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Abstract
Increased levels of homocysteine have been established as a risk factor for cardiovascular disease (CVD) by mechanisms still
incompletely defined. S-Adenosylhomocysteine (SAH) is the metabolic precursor of homocysteine that accumulates in the setting
of hyperhomocysteinemia and is a negative regulator of most cell methyltransferases. Several observations, summarized in the
current review, support the concept that SAH, rather than homocysteine, may be the culprit in the CVD risk that has been
associated with hyperhomocysteinemia. This review examines the biosynthesis and catabolism of homocysteine and how these
pathways regulate accumulation of SAH. In addition, the epidemiological and experimental links between hyperhomocysteinemia
and CVD are discussed, along with the evidence suggesting a role for SAH in the disease. Finally, the effects of SAH on the
hypomethylation of DNA, RNA, and protein are examined, with an emphasis on how specific molecular targets may be mediators
of homocysteine-associated vascular disease.
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Homocysteine Metabolism

Homocysteine is formed by the demethylation of the essen-

tial amino acid, methionine, via the formation of 2 inter-

mediate compounds, S-Adenosylmethionine (SAM) and

S-Adenosylhomocysteine (SAH; Figure 1).1 Methionine is

first converted to SAM through the catalytic action of methio-

nine adenosyltransferase enzymes (MATs), forming SAM, a

highly energetic compound. S-Adenosylmethionine is the

methyl donor for the majority of cellular methylation reactions,

which are catalyzed by specific methyltransferases that target

important biomolecules, such as DNA, RNA, proteins, and

lipids.1 Nevertheless, in mammals, most methyl groups trans-

ferred from SAM are used in creatine formation, in phosphati-

dylcholine synthesis, and in the generation of sarcosine from

glycine.2 Following the transfer of a methyl group to an accep-

tor molecule, SAM is converted to SAH. Importantly, because

SAH has an affinity for the catalytic site of most SAM-

dependent methyltransferases that is equal or greater than that

of SAM, SAH is a potent inhibitor of many methyltransferases

and the SAM–SAH ratio is often used as an indicator for intra-

cellular methylation capacity.3

S-Adenosylhomocysteine is further converted into homo-

cysteine and adenosine by SAH hydrolase (SAHH), which is

ubiquitously expressed in mammalian tissues. The formation of

homocysteine from methionine is the only pathway of homo-

cysteine biosynthesis in humans.1

Importantly, the SAHH reaction is reversible and presents a

thermodynamic equilibrium that strongly favors SAH synthesis

rather than its hydrolysis.4 However, under normal physiologi-

cal conditions, the reaction is directed toward SAH hydrolysis

1 Cardiovascular Division, Department of Medicine, Brigham and Women’s

Hospital, Harvard Medical School, Boston, MA, USA
2 Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy,

Universidade de Lisboa, Lisbon, Portugal
3 Department of Biochemistry and Human Biology, Faculty of Pharmacy,

Universidade de Lisboa, Lisbon, Portugal

Received August 30, 2016. Accepted for publication December 22, 2016.

Corresponding Author:

Rita Castro, Research Institute for Medicines (iMed.ULisboa), Faculty of Phar-

macy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.

Email: rcastro@ff.ulisboa.pt

Journal of Inborn Errors of Metabolism
& Screening
2017, Volume 5: 1–15
ª The Author(s) 2017
DOI: 10.1177/2326409817698994
journals.sagepub.com/home/iem

This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any
use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages
(https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/2326409817698994
http://journals.sagepub.com/home/iem
http://www.creativecommons.org/licenses/by/3.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F2326409817698994&domain=pdf&date_stamp=2017-04-05


due to the rapid metabolism or cellular export of homocysteine.

Homocysteine is located at a metabolic branch point and can be

either conserved by remethylation back to methionine or irre-

versibly degraded to cysteine via the transsulfuration pathway.4

Remethylation of homocysteine back to methionine occurs

by 2 alternative metabolic pathways, the folate-dependent or

folate-independent remethylation pathways (Figure 1).

5-Methyltetrahydrofolate (5-MTHF) is the active folate deriva-

tive and the main circulating form of folate in plasma. In the

folate-dependent pathway, 5-MTHF supplies the methyl group

used by the vitamin B12-dependent methionine synthase (MS)

