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Abstract

Objective: To review the main causes of new bronchopulmonary dysplasia and the strategies utilized to
decrease its incidence in extremely low birth weight infants.

Sources of data: For this review a MEDLINE search from 1966 to October 2004, the Cochrane Database,
abstracts from the Society for Pediatric Research and recent meetings on the topic were used.

Summary of the findings: The survival of extremely low birth weight infants has increased significantly due
to improvement in both scientific knowledge and technology. This improvement in survival has therefore resulted
in an increased incidence of bronchopulmonary dysplasia. The characteristics of bronchopulmonary dysplasia in
extremely low birth weight infants, the so called �new� bronchopulmonary dysplasia are quite different from the
classic bronchopulmonary dysplasia described by Northway. This new bronchopulmonary dysplasia has a multifactorial
etiology, which includes volutrauma, atelectrauma, oxygen toxicity and lung inflammation. Therapy such as prenatal
corticosteroids, exogenous surfactant, nasal continuous positive airway pressure, new mechanical ventilation
modalities and gentle ventilation have been used in attempts to decrease lung injury severity.

Conclusions: In order to prevent lung injury in extremely low birth weight infants, it is necessary to minimize
several factors that induce bronchopulmonary dysplasia and to utilize less aggressive therapeutic strategies. In
addition to the current therapy used to decrease lung injury, knowledge of these causative factors may create new
therapies that may be fundamental in improving the clinical outcomes of premature infants.

J Pediatr (Rio J). 2005;81(1 Suppl):S69-S78: Extremely low birth weight infant, bronchopulmonary dysplasia,
mechanical ventilation.
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Introduction

With technological advances and new knowledge and
therapeutic strategies such as the use of antenatal
corticosteroids, exogenous surfactant and advances in
mechanical ventilation, premature babies are surviving
more than ever. With this increased survival of extremely
premature infants, the incidence of bronchopulmonary
dysplasia (BPD) remains high.1-4 Among babies born
weighing 500-1,000 g, the incidence of BPD is around 43%.4

In the neonatal intensive care unit at the University of

Miami�s Jackson Memorial Hospital, however, the incidence
of BPD is significantly lower, affecting around 23% of
extremely premature infants.5

The clinical presentation and pathophysiology of BPD in
the extremely premature infant is different from the classic
form that was described by Northway, and it is this entity
that has been named �new� bronchopulmonary dysplasia.
New BPD is defined as oxygen dependency at the 36th week
of postmenstrual age (with oxygen dependency > 28 days).
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The histopathology of the lung damage is different because
extremely premature infants� lungs are at a less advanced
stage of development. The degree to which the lung has
developed at 24-26 weeks is very different to the degree of
development at 30-32 weeks� gestational age. At 24 weeks
the lung is still at the canalicular development stage, which
lasts from 16 to 26 weeks� gestational age and is characterized
by type 2 pneumocyte differentiation, by the start of
development of pulmonary circulation and the fine saccules
which will eventually form the alveoli. At this stage the lung
is beginning to be viable for gaseous exchange. At 30 weeks
the lung is in the saccular stage. This period develops from
26-28 to 32-36 weeks� gestational age and is characterized
by the increase in size of these saccules and the reduction
in interstitial space. The alveolar stage lasts from 32-36
weeks� gestational age until more or less 2 years of life.6

Thus, premature delivery and the start of breathing interrupt
the normal development of the alveoli and pulmonary
vasculature of these infants.

