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Abstract— This paper presents the propagation channel 

characteristics of a digital TV single-frequency network (SFN) 

obtained by carrying out field measurements using two synchronized 

transmitters. The measurements are performed at 31 reception 

points using both a directive reception antenna, which is typical of 

fixed reception scenarios, and an omnidirectional antenna, which is 

used to receive mobile signals. The characteristic parameters of the 

channel are obtained, including the average delay, the root mean 

square (RMS) delay spread, and the Rician K-factor, which are 

important for the design of SFN systems. An empirical expression is 

obtained for the prediction of the RMS delay spread as a function of 

the K factor and the distances to the transmission antennas. 
  

Index Terms— SFN, DTV, multipath channel, RMS delay spread.  
 

I. INTRODUCTION 

Single-frequency network (SFN) transmission in digital terrestrial television systems is notably 

different from the traditional single-transmitter mode. Additional transmitters can improve the 

coverage. but also increase the multipath effect owing to the presence of reflected and signals that are 

transmitted from different sources reaching the receiver. The occurrence of severe multipath 

propagation at the receiver is known as the SFN effect and is particularly significant for portable 

systems that use omnidirectional reception antennas. 

In a previous paper [1], field measurements in a dual-site SFN network were reported, and initial 

results that were presented include the cumulative distribution of the path loss and average values of 

the average excess delay and root mean square (RMS) delay spread (RDS) measured with directional 

antennas. In this paper, the data collected in that experiment are further analyzed to provide the RDS 

and the Rician K-factor for portable reception with an omnidirectional antenna, and fixed reception with 

a directional antenna at the same 31 measurement points, as well as the Rician K-factor. These 
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parameters are used to characterize the multipath behavior in the SFN network, and an empirical 

expression was obtained for the relation between them. 

Many past studies have analyzed SFNs and issues related to their implementation. In [2], principles 

and properties of SFNs in digital terrestrial broadcasting, where basic definitions and contextual 

relationships such as the guard interval, SFN area, and influence of the used modulation parameters are 

explained. 

Additional works regarding the evolutionary state-of-art are proposed in [3–7]. In [3], the author 

presents a design performed for the DVB-T digital terrestrial television network in Greece. Optimal 

SFN network configurations for second generation digital terrestrial broadcast system (DVB-T2) are 

obtained in [4]. In [5], the authors estimate the reception quality under the SFN environment with the 

delay spread of two transmitters shorter than the guard interval. In [6], the SFN threshold reception for 

broadcasting is obtained by analyzing and evaluating the effects of the delay time between two SFN 

transmitters within the guard interval time. The minimum reception threshold in single-input-single-

output (SISO) mode SFN broadcasting is analyzed in [7]. 

The flexibility and configuration options provided by the new DVB terrestrial standard have been 

proposed in [8], [9]. In the same way, measurements of simulated and real channel characteristics in the 

digital video broadcasting-terrestrial (DVB-T2) system were presented in [10], [11]. Compared with 

the SISO mode presented in [1], where significant destructive spectral interference is translated to 

higher bit error rate (BER) values, in these two works the DVB-T2 advanced multiple-input single-

output (MISO) transmission technique has been shown to be a primary contributing factor associated 

with the actual digital television (DTV) platforms that fulfill modern technical requirements, and which 

meet user and market demands for HDTV services. 

Section II of this paper describes the measurement campaign, which was carried out in the coverage 

area of a two-transmitter SFN network operating in the UHF band in the city of Rio de Janeiro, Brazil. 

Section III gives a brief overview of wideband channel characterization, including the definition of the 

channel characteristic parameters.  

Section IV includes the main contributions of the paper. The analysis of the behavior of the RDS for 

fixed and portable reception is presented. The characteristic parameters of the channel are obtained, 

including the average delay, the root mean square (RMS) delay spread, and the Rician K-factor, which 

are important for the design of SFN systems. An empirical expression is obtained for the prediction of 

the RMS delay spread as a function of the K factor and the distances to the transmission antennas. The 

paper conclusions are presented in section V. 

II. MEASUREMENT CAMPAIGN  

The measurement campaign was performed within the coverage area of a commercial broadcast SFN 

network operating with the ISDB-T standard, and was deployed in a suburban area in Rio de Janeiro, 

Brazil. Compared with digital video broadcasting-terrestrial (DVB-T), the Japanese/Brazilian standard 
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(ISDB-T) provides important improvements. The key technology bandwidth segmented transmission 

orthogonal frequency-division multiplex (BST-OFDM) enables ISDB-T to support multiple services 

[12], [13] over the same channel, including portable and fixed reception. In addition, a longer interleave 

(guard-interval) is used to improve the mobile reception performance. The main system transmission 

parameters include the carrier modulation scheme, the coding rate of the inner error-correcting code, 

and the length of time interleaving, which can be set individually for each segment. The ISDB-T offers 

three transmission modes having different carrier intervals to deal with a variety of channel conditions, 

such as the multipath (mitigated with the variable guard interval as determined by the network 

configuration) and the Doppler shift, which occurs for mobile reception. Table I lists the basic 

parameters of each mode. 