to remethylate homocysteine and produce methionine and

tetrahydrofolate (THF). The THF is then converted to

5,10-methylenetetrahydrofolate (5,10-MeTHF) in the

presence of serine and vitamin B6 by the enzyme serine hydro-

xymethyltransferase (SHMT). After reduction by 5,10-

methylenetetrahydrofolate reductase (MTHFR), 5,10-MeTHF

is converted into 5-MTHF, which will be available for the

remethylation of a second molecule of homocysteine. The

MTHFR uses flavin adenine dinucleotide (FAD; the active

form of vitamin B2) as a cofactor. The folate-dependent

remethylation pathway is present in nearly all cells.2,5 Addi-

tionally, in liver and kidney, remethylation also occurs by the

folate-independent pathway in which methyl groups are

donated by betaine (also known as trimethylglycine, a deriva-

tive of choline oxidation) in a reaction catalyzed by the enzyme

betaine–homocysteine methyltransferase (BHMT).2,5

Homocysteine can be irreversibly metabolized through the

transsulfuration pathway, which is mainly found in the liver,

kidney, small intestine, and pancreas.6 In the first step of this

pathway, cystathionine b-synthase (CBS) catalyzes the con-

densation of homocysteine and serine to form cystathionine

using pyridoxal phosphate (PLP or vitamin B6) as a cofactor.4

Cystathionine is further metabolized to produce cysteine by

another PLP-requiring enzyme, cystathionine g-lyase

(CGL).4,7 In addition to protein synthesis, cysteine is used

in the synthesis of glutathione, an important cellular

antioxidant.4,8 The sulfur end product of cysteine metabolism

is sulfate, which can be excreted by the kidneys.9

To maintain the optimal intracellular levels of homocys-

teine, cells may export homocysteine. The mechanisms that

regulate homocysteine export into the extracellular compart-

ment are not completely understood. Nevertheless, a

mechanism involving the removal of the reduced form of

homocysteine (with a free thiol group) to the extracellular

compartment has been proposed. A separate mechanism

appears to be responsible for the import of oxidized, disul-

fide forms of homocysteine into cells.10 In plasma, the

majority (98%-99%) of homocysteine is in disulfide form,

as reduced homocysteine is rapidly oxidized, reacting with

free thiol-containing molecules (including small thiol mole-

cules, such as homocysteine or cysteine, and proteins with

free cysteines, such as albumin) in plasma.4,11 The remain-

ing 1% to 2% of plasma homocysteine remains in its

reduced form.4,10,11 Total plasma homocysteine includes the

sum of the circulating homocysteine molecules either in its

reduced or in its oxidized forms.

The levels of plasma homocysteine are mainly regulated

by the remethylation and transsulfuration pathways, as

homocysteine is reabsorbed in the kidney and its urinary

excretion is minimal.12-14

Hyperhomocysteinemia

Persistent elevation of homocysteine in the blood defines

the condition called hyperhomocysteinemia. In healthy

adults, fasting homocysteine concentrations in plasma are

5 to 15 mmol/L.15-17 Hyperhomocysteinemia is classified,

according to the levels of homocysteine accumulated, as

mild (15-30 mmol/L), moderate (31-100 mmol/L), or severe

(>100 mmol/L).16,18,19

Several factors can contribute to the circulating levels of

homocysteine. In fact, plasma homocysteine levels are influ-

enced by various nongenetic as well as genetic determinants.

Nongenetic determinants of plasma homocysteine include

inadequate concentrations of B vitamins, which are substrates

or cofactors for the major homocysteine regulating enzymes

(Figure 1). As such, plasma concentrations of homocysteine are

inversely related to plasma concentrations of folate, vitamin

B12, and vitamin B6, as well as to the intake of these

vitamins.20 The most consistent association has been found

with lower folate intake or with lower plasma concentrations

of folate.19 A modest inverse relationship has been reported

between plasma concentrations of vitamin B2 and homocys-

teine; however, this association is restricted to subjects carry-

ing the MTHFR 677TT genotype (see subsequently). In

addition, normal kidney function maintains optimal plasma

levels of homocysteine, and impaired renal function is often

Figure 1. Schematic representation of homocysteine metabolism. The
folate-dependent remethylation pathway and the transsulfuration path-
way are dependent on the B vitamins—SHMT, CBS, and CGL are
vitamin B6 dependent; 5,10-methylenetetrahydrofolate reductase
(MTHFR) utilizes vitamin B2; methionine synthase (MS) is vitamin B12

dependent. BHMT indicates betaine–homocysteine methyltransferase;
CBS, cystathionine b-synthase; CGL, cystathionine g-lyase; MAT
methionine adenosyltransferase; SAHH, S-Adenosylhomocysteine
hydrolase; SHMT, serine hydroxymethyltransferase.
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associated with mild to moderate hyperhomocysteinemia.4,21

The majority (85%-100%) of patients with end-stage renal dis-

ease present with hyperhomocysteinemia, but the underlying

mechanism is still not completely understood.14,22 van

Guldener et al reported that healthy kidneys do not remove

homocysteine from the circulation, suggesting that the increased

homocysteine levels observed in patients with renal disease are

not due to impaired renal excretion of homocysteine.12-14 Rather,

it has been hypothesized that renal insufficiency causes the accu-

mulation of uremic toxins that subsequently affect homocysteine

metabolism, leading to hyperhomocysteinemia.13,23 Plasma

homocysteine concentrations increase with age. In fact, homo-

cysteine levels approximately double from childhood to old

age.1,4 Gender also significantly affects the concentration of

plasma homocysteine, with males having higher levels than

females.4,19 A rise in plasma homocysteine concentrations with

menopause has also been described.19 In addition, lifestyle fac-

tors can modulate the circulating levels of homocysteine.