Classic bronchopulmonary dysplasia

Severe respiratory distress syndrome
Severe respiratory failure
High mortality rate
Severe pulmonary hypertension
Aggressive mechanical ventilation (barotrauma/volutrauma)
X-ray with hyperdistension and emphysema
Alveolar atelectasis contrasting with alveolar hyperdistension
Reduction in the internal alveolar surface
Severe epithelium airways injuries (hyperplasia and metaplasia)
Airways smooth muscle hyperplasia
Significant fibrosis
Vascular lesions

New bronchopulmonary dysplasia

Moderate respiratory distress syndrome
Mild to moderate respiratory failure
Lower mortality rate
Gentle mechanical ventilation, prolonged ventilation
X-ray with less hyperdistension and emphysema
More uniform aeration
Reduction in the number of alveoli, which became bigger, simplified structure (hyperplasia and
metaplasia, reduced acinar complexity)
Less severe epithelium airways injuries
Variable airways smooth muscle hyperplasia
Variable interstitial fibrosis
Less severe vascular lesions
Reduced number of capillaries, which are dysmorphic

Table 1 - Characteristics of the classic and new bronchopulmonary dysplasia

The classic form of BPD described by Northway et al.7

occurs after mechanical ventilation has been used because
of severe respiratory failure due to respiratory distress
syndrome (RDS). At that time, newborn babies were
subjected to more aggressive mechanical ventilation and
it was barotrauma and oxygen toxicity that were primarily
responsible for BPD. Classic BPD, during the initial phase,
is characterized by interstitial and alveolar edema which
progress to an inflammatory process with significant
fibrosis. In contrast, new BPD, observed in extremely
premature infants, is the result of a number of different
factors such as pulmonary immaturity and the inefficiency
of the musculature and the thorax, causing the need for
longer periods on the respirator, which in turn increases
the chances of the airways being colonized by bacteria,
initiating an inflammatory reaction. With the new BPD,
injuries present with less fibrosis, there is more uniform
aeration and, primarily, a reduction in the number of
alveoli and capillaries1,5,8 (Table 1).
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Causes of lung damage

Lung damage can be caused by prenatal factors or
postnatal occurrences.

Prenatal factors

It has been observed that premature infants exposed
to chorioamnionitis during the neonatal period present
elevated concentrations of inflammatory mediators and
that this condition can lead to pulmonary maturation and,
as a result, a reduced BPD incidence. However, if these
premature infants develop RDS and require mechanical
ventilation, the incidence of BPD increases significantly.9-11

Postnatal factors

Inadequate alveolar stability

Premature infants� lungs are generally deficient in
surfactant, which triggers alveolar atelectasis and
reduction in pulmonary compliance. The use of mechanical
ventilation for recruitment of atelectatic alveoli can cause
lung damage.12

Volutrauma/barotrauma

Studies have demonstrated that mechanical ventilation
with large tidal volume increases the number of neutrophils
and cytokines in the lungs and also the permeability of the
capillary membrane, leading to pulmonary edema. These
inflammatory injuries can be associated with BPD.13-15

Large tidal volumes provoke hyperdistension of the alveoli,
causing lung damage. Volutrauma associated with the
tendency towards alveolar atelectasis and surfactant
deficiency increases the chance of injury. In such cases
the lungs are not ventilated symmetrically. For example,
if the lungs are being ventilated with a tidal volume of
10 ml/kg and just one third is expanding, then this
fraction is in fact being ventilated with the equivalent of
a 20-30 ml/kg volume. Nowadays barotrauma is less
common although some services still insist on using
higher pressures during mechanical ventilation, causing
this type of lesion.

Oxygen toxicity

Experimental studies demonstrate that mechanical
ventilation and oxygen can interfere with the alveolar and
vascular development of premature animals.16-18 In
premature infants, the activity of antioxidant enzymes,
such as superoxide dismutase, catalase and peroxidase,
is relatively deficient, making them more vulnerable to
oxygen toxicity.19 Oxygen metabolites can saturate the
antioxidant system, inhibit the synthesis of proteins and
of DNA and reduce surfactant synthesis. Prolonged
exposure to high concentrations of oxygen can lead to
inflammation and diffuse alveolar injury. Premature infants
who have been exposed to high oxygen concentrations in
order to maintain high saturation levels, exhibit more
persistent lung damage.20