TABLE I. TRANSMISSION PARAMETERS FOR THE ISDB-T STANDARD. 

Description Transmission parameters 

No. of OFDM segments 13 

Segment bandwidth 428.57 kHz 

Mode 1 2 3 

No. of carriers per segment 108 216 432 

No. of carriers 1405 2809 5617 

Carrier interval 3968 Hz 1984 Hz 992 Hz 

Effective symbol length (Tu) 252 µs 504 µs 1008 µs 

 

 

Guard-interval length (Tg) µs 

  1/4  63 126 252 

  1/8  31.5 63 126 

  1/16 15.75 31.5 63 

  1/32 7.87 15.75 31.5 

 

 

Symbol length per segment µs 

  1/4  315 628 1260 

  1/8  283.5 565 1134 

  1/16 267.7 533.5 1071 

  1/32 259.8 517.7 1039.5 

Carrier modulation QPSK, 16QAM, 64QAM, DQPSK 

No. of symbols per frame 204 

Inner code  Convolutional coding (1/2, 2/3, 3/4, 5/6, 7/8) 

 

The measurement setup uses OFDM modulation in the ISDBT-T system to allow the evaluation of 

the RDS parameter by processing signals received from regular transmissions. Two transmitters, one at 

the peak of the Sumaré mountain and the other on the top of the Pena hill, were used to broadcast the 

same signal [1]. The parameters of the transmitted OFDM signal used in this particular experiment are 

shown in Table II. 

TABLE II. SFN TRANSMISSION  PARAMETERS 

Channel 

bandwidth    

(MHz) 

Mode 1 - 2k (KT = Tg / Ts = 1/16) 

QPSK - Mobile reception 

Omnidirectional antenna 

Mode 3 - 8k (KT = Tg / Ts = 1/16) 

64QAM - Fixed reception     

Directional antenna  

Sumaré 

Transmitter 

Power 

(Watts) 

Pena 

Transmitter 

Power 

(Watts) Tg (µs) Ts (µs) 
Antenna 

Gain 
Tg (µs) Ts (µs) 

Antenna 

Gain (dBi) 

6 15.75 252 1 63 1008 14 6k 100 
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The mobile unit and the receiver set-up are shown in Fig. 1. It includes a low noise amplifier (LNA) 

which is connected to a vector analyzer and the set top box used to display the received signal. The data 

acquisition module was also in the mobile unit in order to perform the filtering of the collected signals 

and the necessary processing. On the top of the mast of the mobile unit it is possible to see the two 

reception antennas used in the measurement campaigns. 

 

Fig.1 Reception setup, directive reception antenna and the reception van  

 

The measurements were performed on a local TV broadcaster SFN network, with a channel 

bandwidth of 6 MHz centered at 563 MHz. Static measurements were performed at 31 locations with 

both an omnidirectional and a directional antenna. The directional antenna has a 14 dBi gain with 300 

horizontal and vertical beamwidths. The directional antenna patterns are shown in Fig. 2. 

 

 

Fig. 2. Directional horizontal (left) and vertical (right) antenna patterns plus measurement setup. 
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The ANRITSU MS8901A network analyzer, which is capable of measuring the multipath power 

delay profile (PDP), was configured to be used as an ISDB-T receiver. Fig. 3 illustrates the measurement 

of a three-component multipath signal at the receiver. 

 

 
Fig. 3. Measurement of multipath PDP with the network analyzer ANRITSU MS8901A. 

 

During the first round of measurements, the two antennas were positioned 13.4 m above ground level. 

For comparison purposes, additional measurements were performed using the omnidirectional antenna 

positioned 4.1 m above the ground level. Fig. 4 shows the two transmitter sites and the 31 measurement 

locations chosen along roads in the coverage area. 