Tobacco smoking, high coffee consumption, alcoholism, and

lack of exercise are examples of lifestyle factors associated with

mild hyperhomocysteinemia.24 Several pharmacological agents

can also disturb homocysteine metabolism, such as certain antic-

arcinogenic agents (eg, methotrexate or sulfasalazine) and antic-

onvulsants (eg, carbamazepine or phenytoin).25 Finally,

pathologic conditions, such as hypothyroidism, psoriasis, lym-

phoblastic leukemia, and other malignancies, are also associated

with hyperhomocysteinemia.25

Genetic determinants cause mild to severe hyperhomocys-

teinemia. Severe hyperhomocysteinemia is caused by rare

genetic defects in either homocysteine transsulfuration or

remethylation pathways. Cystathionine b-synthase deficiency

or classical homocystinuria, an autosomal recessive disorder

that affects the transsulfuration pathway, is the most common

inborn error of homocysteine metabolism.26 In addition to

severe hyperhomocysteinemia and homocystinuria, CBS defi-

ciency also results in hypocysteinemia, as well as hypermethio-

ninemia caused by increased homocysteine remethylation.26

Phenotypic consequences of CBS deficiency include throm-

boembolism and vascular occlusion, skeletal abnormalities,

dislocation of the optic lenses, marfanoid features, and varying

degrees of neurological impairment. In CBS-deficient patients,

early homocysteine-lowering treatment significantly reduces

the risk of life-threatening vascular events, despite imperfect

biochemical control of homocysteine levels.26

Other genetic causes of hyperhomocysteinemia include rare

mutations that result in MTHFR deficiency and mutations that

cause cobalamin (vitamin B12) deficiency.27 Inborn errors of

cobalamin metabolism can affect its absorption, transport, as

well as its intracellular metabolism by inhibiting adenosylco-

balamin synthesis and/or methionine synthase function.28

Several pieces of evidence led to the conclusion that the

more common mild forms of hyperhomocysteinemia are, at

least partially, genetically based.25 For this reason, almost

every gene involved in homocysteine metabolism has been

analyzed for functional polymorphisms that could affect the

circulating concentrations of homocysteine, and many genetic

variants have been identified. The major known genetic deter-

minant of plasma homocysteine levels in the general popula-

tion is the 677C>T transition in the MTHFR gene.29 MTHFR is

an FAD-dependent enzyme involved in the folate-dependent

remethylation of homocysteine. The common MTHFR C677

T polymorphism determines the synthesis of a thermolabile

enzyme with reduced activity.30 Homozygosity for the thermo-

labile MTHFR variant increases the plasma concentrations of

homocysteine by approximately 25% in individuals with low

folate status.31

Hyperhomocysteinemia and Cardiovascular
Disease

Meta-analyses have shown that mild hyperhomocysteinemia is

an independent risk factor for cardiovascular diseases (CVDs),

with a prevalence of approximately 5% in the general

population.24,32,33

The hypothesis that elevated homocysteine may contribute

to vascular disease was first suggested by McCully in 1969 on

the basis of postmortem observations of widespread arterial

disease in young patients with markedly elevated homocys-

teine concentrations due to different genetic causes.5,34,35

These observations formed the basis for the so-called Homo-

cysteine Theory that suggests the importance of hyperhomo-

cysteinemia in the development of atherosclerosis. McCully

raised the important question of whether mild to moderate

elevations in homocysteine, common in the general population,

would increase the risk of vascular disease.34,36

In 1976, Wilcken and Wilcken provided the first evidence

for an association between impaired homocysteine metabolism

and CVD in the general population.37 Since these observations,

data from a large number of clinical and epidemiological stud-

ies have shown an important role for mild hyperhomocysteine-

mia as an independent risk factor for CVD and related

mortality.32 Large meta-analysis studies concluded that every

increase of 5 mmol/L in plasma concentration of homocysteine

increases the risk of CVD by approximately 20%, independent

of traditional risk factors, such as diabetes, hypertension, smok-

ing, and hypercholesterolemia.38 As discussed further, in recent

years, the concept that mild hyperhomocysteinemia is a causa-

tive risk factor for CVD has become controversial, as therapies

that lower homocysteine have failed to improve outcomes in

patients with established CVD.39-43 Nonetheless, homocysteine

has been shown to promote endothelial dysfunction, an early

step in atherogenesis.

Homocysteine and Endothelial Dysfunction
and Activation

The term “endothelial dysfunction” refers to the impairment of

the normal homeostatic properties of the vascular endothelium,

which include endothelium-dependent regulation of vascular

tone, hemostasis, and inflammation. A decrease in nitric oxide

(NO) bioavailability and an impairment of cell redox balance

are major features of endothelial dysfunction. Endothelial

Barroso et al 3



dysfunction often leads to a pro-inflammatory state (endothe-

lial activation) that precedes the formation of atherosclerotic

plaques.44 The detrimental effect of homocysteine on the

endothelium may explain the increased risk of CVD associated

with hyperhomocysteinemia.45

Although many studies have shown that homocysteine dis-

rupts endothelial homeostasis (summarized in Figure 2), the

mechanisms by which homocysteine promotes endothelial dys-

function are not fully understood.