Inflammatory reaction

Recently published data have demonstrated that
inflammatory mediators, such as TNF-alpha and
interleukins, increase during mechanical ventilation,
part icular ly when large t idal  volumes are
employed.13,14,21-25 Naik et al. observed that starting
premature lambs on mechanical ventilation triggered an
increase in inflammatory mediators, suggesting that a
few mechanical ventilation cycles are enough to cause
lung damage.15 Sepsis and patent ductus arteriosus can
also set off an inflammatory reaction and are associated
with an increased incidence of BPD.26,27

Strategies for minimizing lung damage in the
extremely premature infant

As can be observed, the factors that trigger lung damage
in premature neonates are multiple. Measures for avoiding
these injuries should start during the prenatal period and,
if premature delivery cannot be avoided, continue through
the neonatal period.

Prenatal care

Prenatal monitoring is critical to early diagnosis and
treatment of possible maternal infections which can lead
to chorioamnionitis. As has already been covered,
chorioamnionitis, when associated with RDS, is one of the
risk factors for BPD.

When premature delivery is inevitable, antenatal
corticosteroid is of fundamental importance. Corticosteroid
administered before birth stimulates pulmonary maturation,
increasing surfactant production and accelerating the
development of alveolar and capillary structures, which
reduces the severity of hyaline membrane disease (HMD)
and the need for mechanical ventilation.28,29

Postnatal care

The care given to premature newborns during the first
hours of life can be of fundamental importance to minimizing
acute lung damage and its complications, such as BPD.

The introduction of new technologies and the
development of modern respirators have provided different
ventilation and monitoring modalities, which, together
with antenatal corticosteroid and exogenous surfactant,
have significantly improved the prognosis of these
patients.30-32

Surfactant therapy

The surfactant deficient lungs of premature neonates
are highly susceptible to lung injury and significant
inflammatory reactions can be triggered.33 The function of
surfactant is to recruit alveoli and prevent atelectasis.
Treatment with surfactant reduces the need for ventilatory
support in order to maintain adequate gaseous exchange,
thereby reducing the risk of volutrauma and oxygen toxicity.
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Its use is further associated with an increase in functional
residual capacity (FRC), an improved ventilation-perfusion
coefficient and reduced intrapulmonary shunt.34 Clinical
studies demonstrate that surfactant reduces the occurrence
of RDS, pneumothorax, and the severity of chronic lung
disease.34-41

The great debate around surfactant is on when the first
dose should be administered. Controlled, randomized studies
show that surfactant replacement therapy is effective both
when used prophylactically, soon after birth to prevent RDS,
and when administered selectively, i.e. only when the
patient exhibits signs of the disease. In a review for
Cochrane including 2,800 premature subjects, Soll & Morley
observed a lower incidence of pneumothorax and reduced
mortality rates among those newborn babies who had been
treated prophylactically with natural surfactant, when
compared with those who had only been given surfactant
after a diagnosis of RDS had been established.41 Despite
these studies, many centers still prefer to use surfactant
only when there are signs of RDS, based on the reasoning
that not all premature infants need exogenous surfactant,
particularly not those who have received antenatal
corticosteroid.

With respect of whether to use natural or synthetic
surfactant, Soll & Blanco concluded, having reviewed several
different studies, that both natural and synthetic surfactants
are effective for the prevention and treatment of RDS.
However, the natural surfactant provokes a faster reduction
in the need for mechanical ventilation, a lower number of
pneumothorax cases and a more accentuated reduction in
mortality rate, compared with the synthetic form.42 Clinical
and experimental research is being performed with new
synthetic surfactants, such as rSP-C (Venticute), KL4
(Surfaxin), HL 10 (Rotterdam) and SP-C33 (Stockholm).

Non-invasive ventilatory support

 In continuous positive airway pressure (CPAP),
continuous pressure is applied throughout the entire
respiratory cycle to prevent the alveoli from collapsing and
thus permit more homogenous breathing. In addition to
recruiting alveoli and increasing pulmonary volume, CPAP
reduces thoracic distortions and stabilizes the chest, while
also reducing the incidence of obstructive apnea and
increasing surfactant excretion.43 As a less invasive method
than mechanical ventilation, CPAP is being studied as a
possible early treatment, even before extremely premature
infants leave the delivery room.

