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Abstract— This paper discusses how symbolic computation combined 

with a circuit model can be used for analyzing planar multilayer 

structures, in a manner suitable for educational approach. Working in 

the Fourier domain, expressions for the transversal spectral Green’s 

functions are evaluated in compact, closed form using the symbolic 

computation capability of the Mathematica package. Printed antennas 

were analyzed through the method of moments. Further validation 

was achieved with the IE3D and HFSS packages. 
 

Index Terms— Planar multilayer structures, spectral fields, Green’s functions, 

circuit model, method of moments, education. 

I. INTRODUCTION 

Sources positioned on the interfaces of planar multilayer structures can be used as a practical model in 

a wide variety of applications such as geophysical investigations, remote sensing, optoelectronics, 

microwaves, military surveillance and antenna theory [1], [2]. For accurate results, the analysis of these 

structures requires numerical methods such as the Method of Moments (MoM), Finite Elements or 

Finite Differences. It is presently widely accepted that MoM-based algorithms are suitable for 

rigorous numerical analysis of printed structures of small to medium sizes (in terms of wavelength) 

stacked up in layers [1]. However, for the application of this method, either in the spectral or in the 

spatial domain, the corresponding Green’s functions need be derived. Due to their complex 

calculations, an essential question is posed: which is the most proper approach for determining the 

entire set of Green’s functions, particularly for educational purposes? 

In the spatial domain, Green’s functions for multilayer media are traditionally represented by 

Sommerfeld’s integrals. Due to the oscillatory nature of these integrals, their numerical computation is 

inefficient and time-consuming [1]. Consequently, this approach is not recommended for a first 

graduate course on applied electromagnetism. On the other hand, spectral Green’s functions can be derived 

in closed form if appropriate techniques are utilized [3]-[5]. However, the calculations of spectral fields in 

multilayer structures are usually tedious and error-prone if done by hand, what is especially true in the 

analysis of structures with anisotropic and bi-isotropic materials [6], [7]. 
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To overcome this limitation, this paper presents a new elegant procedure for calculating the 

electromagnetic fields in multilayer structures. Using the full-wave equivalent circuit, first established by 

Dreher in [8], and the symbolic computation capability of the Mathematica package [9], expressions for 

the transformed electromagnetic fields are derived in a straightforward, error-free way. Consequently, the 

corresponding spectral Green’s functions can be determined in compact, closed form, with considerable 

reduction of the calculation time. Based on this procedure, a method-of-moments (MoM) algorithm was 

implemented in Mathematica with the purpose of analyzing printed antennas. The results confirm the 

usefulness of the new procedure, which can also be applied to more complex structures and substrates, like 

in the anisotropic and bi-isotropic cases. Furthermore, the implemented algorithm can be utilized in a 

microstrip antenna course for engineering students, since it allows for the fast evaluation of electrical and 

geometrical effects on the antenna parameters. 

II. THEORY 

A planar multilayer structure composed of N + 2 isotropic, linear and homogenous layers stacked up in 

the z direction is shown in Fig. 1. The layers are assumed to be unbounded along the x and y directions. 

 

 

 

 

 

 

 

Fig. 1. Geometry of a planar multilayer structure. 

The lower layer, having complex permittivity εg and complex permeability µg, is denoted the ground 

layer and occupies the negative-z region. The next N layers are characterized by thickness ℓn, complex 

permittivity εn and complex permeability µn, where 1 ≤ n ≤ N. The planar interface z = dN separates the 

N-th layer from free space (the upper layer). Metallic patches are printed at arbitrary positions on each one 

of the N + 1 interfaces of the structure. The surface current densities on these elements are given by 

JSξ (x, y) = x JSξ   x (x, y) + y JSξ   y (x, y) - (ξ ∈ { g, n}), where boldface letters represent vectors, and x and y are 

the unit vectors along the x- and the y-directions, respectively. These current densities are considered the 

virtual sources of the electromagnetic field within each layer. Since the layers are free of sources (the 

sources are located on the interfaces of the multilayer structure, as depicted in Fig. 1), the electric field in 

the spatial domain of a monochromatic wave can be written, according to spectral techniques, as a 

superposition of plane waves, as follows [10] 
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where the function E (kx, ky, z) is the spectral electric field, and kx and ky are the spectral variables. 
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For the n-th confined layer, located between the interfaces z = dn-1 and z = dn, the spectral fields En (kx, ky, z) 

and Hn (kx, ky, z) can be written as the superposition of two plane waves traveling in the ± z directions, that is 