Nitric oxide is considered a major endogenous antiathero-

sclerotic molecule, as it is a potent vasodilator, and it inhibits

monocyte and platelet adhesion, smooth muscle cell prolifera-

tion, and low-density lipoprotein (LDL) oxidation.46,47

Increased plasma levels of homocysteine have been associated

with impaired vascular tone, due to the decrease in NO bioa-

vailability and increase in endothelin-1 (ET-1), a potent vaso-

constrictor.48 Similarly, vascular dysfunction was observed in

an animal model of diet-induced mild hyperhomocysteinemia.49

In addition, decreased levels of NO were observed in several

vascular beds obtained from mice with mild hyperhomocystei-

nemia.48 Moreover, oxidative stress was shown to contribute to

the loss of bioavailable NO.50,51

There are several means by which homocysteine can pro-

mote the accumulation of damaging reactive oxygen species

(ROS); these include homocysteine’s auto-oxidation,

endothelial nitric oxide synthase (eNOS) uncoupling, and the

inhibition of the activity of important antioxidant enzymes,

such as glutathione peroxidase 1 (GPx-1) or superoxide dismu-

tase (SOD).48,52,53 The reaction of superoxide with NO pro-

duces the strong oxidant peroxynitrite (ONOO�) and,

simultaneously, decreases NO bioavailability.45 Importantly,

elevated homocysteine levels have also been associated with

an increase in asymmetric dimethylarginine (ADMA) in

endothelial cells.54 Asymmetric dimethylarginine is a by-

product of the hydrolysis of methylated proteins and an endo-

genous inhibitor of NO synthases.54 Therefore, ADMA has

been suggested as a mediator of reduced NO availability during

hyperhomocysteinemia.55

More recently, it has been suggested that alterations in

hydrogen sulfide (H2S) production may also contribute to

homocysteine-associated vascular disease. Hydrogen sulfide

is a gasotransmitter produced in endothelial cells that partici-

pate in the regulation of endothelial integrity by exerting

several beneficial physiological effects, including its anti-

inflammatory and antioxidant actions.23,56 Homocysteine is a

precursor of H2S, which is formed by alternative reactions

catalyzed by the CBS and CGL enzymes of the transsulfuration

pathway.23,56 In endothelial cell cultures, CBS deficiency

decreased H2S production to inhibit cellular proliferation and

migration. Other studies have shown that exogenous H2S can

Figure 2. The harmful effects of homocysteine in the endothelium. Dots on the arrows indicate association of these effects with excess SAH
and hypomethylation. eNOS indicates endothelial nitric oxide synthase; ET-1, endothelin 1; GPx1, glutathione peroxidase 1; GRP78, glucose-
regulated protein 78; GRP94, glucose-regulated protein 94; Hcy, homocysteine; IL6, interleukin 6; IL8, interleukin 8; MCP-1,(monocyte
chemoattractant protein 1; NF-kB, nuclear factor-kappa B; NO, nitric oxide; SAH, S-Adenosylhomocysteine; SOD, superoxide dismutase;
UPR, unfolded protein response.
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correct endothelial dysfunction in vivo.57 Taken together, these

findings suggest that CBS deficiency may decrease endothelial

H2S to impair vascular relaxation and contribute to endothelial

dysfunction.56,58 However, an absence of CBS can paradoxi-

cally augment H2S production in liver due to CGL-dependent

enzymatic pathways that utilize excess homocysteine, suggest-

ing that the in vivo effects of CBS deficiency on vascular H2S

and endothelial function warrant further examination.59

Moreover, homocysteine induces endothelial inflammation

and activation of the coagulation cascade, further contributing

to the progression of atherosclerotic lesions. Homocysteine

was shown to trigger the activation of nuclear factor kB

(NF-kB), a transcription factor known to stimulate the produc-

tion of cytokines, chemokines, leukocyte adhesion molecules,

and hematopoietic growth factors in cell culture systems as

well as in animal models.60 In other studies using vascular

endothelial cells, homocysteine increased the expression of

adhesion molecules, such as E-selectin and vascular cell adhe-

sion protein 1, that contribute to atherogenesis.61,62 These

adhesion molecules and cytokines enhance the binding of leu-

kocytes to the endothelium and promote their transmigration to

the vessel wall. More recently, it was shown that in humans,

plasma levels of homocysteine correlate with those of interleu-

kin 6 (IL-6) and IL-1 receptor antagonist.47,63 Cell culture

studies also showed that homocysteine favors a pro-coagulant

state and platelet adhesion. Endothelial cells exposed to homo-

cysteine had increased levels of tissue factor and enhanced

activation of factor V to Va.1 Furthermore, a correlation was

found between homocysteine levels and fibrinogen, an acute-

phase protein involved in vascular inflammation and a marker

of endothelial dysfunction, in the plasma of patients with cor-

onary artery disease, supporting the concept that excess homo-

cysteine promotes inflammation and disrupts endothelial

homeostasis in humans. Similarly, von Willebrand factor,

another marker of endothelial damage, was also increased in

plasma of patients with hyperhomocysteinemia having prema-

ture arterial disease.1

An alternative mechanism that may contribute to the

homocysteine-induced inflammation and endothelial cell activa-

tion is protein homocysteinylation. Protein homocysteinylation

is a posttranslational modification in which the homocysteine

metabolite, Hcy-thiolactone, is incorporated into the polypeptide

chain in place of methionine.64,65 In vivo and in vitro studies

have shown that protein homocysteinylation may impair or alter

protein function.65 Several plasma proteins have been shown to

be targets for this modification by Hcy-thiolactone contributing

to a atherogenic phenotype.65,66 For example, homocysteiny-

lated albumin induces inflammatory response and increases

monocyte adhesion to human endothelial cells.66 In addition,

protein homocysteinylation may also contribute to apoptosis.65

Endoplasmic reticulum (ER) stress is another deleterious

effect associated with high concentrations of homocysteine.

Endoplasmic reticulum stress is characterized by an accumula-

tion of misfolded proteins in the ER lumen, which triggers the

unfolded protein response and increases the expression of stress

response genes, such as GRP78 and GRP94. Endoplasmic

reticulum stress can induce inflammation and apoptosis, which

can favor the progression of atherosclerotic lesions.47

Homocysteine causes a multitude of adverse effects that dis-

rupt vascular cell homeostasis. For example, both ROS release

and ER stress can activate apoptosis.60 Similarly, homocysteine-

induced peroxynitrite can induce apoptosis.47 Oxidative stress

can also contribute to LDL oxidation and the formation of foam

cells to promote atherosclerotic plaque growth. Decreased NO

levels lead to enhanced activation of coagulation pathways and

increased platelet aggregation. Additionally, homocysteine can

reduce endothelial expression of cyclin A, promoting cell cycle

arrest and preventing replacement of damaged endothelial

cells.52 Thus, homocysteine can activate multiple pathways that

together contribute to vascular disease progression.

S-Adenosylhomocysteine and CVD

As discussed earlier, several studies concluded that elevations

of plasma homocysteine in the mild to moderate range were an

independent risk factor for CVD in the general population.32,38

Subsequently, several randomized control studies were con-

ducted to examine whether homocysteine-lowering B-vitamin

therapy would decrease the occurrence of adverse cardiovas-

cular events. Surprisingly, despite a substantial, quick, and

long-lasting effect on lowering the concentrations of plasma

homocysteine, the majority of these vitamin therapies have

shown no clear clinical benefit on vascular disease risk and

mortality.39-43 An alternative theory proposes that SAH, rather

than homocysteine, may be a more accurate measure of CVD

risk.67-70 S-Adenosylhomocysteine is the homocysteine precur-

sor that accumulates in the setting of hyperhomocysteinemia.