Studies show that employing CPAP reduces the duration
and need for intubation, which reduces the risk of BPD. In
the United States, during the eighties, a retrospective
study showed that the incidence of BPD was significantly
reduced in the neonatal ICU at the University of Columbia,
in New York. At this unit, premature infants born weighing
700-1,500 g and showing signs of respiratory failure were
treated with nasal CPAP soon after birth.44 This study did,
however, suffer certain criticisms because it was not
randomized and also because, in addition to the use of

CPAP, elevated PaCO2 levels were tolerated. Later, Verder
et al. observed that the need for mechanical ventilation
was reduced significantly if newborn babies received
exogenous surfactant and were quickly extubated for
CPAP, when compared with those that were put on CPAP
later or did not receive surfactant and were just put on
CPAP.45 Sandri et al. demonstrated, in a randomized
study of premature babies born at 28-31 weeks� gestational
age and treated with prophylactic CPAP 30 minutes after
birth, that there were no reductions in the need for
surfactant or mechanical ventilation when compared with
premature babies treated with therapeutic CPAP, i.e.
when CPAP was started if the child required FiO2 above 0.4
in order to maintain oxygen saturation above 93% for
more than 30 minutes.46 Since existing studies of early
CPAP remain controversial and a definitive practice has
not yet been fixed, the National Institutes of Health (NIH)
in the United States is conducting a new study to try to
better define early CPAP use. In this project CPAP will be
started in the delivery room for newborn babies whose
gestational ages are less than 28 weeks.

Parameters for CPAP should be set according to the
needs of each patient. Positive end expiratory pressure
(PEEP should be around 4-6 cmH2O, PaCO2  should be
tolerated at 45-65 mmHg and oxygen set to maintain PaO2
between 50-70 mmHg). In order to reduce the incidence of
lung damage in addition to tolerate more conservative
parameters, CPAP should always be used with the airflow
humidified and heated and there should also be continuous
monitoring of the adequate functioning of the system.

Invasive ventilatory support

Conventional and synchronized mechanical ventilation

The objective of mechanical ventilation during the initial
phases of RDS is to maintain adequate oxygenation and
ventilation, using gentle ventilation in order to minimize
ventilator induced lung injuries (VILI). One of the major
debates currently is whether premature newborn babies
should be intubated electively or only when there are signs
of respiratory failure. Drew et al. presented a randomized
study and showed that selectively intubated neonates born
weighing less than 1,500 g and given respiratory support
after birth exhibited better progress and survival than those
intubated only when necessary.47 Other studies, however,
demonstrate disadvantages with elective intubation;
O�Brodovich showed that acute lung damage induced by
respirator soon after birth can lead to chronic lung disease.33

Naik et al. found that just a few cycles of mechanical
ventilation were enough to trigger an inflammatory reaction
in premature lambs.15

Several different strategies have been employed to
minimize lung injury once the newborn is already on
mechanical ventilation. Conventional mechanical
ventilation, pressure-limited and time-cycled, has been
hugely employed in neonatology for several decades. This
ventilation modality is easily managed and accessible to
all neonatal ICUs, but if the patient does not synchronize
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with the respirator, there is a risk of lung damage.
Nowadays, synchronized ventilation modalities such as
synchronized intermittent mandatory ventilation (SIMV)
or assisted/controlled (A/C), have proven their efficacy
and ability to provide lower support parameters on the
respirator. The respirators used for this type of ventilation
have microprocessor-controlled units coupled to them
which detect the start of spontaneous breathing by means
of flow or pressure variation and trigger a mechanical
breath. Synchronized ventilation allows the newborn to
participate in the work of respiration, thus reducing the
respirator parameters. The advantages of synchronized
ventilation over conventional ventilation are: increased
tidal volume at each breath, providing better alveolar
ventilation and allowing positive inspiratory pressure
(PIP) to be reduced; better oxygenation; reduced risk of
barotrauma; reduced variation in cerebral blood flow;
earlier weaning off ventilation and increased patient
comfort as the newborn does not have to �fight� against
the respirator. A more detailed description of new
modalities for neonatal mechanical ventilation can be
found in a specialized review article.48