∑
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where enτ (kx, ky) and hnτ (kx, ky) are the amplitudes of the spectral fields, knzτ = (−1)
τ

 (ω2µnεn − u
2
)

1/2
 and 

222
yx kku += . Since the propagation function is given by 

zki nze τ  for the n-th confined layer then, for a 

plane wave traveling in the +z direction, the square root in the propagation constant knz1 needs to be 

adequately evaluated; in this case, Re{knz1} ≤ 0 and Im{knz1} ≥ 0. Similarly, for the plane wave traveling in 

the –z direction, the square root in knz2 is calculated considering that Re{knz2} ≥ 0 and Im{knz2} ≤ 0. With 

these restrictions on the signs of the real and imaginary parts of knzτ, Sommerfeld’s radiation condition [14] 

is satisfied. 

From Maxwell’s equations and using the symbolic computation capability of the Mathematica 

package, the amplitudes of the spectral fields in the x and y directions (en xτ , en yτ , h n xτ , and h n yτ , with 

τ = 1 or 2) can be expressed in terms of the field amplitudes in the z direction, en zτ and h n zτ , according 

to [5]. They are listed below and the Mathematica command lines utilized for their determination are 

given in the Appendix. 
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In order to establish the full-wave equivalent circuit for the n-th layer, firstly the x- and y-component of 

the spectral fields, given by equations (2)-(3), are specified at the z = dn interface, producing the following 

set of four equations in the unknown amplitudes en zτ and h n zτ  
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Solving this system (equations (8)–(11)), expressions for en zτ and h n zτ, in terms of Enx (kx, ky, dn), 

Eny (kx, ky, dn), Hnx (kx, ky, dn), and Hny (kx, ky, dn) are obtained. Then, replacing these expressions in the same 

set of transversal components given by equations (2)-(3), but now specified at z = dn-1, results in the 

following relationship between the transversal components of the spectral fields (t ∈ {x, y}) at the upper 

and the lower interfaces of the n-th layer 
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with θn1 = knz1ℓn and nnnk εµω 22 = . Again, symbolic computation was performed in the Mathematica 

package. As an example, the calculation of the first row of the matrix nZ
~

 is given in the Appendix. 

Consequently, for the n-th confined layer, a two-port full-wave equivalent circuit, as shown in Fig. 2, 

can be established. 
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Fig. 2. Full-wave equivalent circuit. 

An equivalent procedure is employed to evaluate the fields at the free space and the ground layer 

interfaces. The boundary conditions are then applied for the planar interfaces, resulting in the circuit 

elements shown in Table I. Then, the multilayer structure depicted in Fig. 1 can be modeled by the 

circuit illustrated in Fig. 3. 
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Fig. 3. Circuit representation of a planar multilayer structure. 
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TABLE I. EQUIVALENT CIRCUIT ELEMENTS OF THE MULTILAYER STRUCTURE 

Ground interface Free space interface Surface current density 
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gation functions for free space and the ground were chosen to be 
zki ze 0−

 and 
zki gze , respectively, 

Sommerfeld’s radiation condition is satisfied if the square roots in the propagation constants k0z and 

kgz are calculated as follows: Re{k0z} ≥ 0, Im{ k0z} ≤ 0, Re{kgz} ≥ 0 and Im{kgz} ≤ 0. 

Before finishing this section, it is important to point out that the theory developed here can also be 

applied to planar multilayer structures where the metallic patches are positioned inside the confined layers. 

For these cases, the metallic patch can simply be considered to be at the interface between two adjacent layers 

having the same electrical characteristics. Hence, the developed theory can be utilized without any change. 

III. APPLICATIONS 

As a first application, a printed Yagi-Uda antenna fed by a delta-gap generator was investigated. In this 

case, the multilayer structure, shown in Fig. 4, is composed of the free space–substrate–free space layers. 
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Fig. 4. Geometry of a Yagi-Uda antenna excited by a delta-gap generator. 

The radiator consists of two narrow flat dipoles printed on the dielectric substrate of thickness d1, 

electric permittivity ε1 and magnetic permeability µ0. The length and width of the dipoles are denoted 
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respectively by L1 and 2w1 (L1 >> 2w1), for the driven element, and L2 and 2w2 (L2 >> 2w2), for the 

parasitic one. The distance between elements is a. The transversal Green’s functions at the antenna 

interface z = d1 are easily computed from the circuit model depicted in Fig. 5, as follows 
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η0 is the intrinsic impedance of free space and εr1 is the relative electric permittivity of the substrate. 