 

 

Fig. 4. Transmitter sites and measurement points. 
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III. MULTIPATH CHANNEL CHARACTERISTIC PARAMETERS 

A. Root-Mean-Square Delay Spread (RDS) 

 
The RDS is the most important single parameter used to characterize the multipath effect in a radio 

channel. The RDS is defined as the square root of the second central moment of the PDP. It is given by 

[14] 

𝑅𝐷𝑆 = 𝜎𝑟𝑚𝑠 = √
∑ (𝜏𝑘−𝜏̅)2

𝑘

∑ 𝑃(𝜏𝑘)𝑘
 ,                                                                     (1) 

𝜏̅ =
∑ 𝑃(𝜏𝑘)𝜏𝑘𝑘

∑ 𝑃(𝜏𝑘)𝑘
  ,                                                                                      (2) 

where: 

P(τk) is the relative power level of the k-th multipath component with respect to the power level of the 

first component (k=1); 

τk is the relative time delay of the k-th multipath component with respect to the time of arrival of the 

first component (k=1); 

𝜏̅ is the average excess delay. 

The RDS parameter was calculated for each reception point and each reception antenna configuration 

from the PDPs that were measured, as described in Section II. Examples of PDP values extracted from 

the measured data are shown in Fig. 5. The points correspond to the multipath components identified 

by the network analyzer, as illustrated in Fig. 3 for a three-component case. The PDP is normalized 

taking the first component as reference. The multipath components are delayed and usually have lower 

power than the first component due to their longer propagation paths and additional reflections and 

diffractions.  

For both reception points with PDPs depicted in Fig. 5, two clusters of multipath components can be 

clearly identified, corresponding to the signals from each transmitting antenna. Compared to the 

measured PDP received from a single transmitter, the measured PDPs received from two transmitters 

had greater spread, and the PDP has long delay echoes owing to the multiple SFN transmitters. 

 

Fig. 5. Power delay profiles measured at points 6 and 16. 
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B. Rician K-Factor 

 

 The Rician K-factor [15] is defined as the ratio of the signal power in the dominant component and 

is also known as the line-of sight (LOS) component over the power of the scattered components.  

 

𝐾 =
𝑃𝐿𝑂𝑆

𝑃𝑠𝑐𝑎𝑡𝑡
=

𝑟𝑠
2

2𝜎2 ,                                       (3) 

 

where rs is the amplitude of the dominant component of the signal, and 𝜎 represents the variance of the 

multipath components. The K-factor is a parameter that is used to quantify the channel fading severity. 

An accurate characterization of the K-factor is useful in link-budget calculations and in the design of 

adaptive receivers. 

IV. RESULTS 

A. Average delay and RDS 

 

The delay dispersion parameter was calculated for the 31 measurements points considering the 

threshold below which the multipath components are ignored. Table III shows the average and 

maximum values of the average delay and RDS for both omnidirectional and directional antennas at 

13.4 m. Thresholds of -10, -15, -20, and -30 dB below the maximum PDP value were considered. 

TABLE III. MEASURED DELAY PARAMETERS FOR TWO SFN TRANSMITTERS. 

 

Threshold 

Average delay (μs) 

omnidirectional 

antenna 

Average delay (μs) 

directional antenna (Sumaré) 

RDS (μs) 

omnidirectional 

antenna 

RDS (μs) directional 

antenna  

(Sumaré) 

 Average Maximum Average Maximum Average Maximum Average Maximum 

-30 dB 0.48 4.75 0.90 12.99 1.54 8.03 1.94 11.69 

-20 dB 0.86 4.68 1.86 12.66 2.45 8.01 3.34 11.71 

-15 dB 1.16 4.55 2.36 12.65 2.84 7.99 3.53 11.71 

-10 dB 2.45 4.48 3.83 12.49 4.37 8.04 5.00 11.44 

 

As can be seen in Table III, the maximum average delay and RDS values show slight variation with 

the threshold [16]. Meanwhile, the mean values decrease for lower thresholds as additional components 

are detected. In addition, the RDS values are higher for directional antenna reception. 

At 12 points, measurements were also performed with the omnidirectional antenna positioned 4.1 m 

above the ground. Considering only these points, the average value of the RDS was slightly higher (2.24 

s) for the measurements with the lower antenna than with the higher antenna (1.98 s).  

Considering the maximum values of RDS measured with a -30-dB threshold, as shown in Table III, 

and the ISDB-T specifications given in Table I, it can be concluded that for portable reception 

(maximum RDS = 8.03 μs), the system can operate in mode 1 with a guard interval of  1/16 (Tg = 15.75 
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μs), in mode 2 with a guard interval of  1/32 (Tg = 15.75 μs), and in mode 3 with a guard interval of  

1/32 (Tg = 31.5 μs), thus maximizing the spectral efficiency of the system [8]–[11]. 

The use of more than one transmitter, although improving the coverage [17],[18], can produce 

additional multipath at the receiver, and is known as the SFN effect. However, lower average and 

maximum values of RDS are observed for the omnidirectional antenna, as shown in Table III. This is 

due to the higher gain of the directional antenna, which will enhance multipath components, and will 

be negligible for the lower-gain omnidirectional antenna [19].  