The studies cited above have shown that it does not take
long for ventilation to cause lung injury to premature
newborns � just a few cycles can trigger an inflammatory
reaction. Therefore, gentle ventilation is of fundamental
importance to reducing the incidence of these injuries. At
the neonatal ICU at the University of Miami�s Jackson
Memorial Hospital, the incidence rate of BPD is one of the
lowest of any of the ICUs that participate in the NIH
Neonatal Network, despite opting for early intubation and
mechanical ventilation. This is probably the result of using
the gentle ventilation strategy with low tidal volume and a
short inspiratory period, with controlled oxygen supply and
higher levels of PaCO2 being tolerated.

In order to achieve gentle ventilation with premature
newborns it is necessary to know what parameters are being
used nowadays:

Tidal volume and inspiratory pressure � one of the most
important factors during mechanical ventilation is to use
reduced tidal volume. In premature infants with lung disease,
FRC is reduced and some parts of the lungs have collapsed.
The ideal tidal volume would be that which can open these
collapsed areas without causing volutrauma. When
ventilation takes place with the ideal tidal volume, reduced
intrapulmonary shunt is observed together with a reduction
in the effect of elevated pulmonary volume on cardiac
output, in addition to improved oxygenation. The most
modern respirators calculate tidal volume and the oldest
ones can be coupled to pneumotachographs which determine
tidal volume. The tidal volume of a spontaneous breath
should be the guide for the tidal volume to be administered
in mechanical ventilation. Currently the option of choice is
to use tidal volumes of around 4-6 ml/kg, particularly in
extremely premature infants. Normally, at the start of
mechanical ventilation, the PIP level is set first, based on
the patient�s needs, and tidal volume is calculated. The use
of elevated pressures is contra-indicated because of the

elevated risk of causing barotrauma. In general, initial PIP
is 18-20 cmH2O in order to achieve a tidal volume of
4-6 ml/kg in premature infants with HMD. The PIP is then
modified according to the results of arterial blood gases,
which should be performed frequently, although in general
the maximum PIP used to ventilate extremely premature
infants should not exceed 20 cmH2O.

Expiratory pressure and inspiratory time � in addition to
tidal volume and PIP, studies have shown that mechanical
ventilation with zero or too high PEEP and long inspiratory
times can cause lung injury. Positive end expiratory pressure
should be set in accordance with each disease. Newborn
babies with HMD require PEEP at 4-6 cmH2O, although PEEP
above 4 cmH2O should be avoided in newborns exhibiting
left-right shunt, arterial hypotension, low pulmonary
compliance or hypoventilation with elevated PaCO2 and for
premature infants born weighing less than 1,000 g. The use
of long inspiratory times is associated with a greater
incidence of pneumothorax. Currently, short inspiratory
times are being used during the neonatal period, around
0.3-0.4 seconds, and 0.4 seconds should not be exceeded
except for short periods to recruit collapsed alveoli.

Oxygen supply � hyperoxia during the neonatal period
can be as deleterious as hypoxia. Tin et al. demonstrated
that newborn babies who received O2 supplementation in
order to maintain saturation at 88-98% developed more
chronic lung disease than did those who received O2  to
maintain saturation at 70-90%.49 The STOP-ROP research
group (Supplemental Therapeutic Oxygen for Prethreshold
Retinopathy of Prematurity) showed that newborn babies
who had received O2 supplementation to maintain saturation
at 96-99% presented more pneumonia and a greater
incidence of chronic lung disease than did those whose
saturation was maintained at 89-94%.20 Oxygen has
detrimental effects such as pulmonary toxicity, increasing
interstitial liquid, followed by fibrosis and metaplasia of the
bronchial epithelium. Therefore, oxygen supply should be
limited to the minimum needed to maintain PaO2 at 50-70
mmHg and saturation at the pulse oximeter at 90-94%. The
benefits of using antioxidants for reducing lung damage are
not yet established.