Several studies report the positive correlation between

increased homocysteine plasma levels and increased SAH

intracellular and/or plasma levels.70-73 Notably, growing evi-

dence shows that B-vitamin treatments that reduce plasma

homocysteine fail to lower plasma74 and intracellular SAH.75

To date, there are few studies that have examined the asso-

ciation between SAH and CVD. Nevertheless, experiments in

mice have established a link between excess SAH and CVD,76

suggesting that SAH is a more sensitive biomarker for athero-

sclerosis than homocysteine.69

A prospective cohort study in coronary angiographic patients

showed that increased plasma SAH levels are significantly corre-

lated with an increase in CVD events.70 Moreover, a cross-

sectional cohort study of 402 individuals with low CVD risk found

an association between SAH and subclinical atherosclerosis, impli-

cating SAH as a marker of early atherosclerotic disease.77 Taken

together, these observations support the concept that elevated SAH,

rather than homocysteine, may be the culprit in the CVD risk that

has been previously associated with hyperhomocysteinemia.

S-Adenosylhomocysteine and Cell
Hypomethylation

S-Adenosylhomocysteine accumulates in the setting of hyper-

homocysteinemia due to the reversibility of SAHH reaction

Barroso et al 5



that strongly favors SAH synthesis rather than its hydrolysis.

However, under normal physiologic conditions, this reaction

proceeds in the hydrolytic direction due to the efficient removal

of homocysteine. Nonetheless, the seminal work by Yi et al

showed that plasma levels of homocysteine were positively

correlated with intracellular leukocyte SAH concentrations in

a healthy population.78 Additional studies further confirmed

that SAH accumulates under hyperhomocysteinemia in

humans and in animal models.71,79,80

S-Adenosylhomocysteine is, simultaneously, a by-product

and a potent inhibitor of the activity of SAM-dependent

methyltransferases. In fact, as mentioned earlier, the catalytic

sites of most methyltransferases have a higher affinity for SAH

compared to SAM. Hence, homocysteine-induced SAH accu-

mulation may inhibit the activity of cell methyltransferases,

thereby disrupting methylation homeostasis and promoting a

hypomethylating environment. The SAM-dependent methyl-

transferases are responsible for the majority of cellular

methylation reactions, including creatine synthesis, membrane

phosphatidylcholine synthesis, and synthesis of neurotransmit-

ters.78 Additionally, DNA, RNA, and proteins are targets for

methyltransferases, and the methylation state of these macro-

molecules can regulate gene expression patterns. Thus, we

propose that excess SAH may contribute to the molecular basis

of homocysteine-induced vascular toxicity by decreasing the

methylation of these macromolecules.

Targets of SAH-Mediated Methylation Inhibition with
Relevance for Gene Expression

DNA. Epigenetic markers, such as DNA methylation, regulate

gene expression during development and adulthood, and they

can determine cell- and tissue-specific gene expression. Methy-

lation of the carbon 5 position of the cytosine ring is the most

common modification of the double helix, and this cytosine

methylation can modulate the transcriptional potential of geno-

mic DNA.81 In differentiated mammalian cells, cytosine methy-

lation can occur in any nucleotide context; however, more than

98% occurs in cytosines that are followed by guanines, in a

cytosine-phosphate-guanine (CpG) dinucleotide context.82 CpG

islands are sequences present in the genome that have a CG-rich

base composition and high density of CpG dinucleotides.83 The

majority of the annotated gene promoters, including promoters

of housekeeping genes, tissue-specific genes, and developmental

regulator genes, contain CpG islands.83 DNA methylation may

alter gene expression: it can inhibit the binding of transcription

factors and can recruit methyl-CpG binding domain proteins that

promote the formation of a repressed chromatin state.69 Tran-

scriptional repression by DNA methylation has been demon-

strated for promoters that contain CpG islands and also for

promoters with low CpG density.84

Cytosine methylation in DNA is accomplished by the

action of 3 DNA methyltransferases (DNMTs): DNMT1,

DNMT3A, and DNMT3B. DNMT1 is responsible for the

maintenance of the DNA methylation patterns during replica-

tion, while the DNMT3A and DNMT3B function as de novo

methyltransferases.81 Importantly, SAH has been shown to

inhibit the in vitro methyltransferase activity of each of the

DNMT enzymes.85 Other studies have also established that

elevated plasma homocysteine levels are positively correlated

with increased intracellular SAH and decreased DNA methy-

lation in lymphocytes/leukocytes.71,78 Accordingly, excess

SAH levels have been strongly associated with altered gene

expression in several studies.86-88 Notably, SAH also induced

tissue-specific changes in DNA methylation patterns that cor-

related with altered gene expression in hyperhomocysteine-

mic mice.89

S-Adenosylhomocysteine has been shown to disturb promo-

ter methylation of many genes, including the PDGF (platelet-

derived growth factor) gene,86 the stress response-related

p66Shc gene,88,90 genes involved in the regulation of choles-

terol biosynthesis, such as SREBF1 (sterol regulatory element

binding transcription factor 1) and LDLR (LDL receptor),87 and

those involved in cell stress and cell cycle regulation, such as

the BNIP3 (BCL2/adenovirus E1B 19 kDa interacting pro-

tein 3) gene.91 Additionally, inflammatory genes, such as IL1B,

IL6, IL8, and ICAM1 (intercellular adhesion molecule 1), that

can be regulated by DNA methylation in some cancer cells,92,93

may also be targets of SAH-mediated hypomethylation.94

Several lines of evidence support the concept that an eleva-

tion in homocysteine can lead to DNA hypomethylation, sec-

ondary to inhibition of DNMTs by SAH.71,79,95,96 For instance,

we and others observed that plasma homocysteine concentra-

tion has a positive correlation with SAH levels and a negative

correlation with lymphocyte DNA methylation status in

healthy individuals and in patients with CVD.71,78 A

genome-wide analysis study of DNA methylation, conducted

in patients with chronic kidney disease presenting with high

levels of both homocysteine and SAH, identified 52 differen-

tially methylated pro-atherogenic genes.95 These data provided

evidence for both DNA hypomethylation and DNA hyper-

methylation at different gene loci, suggesting that mechanisms

other than SAH-induced inhibition of DNMTs are also regulat-

ing epigenetic changes in this disease.