Figure 6 shows the measured values of the average delay and RDS at each point plotted as a function 

of the distance to the Sumaré transmitter. For this set of measurements, the directional antenna was 

pointed towards the Sumaré transmitter. Both antennas were 13.4 m above ground level. From this plot, 

it is not possible to infer any trend of these parameters with the distance to main transmitter. However, 

there is a definite trend in the relation between the average delay and RDS, as shown in Fig. 7. 

 

 

 

Fig. 6. Average delay and RDS values versus distance (to Sumaré) for the directional and omnidirectional antennas. 
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Fig. 7. RDS versus average delay: directional and omnidirectional antennas. 

B. Dependence of delay parameters on the K factor 

The values of the K factor for the directional and omnidirectional antennas are consistent, as shown 

in Fig. 8, particularly for high values corresponding to the dominance of a direct component. Note that 

the measured K factor values vary from 5 to approximately 30, corresponding to K between -3 to 4.8 

dB.  The results also show that the average delay and RDS clearly decrease as the K factor increases, 

as shown in Figs. 9 and 10. This is expected as in the presence of a strong dominant multipath 

component, less delay spread will occur. 

 

Fig. 8. Omnidirectional antenna K factor versus directional antenna K factor. 
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Fig. 9. Average delay vs. K factor for omnidirectional and directional antennas. 

 

  

Fig. 10. RDS vs. K factor for omnidirectional and directional antennas. 
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In addition, if the RDS is plotted against the distances to the main antenna and the auxiliary antenna 

of the SFN network, as shown in Fig. 11, a slight trend of the RDS to increase with distance can be 

observed. In this figure, d< corresponds to the smaller distance to an antenna, and d> corresponds to 

the largest distance to an antenna.  

 

Fig. 11. RDS vs. distance to the antennas. 

 

The results indicate that it is possible to derive an empirical expression to estimate the values of RDS 

based on these distances and the K factor. Based on the behavior of the RDS with the K factor, observed 

in Fig. 10, and with the distances to the antennas, observed in Fig. 11, an expression given by the product 

of an exponential function of K and power functions of the distances was adjusted to the data with 

coefficients obtained by least square fitting. The expression obtained is 

𝑅𝐷𝑆 (𝜇𝑠) = 0.195 𝑒𝑥𝑝(−0.096 𝐾) (𝑑<
0.93 + 𝑑>

1.3)                             (4) 

where the distances are given in km. Fig. 12 shows a comparison of the measured values and the values 

that are predicted using this expression. 
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Fig. 12. Observed RDS vs. predicted values. 

Considering the limited number of measurement points and the specific configuration of the 

experiment, additional measurements will be required to verify this expression. 

V.   CONCLUSIONS AND FURTHER WORK 

Delay spread parameters have been obtained from measured PDPs collected during a measurement 

campaign using a two-transmitter TV broadcast SFN that covers a suburban area of the city of Rio de 

Janeiro and its surroundings. Recommendation ITU-R REC. P.1407 definitions were used to calculate 

the average delay and the RDS. The method that was employed allows measurements to be carried out 

in operating networks and can be used in further measurement campaigns to be performed in the future.  

Directional and omnidirectional antennas that are positioned 13.4 m above the ground were used in 

the measurements at the same 31 points inside the coverage area. The directional antennas can be used 

for fixed reception, whereas omnidirectional antennas are used for mobile reception.  

The results include mean and maximum values of the average delay and RDS for different 

measurements thresholds, and the Rician K-factor, which is defined as the ratio of the signal power in 

the dominant component over the power of the scattered components. The maximum values of the 

average delay and RDS vary only slightly with the threshold, but their mean values decrease for lower 

thresholds as additional components are detected. Further, the RDS values are higher for the directional 

antenna case owing to its higher gain.  

The relationship between the variation of the reception conditions and the SFN effect has also been 

considered. At some points, measurements were performed with the omnidirectional antenna positioned 

4.1 m above the ground. Considering only these points, the average value of the RDS was slightly higher 

for the measurements with the lower antenna than with the higher antenna.  
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The relation between the RDS and the K-factor was analyzed. The SFN fading signal followed a 

Rician distribution owing to the existence of a line-of-sight (LOS) component from either or both 

transmitting antennas at almost all reception points. Results show that the average delay and RDS 

clearly decrease as the K factor increases. In addition, a trend of the RDS to increase with the distances 

to the two transmitting antennas was observed. It was possible to derive a simple empirical expression 

to estimate the values of RDS based on these distances and the K factor. This estimator can be useful 

because it is easier to measure the K factor than the RDS, which needs to be obtained from the PDPs. 

However, additional measurements will be required to verify this expression. 
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