Notice that the transversal Green’s functions in (19) to (22) are equivalent to the ones presented in 

[16], where they were evaluated analytically, i.e., without employing a full-wave equivalent circuit to 

represent the planar multilayer structure. 
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Fig. 5. Full-wave equivalent circuit for the structure depicted in Fig. 4. 

Once the Green’s functions are derived, the next step is to determine the Yagi antenna’s electric 

characteristics, such as its input impedance and radiation pattern. This involves solving integral 

equations constrained by the pertinent boundary conditions. In the present case, the following 

equations are obtained by enforcing the tangential electric field component being zero on the perfect 

conducting surface of the antenna elements, 

0),(),,( 10 =+ yxEdyxE fx , on the driven element (25) 

0),,( 10 =dyxE x , on the parasitic element (26) 

where ),( yxE f  denotes the tangential electric field component created by the antenna feeder. Since 
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Lv >> 2wv, (v ∈ {1, 2}), the unknown consists of just the x-components of the surface current densities 

Jxv(x, y) excited on the dipoles. 

Using the MoM procedure - the most widely utilized numerical technique for rigorous analysis of 

printed geometries on multilayer planar media - to solve the system of equations (25)-(26), the electric 

current densities Jxv(x, y) are expanded in a set of basis-functions as follows, 
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where Jx1m and Jx2n are the basis-functions, and Ix1m and Ix2n are coefficients to be determined. 

After applying Galerkin method [11] and Parseval’s theorem [12], the following linear system is 

established 
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Jxv (kx, ky) is the Fourier transform of Jxv(x, y), S1 is the driven element surface, p = 1, 2, … , M, and 

q = 1, 2, … , N. 

Piecewise-linear sub-domain rooftop basis-functions (taking into account the edge condition) were 

used for expanding the surface current densities Jxv(x, y), so that 
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∆x1 = L1 / (M + 1), x1m = –L1 / 2 + m∆x1, ∆x2 = L2 / (N + 1), x2n = –L2 / 2 + n∆x2, and v ∈ {1, 2}. 

As a delta-gap generator is used to feed the driven element, then 
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where )(xδ  is the Dirac’s delta function. Consequently, the excitation equation (30) can be rewritten as 
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with M being an odd number. 

Using this approach, a Mathematica-based CAD software capable of performing the analysis of printed 

antennas was implemented. For greater efficiency in the numerical calculation of the elements Zpm, …, Zqn 

of the impedance matrix [Z] (equation (29)), mathematical procedures - like parity analysis of the Green’s 

functions, change of the coordinate system (rectangular to polar) and asymptotic extraction technique [13] 

- were applied. To illustrate their effect, after changing the coordinate system - (ρ , φ) are the polar 

coordinates - and undertaking the parity analysis, equation (30) assumes the simpler form [14] 
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For applying the asymptotic extraction technique, first the asymptotic term is calculated, resulting in 
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Consequently, Zpm can be evaluated from 
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The first double integral in (42) depends on the operating frequency, whereas the second one does not. 

These are the well-known Sommerfeld’s integrals, whose integrands exhibit singularities in the form of 

branch points and poles, so that their numerical calculation requires careful attention. The poles, often 

complex, correspond to surface and leaky waves that can be excited in the dielectric layer. The number of 

poles depends on the thickness of the layer, its electrical permittivity and the wave number. An efficient 

way to calculate these integrals is the use of a deformed path of integration, with adaptive routines in the 

vicinity of the poles and branch points. Details on the numerical integration can be found in [15] – [17]. In 

this work, a triangular path was chosen to calculate the elements Zpm, …, Zqn of the impedance matrix. 

Finally, as the antenna is fed directly by a delta-gap generator, it is important to point out that the dielectric 

thickness poses no limitation on the application of the present theory.  

Since M is an odd number, the antenna input impedance can be promptly calculated using the relation 
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2/)1(1/1 += Mxin IZ , (43) 

where E0 was selected as 1 V. 