DNA hypomethylation has been linked to atherosclerotic

disease in many other studies where the SAH status is

unknown.97,98 A significant reduction in the genomic methyl

cytosine content was detected in advanced human atherosclero-

tic lesions99 and in vascular lesions of mice lacking apolipo-

protein E (ApoE), a well-established animal model of

atherosclerosis.100 The gene encoding the antioxidant extracel-

lular SOD was also shown to be a target for regulation by DNA

methylation. A study conducted in rabbits showed a marked

reduction in the amount of methylated CpG in the ec-sod gene

in atherosclerotic aortas when compared to healthy arteries.101

Hiltunen et al reported that genomic hypomethylation occurs in

atherosclerotic lesions in human, mouse, and rabbits and that it

correlates with a higher transcriptional activity of some

genes.99 Namely, an association between the expression of

PDGF-B and genomic hypomethylation was observed, sug-

gesting that DNA hypomethylation could contribute to

growth factor upregulation during atherosclerotic lesion
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development.99 Similarly, DNA hypomethylation was found n

human atherosclerotic carotid plaques.100 Although several

studies report global hypomethylation in atherosclerotic pla-

ques,102,103 DNA global hypermethylation was also found in

plaques.104 The basis for these differences in methylation status

is unclear but may relate to the stage of the plaque105 or

whether or not the plaque is symptomatic (ie, had a rupture).96

Nonetheless, many studies have identified specific genes that

are hypomethylated in atherosclerotic plaques and can be deter-

minants for the disease.98

Folate levels are essential for the remethylation of homo-

cysteine, and folate deficiency can lead to hyperhomocysteine-

mia. Many studies have focused on the effect of folate on DNA

methylation, rather than the effects of homocysteine. Although

most of these studies were conducted in cancer cells or patients,

similar to the findings with elevated homocysteine, no consis-

tent association was found between folate levels and global

DNA methylation status across all studies.106 Of importance,

in a study of patients with uremic hyperhomocysteinemia, the

negative correlation between homocysteine levels and DNA

global methylation status was restored by folate therapy that

increased DNA methylation and altered the patterns of gene

expression.107 This work by Ingrosso and colleagues represents

the first human study that causally linked homocysteine and

folate with altered gene expression via DNA hypomethylation.107

However, to prove that SAH-induced hypomethylation contri-

butes to disease mechanisms, additional information is needed

about the relationship between DNA hypomethylation and the

expression of disease-causing genes, as well as the role of SAH,

homocysteine, and folate in these processes.

RNA. Although much less studied than other SAM-dependent

methylation targets, RNA is highly methylated. To date, about

100 different methylation modifications in RNA have been

described.108 However, the function of most RNA modifica-

tions is unknown. Different RNA species, such as transfer RNA

(tRNA), ribosomal RNA (rRNA), messenger RNA (mRNA),

small nuclear RNA, and micro-RNA, can have different pat-

terns of ribonucleotide methylation. Interestingly, some RNA

methyltransferases target multiple RNA species, while others

are specific for a single RNA species.109

The importance of RNA methylation is illustrated by the

50 methylation cap in mRNA, which is crucial for mRNA sta-

bility and efficient gene expression.110 In addition, several

mechanisms have been proposed for tRNA and rRNA

methylation-mediated regulation of translation and codon

decoding.109 RNA methylation has also been shown to affect

RNA synthesis, maturation, transport, and splicing. The effect

of methylation on RNA function depends on the RNA molecule

that is being methylated, as well as the location of the methy-

lated ribonucleotide within that molecule and the location of

the methylation site within the ribonucleotide.

Although RNA methylation can occur on nitrogen, oxygen,

and carbon, nitrogen is the most modified atom within the

pyrimidine or purine base rings.109 In addition to methylation

sites on the ribonucleotide base, ribose can also be methylated.

20-O-methylation is the most common type of ribose

methylation.111 Recently, the fat mass and obesity associated pro-

tein (FTO) and the alkylation repair homolog 5 (ALKBH5) were

reported to mediate N6-methyladenosine demethylation.110,112,113

The discovery that RNA methylation can be a dynamic

modification raises the question of whether these modifica-

tions regulate gene expression. RNA methylation is per se

an addition of information to the RNA sequence and its

flexibility further increases RNA complexity and diversity,

although the consequences of many of these modifications

remain unclear.