Permissive hypercapnia � recently higher levels of PaCO2
have been tolerated, thus allowing more gentle ventilation
in an attempt to minimize lung damage induced by high
respirator parameter settings. Studies show that permissive
hypercapnia is protective in terms of lung damage and
hypoxic-ischemic brain damage.50-52 Retrospective studies
suggest that BPD occurs more often among newborn babies
with hypocapnia. Kraybell et al. observed that extremely
premature infants with PaCO2 below 40 mmHg presented a
relative risk of 1.45 for BPD development, compared with
newborn babies with PaCO2 above 50 mmHg.53 Garland et
al. observed that patients with PaCO2 lower than 30 mmHg
during the first 24 hours of life, before treatment with
surfactant, had a much higher risk of developing BPD,
compared with those presenting PaCO2 above 40 mmHg.54

In a randomized and controlled study of the NIH Neonatal
Network, including 220 babies born at 501-1,000 g, it was
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observed that the group put on a permissive hypercapnia
regimen (PaCO2 > 52 mmHg) required less ventilatory
support at 36 weeks� corrected age than did a control group
(PaCO2 < 48 mmHg) (1 versus 16% for the control group),
but no reduction was observed in BPD. Unfortunately, the
study was stopped early because of complications related to
the use of corticosteroids.55 However, Woodgate & Davies,
in a review produced for Cochrane in 2001, did not observe
any advantage from permissive hypercapnia and
hypoventilation compared with conventional ventilation.56

Despite the need for further studies, the current tendency
is to accept a moderately elevated level of PaCO2, of 45-65
mmHg with pH > 7.20.

Monitoring � in order to be able to always offer the
minimum parameter settings during mechanical ventilation
and attempt to achieve early weaning from the respirator,
it is necessary to monitor ventilation constantly with pulse
oximetry and arterial blood gases. Ideal oxygen saturation
at the pulse oximeter should be around 90-94%. Therefore,
if the infant is receiving supplementary oxygen and presents
saturation above 95%, the oxygen supply should be rapidly
reduced. Currently accepted levels for arterial blood gas
analysis results are: pH = 7.25-7.35; PaO2 = 50-70 mmHg;
PaCO2 = 45-65 mmHg.

High-frequency ventilation

This ventilation modality uses tiny tidal volumes, with
respiratory frequencies of 300 to 900 breaths per minute or
more, maintaining average airway pressure constant. High-
frequency ventilation exposes the alveoli to less pressure
variation and this reduces the risk of alveoli distension or
collapse. The two primary advantages over conventional
ventilation are improved oxygenation and more effective
PaCO2 reduction.

The introduction of high-frequency ventilation (high-
frequency oscillation - HFO, high-frequency jet ventilation
- HFJV and high-frequency flow-interrupted ventilation -
HFFIV) was initially received with enthusiasm by
neonatologists since it appeared less aggressive and used
very small tidal volumes with elevated respiratory
frequencies, reducing alveolar distension or collapse and
thus reducing the risk of lung injuries. Over the last two
decades, however, several different clinical studies have
been performed and the results remain controversial.57-

65 Two systematic reviews by the Cochrane Database did
not find evidence of great advantages for the use of high-
frequency ventilation. Some of the studies involved showed
a discrete reduction in the incidence of BPD, while in
others there was a significant increase in intraventricular
hemorrhage and air leak syndrome.64,65 Comparing HFO
with conventional mechanical ventilation for premature
newborn babies, the authors concluded that HFO did not
lead to reductions in BPD or mortality, compared to
conventional mechanical ventilation, when used as initial
treatment for RDS in extremely premature infants.64

High-frequency ventilation is nowadays more often
used as a rescue therapy in severe respiratory failure
refractory to conventional mechanical ventilation or in

newborn babies with significant CO2 retention who also
have not improved with conventional mechanical
ventilation.