To validate the developed CAD, a Yagi-Uda antenna with L1 = L2 = 56.294 mm, 2w1 = 2w2 = 3.0 mm, 

a = 28.174 mm, d1 = 3.048 mm, εr1 = 2.55 and tg δ = 0.0022 (ε1 = εr1ε0 (1 - i tg δ)), was analyzed. Fig. 6 shows the 

results obtained for the input impedance (M = N = 17) compared to those simulated in two commercial software, 

HFSS and IE3D (a MoM-based software). 
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Fig. 6. Yagi-Uda input impedance. 

The radiation pattern was calculated using the following expressions, derived from the stationary phase 

method [14]: 
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(45) 

where Jxs (kxe, kye) = Jx1 (kxe, kye) + Jx2 (kxe, kye) and the subscript e denotes the functions are calculated at 

the stationary phase point (kxe = k0 sinθ  cosφ ;  kye = k0 sinθ  sinφ ), for 0 ≤ θ ≤ π / 2 and 0 ≤ φ < 2π. 

Fig. 7 presents the results for the yz-plane radiation pattern calculated at 2.0 GHz.  
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Fig. 7. Yagi-Uda antenna radiation patterns plotted at 2.0 GHz: xy plane. 
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The agreement between our results for the input impedance and radiation pattern with those 

simulated in HFSS and IE3D certifies the accuracy of the technique presented in this work. 

As a second application, the three-layer structure (perfect ground plane – substrate – free space) shown 

in Fig. 8 was analyzed. 
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Fig. 8. Geometry of a flat printed dipole excited by a delta-gap generator. 

The radiator in question consists of a flat dipole printed atop the dielectric substrate of thickness d1, 

electric permittivity ε1 and magnetic permeability µ0, such that 2w1 denotes the dipole width and L1 its 

length (L1 >> 2w1). The transversal Green’s functions at the dipole interface z = d1 are easily 

computed from the circuit model depicted in Fig. 9, as follows [14] 
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Fig. 9. Full-wave equivalent circuit for the structure depicted in Fig. 8. 

Once again, the transversal Green’s functions evaluated through the full-wave equivalent circuit 

((47) to (50)) are equivalent to the ones analytically calculated in [16], [17]. 

Graphics for the input impedance and radiation pattern of a flat dipole (L1 = 53.134 mm and 2w1 = 3.0 mm, 
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printed on a substrate of εr1 = 2.55, d1 = 3.048 mm, tg δ = 0.0022) are shown in Figs. 10 and 11, respectively. 
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Fig. 10. Dipole input impedance. 

Again, the results for the dipole input impedance and radiation pattern compared with simulations 

performed in HFSS and IE3D validate the accuracy of our CAD. 
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Fig. 11. Dipole radiation patterns plotted at 3.48 GHz: yz plane. 

 

IV. FINAL COMMENTS 

In this paper an elegant and efficient approach, based on a full-wave circuit model and employing the 

symbolic capability of the Mathematica package, to calculate the spectral Green’s functions of planar 

multilayer structures was presented. Using this procedure and the method of moments, a Mathematica-

based CAD software was implemented for the analysis of printed dipoles and Yagi-Uda antennas. 

Results obtained for the input impedance and the radiation pattern are in good agreement with the 

simulations performed in HFSS and IE3D, thus validating the proposed technique. It is noteworthy that the 

use of Mathematica accelerates both the Green’s functions calculations and the program coding time, 

making this procedure suitable for a first graduate course on applied electromagnetism. 
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APPENDIX 

MATHEMATICA
 

WINDOW SHOWING THE COMMAND LINES FOR DETERMINING THE AMPLITUDES OF THE SPECTRAL FIELDS IN THE X AND Y 

DIRECTIONS IN TERMS OF THE FIELD AMPLITUDES IN THE Z DIRECTION, FOR THE SUBSTRATE REGION 

 

 

 

 
 

MATHEMATICA
 

WINDOW SHOWING THE COMMAND LINES FOR CALCULATING THE FIRST ROW OF THE MATRIX nZ
~

 

 



Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 11, No. 1, June 2012 

Brazilian Microwave and Optoelectronics Society-SBMO received 26 Ago. 2011; for review 2 Sept. 2011; accepted 9 March 2012 

Brazilian Society of Electromagnetism-SBMag © 2012 SBMO/SBMag ISSN 1516-7399 

 

105

 

 

 

 

 

 

 
 

Note that the other elements of matrices nnn YZV
~

,
~

,
~

 and nB
~

, even those of the transversal Green's 

function, can be obtained similarly. 
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