The lack of information on the function of specific RNA

methylations, as well as the fact that the activity and/or identity

of many of the RNA methyltransferases remain unresolved, has

hindered the study of these modifications in normal and disease

conditions. Cell culture studies, as well as studies using pur-

ified enzymes, have shown that particular RNA methylation

events are sensitive to SAH accumulation.114-117 In addition,

some RNA modifications may be altered under disease condi-

tions. One study conducted in rabbits experiencing myocardial

infarction reported altered patterns of liver tRNA methylation

in these stressed rabbits compared to controls.118 In particular,

1-methyladenosine content was decreased, whereas

7-methylguanosine and 1-methylguanosine contents were

increased in the myocardial infarction group118; however, the

specific function of each of these modifications remains

unclear as is the molecular basis for these changes.118 Several

studies have also reported hypo- and hypermethylation of spe-

cific tRNA modifications in different types of cancer.111,119-124

Likewise, impaired rRNA methylation was found in leukemic

blast cells, where rRNA maturation was compromised.125,126

Additionally, genome association studies have also implicated

gene variants of the mRNA demethylase FTO gene in cancer,

neuronal development, and renal and CVDs, although the effect

of these variants on RNA methylation was not analyzed in

these studies.113,127

Transfer RNA is the most highly modified RNA species,

and some of these modifications may have important roles in

mediating cellular stress responses.128 In 2010, the activity of

ALKBH8, a mammalian methyltransferase that is able to

methylate a number of different tRNA residues, was

reported.128 Its activity includes modifications that are

essential for the correct translation of a subset of selenopro-

teins (proteins that contain selenocysteine in their polypep-

tide chain).128,129 Selenocysteine (Sec) carrying tRNA

(Figure 3) recognizes an UGA codon, which is a common

signal for translation termination, as a target for Sec incor-

poration.128,130,131 Thus, Sec-tRNA is essential for efficient

translation of selenoproteins. There are 2 major Sec-tRNA iso-

forms, 5-methoxycarbonylmethyluridine (mcm5U) and 5-meth-

oxycarbonylmethyl-20-O-methyluridine (mcm5Um), which

differ by a single methyl group at the ribose of the U at position

34 (Figure 3).128,130 ALKBH8 is responsible for the conversion

of 5-carboxymethyluridine to mcm5U, a prerequisite step

before the methylation of the 20-O-ribose to form

mcm5Um.128,129 Several selenoproteins rely on the presence
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of mcm5Um in the Sec-tRNA to be efficiently translated,

including GPx-1. Glutathione peroxidase 1 is a major antioxi-

dant enzyme in human cells and its impaired translation is asso-

ciated with elevated homocysteine levels.53 Songe-Møller et al

found that mice lacking ALKBH8 showed decreased mcm5U

and mcm5Um content in tRNA with a consequent decrease in

GPx-1 expression and increased susceptibility for oxidative

stress.128 Subsequent studies have also shown that a deficiency

in ALKBH8 suppresses the expression of GPx-1 and other sele-

noproteins to cause oxidative stress in mouse embryonic fibro-

blasts.132 Importantly, in addition to GPx-1, many other

selenoproteins are involved in cell detoxification and redox reg-

ulation. Furthermore, selenium deficiency, which causes a

decrease in select selenoprotein expression, has also been asso-

ciated with oxidative stress.130,133

Studies in endothelial cells revealed that a hypomethylating

environment, induced by excess SAH, impairs not only NO

production but also the cellular redox state.134,135 Previous

studies reported a link between homocysteine-associated sup-

pression of GPx-1 and endothelial dysfunction; however, our

recent findings clarify the molecular mechanisms for decreased

GPx-1 expression.53,135 Our findings showed that SAH accu-

mulation decreases Sec-tRNA mcm5Um levels, leading to the

altered expression of a subset of selenoproteins, including

GPx-1 in endothelial cells.135 These results uncovered a spe-

cific mechanism by which SAH-mediated hypomethylation

suppresses GPx-1 expression to promote oxidative stress and

inflammatory activation of endothelial cells.

Protein. Protein methylation is a widespread posttranslational

modification that modulates protein function and increases the

structural diversity of the proteome. Furthermore, protein

methylation can be reversible, similar to phosphorylation or

acetylation, adding another means to regulate protein–protein

interactions, protein stability, protein localization, and/or

enzymatic activity.136 Currently, 50 different protein lysine

methyltransferases (PKMTs) and 11 protein arginine methyl-

transferases (PRMTs) are known.137 The PKMTs can catalyze

the transfer of 1, 2, or 3 methyl groups from SAM to lysine

residues in a protein polypeptide chain, producing mono-, di-,

or tri-methyl-lysine residues (Figure 4). Likewise, PRMTs can

also mono-, di-, or tri-methylate arginine residues. Addition-

ally, dimethylation by PRMTs can be symmetric, generating

symmetric dimethylarginine residues, or asymmetric, produc-

ing ADMA residues138,139 (Figure 4).

The methylation of histones is a well-known epigenetic

mechanism that regulates gene expression by modulating chro-

matin structure.103,140 Importantly, these methylation marks are

highly dynamic and can be targeted by specific methylases and

demethylases.141 Furthermore, the effects of histone methyla-

tion on chromatin activation depend on the specific residues that

are methylated.140 Methylation of lysines 4, 36, and 79 in his-

tone H3 are mainly associated with active transcription, while

methylation at lysines 9 and 27 are associated with gene repres-

sion and heterochromatin formation. Furthermore, the lysine

methylation status (mono-, di-, or trimethylation) can determine

gene expression or repression. For example, trimethylated his-

tone H3 lysine 4 is a mark of active promoters, while di- and

trimethylated histone H3 lysine 9 (H3K9) residues are strongly

associated with transcriptional repression.140

The establishment and maintenance of epigenetic gene

silencing is fundamental to cell homeostasis.142 The Polycomb

group (PcG) of proteins are negative epigenetic regulators of

transcription and represent evolutionarily conserved multi-

protein complexes: the Polycomb repressive complexes

(PRCs).143 There are 2 main PRCs: PRC1 and PRC2. PRC2

catalyzes the dimethylation and trimethylation of histone H3 at

lysine 27 (H3K27me2/3), which is a central feature of PcG-

silenced chromatin, while PRC1 promotes lysine 119 mono-

ubiquitylation of histone H2A (H2AUb1).144 PRC2 complex is

Figure 3. Human Sec-tRNA. The sequence and structure of the Sec-
tRNA is shown at the top, and the modifications of the wobble uridine
at position 34 of the anticodon (U34) are shown at the bottom.
mcm5U indicates 5-methoxycarbonylmethyluridine; mcm5Um,
5-methoxycarbonylmethyl-20-O-methyluridine; Sec, selenocysteine;
tRNA, transfer RNA.
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involved in the initiation of gene silencing, whereas PRC1 is

responsible for stabilizing and maintaining gene repression.