Postnatal Corticosteroids

Corticosteroids have been used during the postnatal
period to reduce the pulmonary inflammatory process, but
in 2002, the American Pediatric Society and the Canadian
Paediatric Society recommended the suspension of
dexamethasone use for premature infants after birth due to
significant side effects, such as delayed neurological
development.66 Both studies suggested that larger studies
were needed with other types of systemic and inhaled
corticosteroids before their clinical use could be
recommended. Watterberg et al., in a pilot study, observed
that premature infants with low concentrations of cortisol
developed more exacerbated responses to inflammatory
stimuli, increasing the incidence of BPD. Premature infants
who received �physiological replacement� with low dose
hydrocortisone (1 mg/kg/day divided every 12 hours for 12
days) progressed with reduced incidence of BPD.67 However,
a more recent, multicenter, randomized and controlled
study, with a larger population of newborn babies, had to be
interrupted because of an observed increase in the incidence
of spontaneous intestinal perforation in the group that had
received hydrocortisone.68 Further research is therefore
necessary to confirm the possible beneficial effect of
hydrocortisone and to assess the side effects. Several
studies have attempted to demonstrate the efficacy of
inhaled corticosteroids; however, a systematic review of
randomized studies did not demonstrate that inhaled
corticosteroid reduces the incidence of chronic lung disease.69

Because there is no alternative treatment, corticosteroid
is still being used at many neonatal intensive care units as
a last resort for newborn babies with severe cases of BPD
who are dependent on O2, after consideration of the risks
and benefits of the strategy and ruling out other symptoms
that cause O2 dependency, such as patent ductus arteriosus
and sepsis. At the most recent Neonatology Symposium
held in Miami in November 2004, the use of corticosteroids
in low doses for short periods of time (0.2 mg/kg/day 12/12
hours for 3 days) was recommended for these severe cases,
but it�s use prophylactically and/or in the first week of life
was discouraged.

Antioxidants

Nowadays, premature newborn babies are observed to
develop BPD even when not exposed to high oxygen
concentrations. It is known that premature infants who
progress with BPD exhibit both qualitative and quantitative
differences in the oxidization of lipids and proteins, when
compared with those who do not develop BPD, suggesting
that an antioxidant deficiency may increase the risk of
BPD.70,71 Despite these data, there is insufficient evidence
of the efficacy of antioxidants for reducing BPD, probably
because it is still necessary to better identify the specific
oxidation reactions that occur with greatest frequency
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among premature infants and the mechanisms of these
reactions in order to be in a position to define the
administration of a specific antioxidant. It is, however,
known that vitamin A has antioxidant effects and studies
show a reduction in the incidence of BPD when this vitamin
is replaced. Extremely premature infants often exhibit low
plasma concentrations of vitamin A72 and this low
concentration is related with increased incidence of BPD.73

A multicenter study published in 1999 by the NIH
demonstrated that intramuscular vitamin A supplementation
at a dosage of 5,000 UI, three times a week for 4 weeks,
reduced the risk of BPD and increased premature infant
survival.74 More recently, Namasivayam et al. tested different
dosages of vitamin A on extremely premature infants and
concluded that the dosage proposed by the NIH study
remains the best dose for reducing the incidence of BPD
without side effects.75 It is therefore important to recommend
vitamin replacement for premature newborn babies and for
expectant mothers presenting a deficiency of the vitamin,
particularly in deprived areas of developing countries.

Coadjuvant treatments

Supplying nutrition that is rich in calories and proteins as
early as possible is necessary to avoid increased catabolism
and to reduce oxidant activity. Encouraging maternal milk
use in ICUs is of fundamental importance. Recently, in a
study by the NIH neonatal network, Duara et al. demonstrated
that the incidence of BPD was significantly lower among
premature infants fed on their mothers� milk when compared
with those that were given formula (OR 0.64; 95% CI%
0.44-0.93; p < 0.03).76 This result is probably due to the
immunological qualities and the high concentration of
antioxidants in breastmilk.

