
approaches 0 or 100%, giving unbiased predicted values for 
normal distribution (Stroup, 2015). Forest species have a 
large germination variation and cultivated species have high 
germination standards reached by plant breeding, which makes 
the binomial distribution more reliable for germination studies. 

Descriptive measurements to analyze goodness of 
fit are not new. AIC and BIC indicated that the binomial 
model is more efficient than the normal for copaiba oil seed 
germination. Meeting assumptions is necessary, but not a 
satisfactory reason for the use and application of ANOVA 
to germination data, which is the main justification to apply 
GLMs. Despite their convergence to point out binomial as 
the most appropriate distribution, AIC and BIC indicators are 

divergent. When the models are more complex and explain 
several variables with different degrees of interaction, studies 
have shown AIC to be more reliable than BIC. When the 
models are simpler, BIC is preferable (Nylund et al., 2007; 
Yang and Yang, 2007; Vrieze, 2012). Furthermore, both 
criteria pointed that the binomial performed better adjustment 
but sometimes one statistical inference may differ.

It is necessary to recognize the importance of each 
measurement and decide which one will be considered to 
evaluate the goodness of fit. Other germination experiments 
may fit more properly to a normal distribution model, hence 
the importance of using these inferential criteria. Graphic 
diagnostics are also important, but they depend on “a clinical 
look”, which tends to be idiosyncratic, so these graphics 
should be applied jointly.

Graphic diagnostics take on more significance when 
different link functions are being used in a same distribution 
or when different distributions are being compared. For the 
germination variable, residual normality check (normal 
distribution) and its representation as the number of 
germinated seeds (binomial distribution) guarantee reliability 
for the analyst that these distributions are consistent. Other 
link functions can be adjusted for germination, which ensure 
the creation of new models. It is important to report that link 
functions were fixed for these distributions in our research, 
because the scope was only to compare model fitting to 
different data distribution. 

We used canonical functions of their respective 
distributions because they simplify the model themselves 
(Myers et al., 2002; Crawley, 2007). If a tested model does 
not show a good adjustment and the graphical analysis 
demonstrates irregularity, new models with different link 
functions need to be tested, observing their own peculiarities. 
For example, a probit link function could be also used with 
binomial distribution to adjust the germination (Jaeger, 
2008). Goodness of fit for different link functions in the same 
distribution could be verified with residual deviance, where 
the lowest values would indicate the best model.

Conclusions

This research demonstrates that Generalized Linear Models 
can be applied efficiently in seed science. This methodology can 
fit different statistical cases and allows the researcher to make 
new inferences, when other distributions from the exponential 
family could be considered. GLM with binomial approach 
performs better models for germination data. 
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