Enhancer of zeste homolog 2 (EZH2) is the SAM-dependent

histone lysine methyltransferase (HKMT) that is the catalytic

component of PCR2, and it epigenetically silences gene

expression by mediating H3K27me3 methylation.142,145 UTX

(ubiquitously transcribed tetratricopeptide repeat on X chromo-

some demethylase) and JMJD3 (jumonji domain containing 3

demethylase) are H3K27-specific histone demethylases, which

are capable of removing di- and trimethylation of H3K27.139

Similarly, G9a/GLP are 2 H3K9-specific HKMTs146 that

produce another repressive histone methylation. Several differ-

ent demethylases were reported to remove H3K9 methylation,

including multiple members of the Lysine demethylases

(KDM) family.139 Interestingly, similar to EZH2, G9a also

relies on SAM as the methyl donor compound for its HKMT

activity.147,148

Recent studies revealed that EZH2 epigenetically regulates

cell proliferation, spreading, and angiogenesis in endothelial

cells.149 Additionally, EZH2 target genes that are suppressed

by H3K27me3 include pro-inflammatory cytokines that can

induce endothelial cell expression of adhesion molecules.149

Excess SAH was found to cause a loss of the repressive histone

marks, H3K27me3 and H3K9me3, in cancer cell lines,150,151

and recent findings correlate a reduction in global histone

H3K27me3 with the presence of advanced atherosclerotic

plaques in human vessels.152 Additionally, our recent studies

provide mechanistic insight into how the regulation of EZH2

by SAH contributes to a pro-atherogenic environment. Thus,

increased intracellular SAH leads to a decrease in EZH2

RNA, protein, and activity in endothelial cells.94 Our studies

further link the SAH-induced suppression of EZH2 and

H3K27me3 to the activation of the pro inflammatory NF-kB

pathway and the increased expression of adhesion molecules

and inflammatory cytokines.94 These results identified EZH2

as a new target of SAH regulation, demonstrating that EZH2

suppression and the subsequent NF-kB activation mediated

by excess SAH accumulation may contribute to the adverse

effects of SAH in the vasculature.

Other studies have shown an association of hypomethyla-

tion of nonhistone proteins with disease. Perna et al were the

first to suggest the involvement of protein hypomethylation in

hyperhomocysteinemia, reporting that SAH accumulation was

associated with a decrease in methyl esterification of erythro-

cyte membrane proteins in patients with renal impairment.153

Specifically, the accumulation of intracellular SAH, and the

concomitant decrease in the SAM–SAH ratio, resulted in a

decrease in the methylation of ankyrin, a cytoskeletal protein

that is involved in membrane stability and integrity.153 Garcia

and colleagues also observed that a decrease in the SAM–SAH

ratio in rats resulted in impaired arginine methylation

of proliferator-activated receptor-g coactivator-1 (PGC-1a), a

Figure 4. Protein methylation and SAH. Protein Arg and Lys residues are targets for the SAM-dependent PRMTs and PKMTs, respectively. Arg
indicates arginine; Lys, lysine; PKMTs, protein lysine N-methyltransferases; PRMTs, protein arginine N-methyltransferases; SAH, S-
Adenosylhomocysteine; SAM, S-Adenosylmethionine.
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transcriptional coactivator that regulates genes involved in

energy metabolism.154 Similarly, methylation of p21ras was

also found to be suppressed by homocysteine under conditions

that favored the accumulation of SAH.155 In this study, the

inhibition of vascular endothelial cell growth was correlated

with an increase in SAH and a reduction in p21ras carboxyl

methylation.155 These observations suggest an additional

mechanism by which SAH-induced hypomethylation could

contribute to vascular dysfunction.

Our group reported that excess SAH altered global protein

arginine methylation in vitro and in vivo.138,155,156 In these

studies, we observed that protein arginine methylation is a

more susceptible target for SAH-mediated inhibition than DNA

methylation.138 Furthermore, we reported hypomethylation of

proteins, including histones, in 2 independent animal models of

hyperhomocysteinemia.156,157 In support of these experimental

findings, a recent study found hypomethylation of histones

(and DNA) in human atherosclerotic carotid plaques compared

to control arteries.102 Taken together, these results provide evi-

dence that protein methyltransferases are targets for SAH-

mediated inhibition in the context of hyperhomocysteinemia

and lay the groundwork for future investigation of specific

protein methylation targets that may contribute to vascular

disease.

Summary

The concept that homocysteine is a risk factor for cardiovas-

cular disease has recently been questioned due to the lack of

beneficial effects of treatments that lower circulating homocys-

teine. Growing evidence suggests that SAH, the homocysteine

precursor, may be a better indicator of cardiovascular disease

risk. In fact, recent studies show that treatments that augment

SAH levels increase atherosclerotic lesion size in susceptible

ApoE-deficient mice.76

Overall, several pieces of evidence implicate SAH as a key

modulator of endothelial dysfunction by compromising RNA,

DNA, and protein methylation. More importantly, many stud-

ies, including our own, support a role for excess SAH-induced

hypomethylation in the pathogenesis of homocysteine-

associated vascular disease.
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