Reduced fluid intake, early closing of ductus arteriosus
and sepsis prevention are other important factors for
reducing the incidence of BPD.

Future therapies

To date no single specific therapy exists that
significantly reduces the incidence of BPD in isolation.
Genetic studies on the theme have showed promising
advances, such as the discovery of growth factors that are
involved in fetal and neonatal pulmonary and vascular
development, of which the following are of special interest:
connective tissue growth factor (CTGF), vascular
endothelial growth factor (VEGF), transforming growth
factor-beta (TGF-beta), the angiopoietins and the
endothelins, among others. The Research Laboratory at
the University of Miami Neonatology Division is working
on this type of research and recently observed a significant
increase in CTGF in the lungs of newborn rats ventilated
with large tidal volume, in comparison with those ventilated
with normal tidal volume and those that were not
ventilated.77 Along the same lines, it is possible that the
discovery of the genes that regulate the inflammatory
process and oxygen-generated injuries can generate
therapies that will offer adequate alveolar and vascular

development for the lungs of extremely premature infants,
thus reducing the incidence of BPD.

Furthermore, a number of different recent experimental
research projects are attempting to discover a new anti-
inflammatory agent that does not have the deleterious
effects of corticosteroids. Ter Horst et al. showed that
pentoxifylline, a methylxanthine with modulatory effects,
reduces fibrin deposits and increases the survival of
newborn rats exposed to hyperoxia.78 Experimental
research at our laboratory has shown that pentoxifylline
attenuates the increase in inflammatory mediators and
also pulmonary edema, after ventilation of rats with large
tidal volumes.79 Similar effects also appear to take place
when ibuprofen is used.80 Multicenter studies are needed
to assess the efficacy and collateral effects of these new
anti-inflammatories on extremely premature infants.

Another factor of fundamental importance to reducing
the incidence of BPD is reducing the occurrence of premature
birth. In this context, the NIH and the March of Dimes Birth
Defects Foundation are encouraging studies to determine
the genetic factors that trigger premature delivery in an
attempt to reduce its incidence.

Conclusions

The prevention of lung injury in extremely premature
infants requires that the multiple variables contributing to
its development be minimized while factors that facilitate
the normal development of the lungs are maximized.

The best means of preventing lung damage is to avoid
premature delivery. When premature birth cannot be
avoided, antenatal corticosteroids should be used to
accelerate alveolar and capillary maturation in these
infants� lungs. It is important to monitor expectant mothers
during the prenatal period for diagnosis and treatment of
possible chorioamnionitis and also to treat mothers with
vitamin A deficiencies.

Immediately after birth, rapid and correct procedures
should be performed to offer these premature infants a
safe transition from fetal to neonatal life. The conduct
followed in the delivery room itself can have consequences
for the rest of these newborn babies� lives. The choice
between prophylactic or therapeutic surfactant is still
debatable, but when the choice is made to use therapeutic
surfactant this must mean administering surfactant as
soon as the newborn presents the first signs of respiratory
distress, which can take place after a few minutes of life
and so the surfactant must be available from the moment
of birth.

Adopting prophylactic postnatal surfactant and CPAP
or gentle mechanical ventilation will depend on the
experience of each center since work published to date
does not permit a certain definition of which practice is
best. What is important is to employ these techniques
correctly, with frequent monitoring and arterial blood
gases in order to avoid hypo- or hyper-ventilation. In the
case of CPAP as first choice, scientific research appears to
indicate that this treatment exhibits more positive results
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when used after prophylactic surfactant. In the case of
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be preferred as permitting lower respirator parameter
settings. With respect of gentle ventilation is it of
fundamental importance to use small tidal volumes and to
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to offer adequate support and acceptance of higher PaCO2
levels are also important strategies for more gentle
ventilation.
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possible to obtain new genetic therapies for reducing the
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