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Estimation of the SEA Coupling Loss 
Factors by Means of Spectral Element 
Modeling 
The coupling loss factors are of critical importance when building and solving Statistical 
Energy Analysis (SEA) models. This paper proposes a methodology to numerically 
estimate these factors for frame-type structures. The estimated factors are compared with 
those obtained through analytical expressions for frame structures, where members are 
joined at right angles. The example used to verify the proposed technique consists of two 
infinite beams connected at a right angle modeled via the Spectral Element Method (SEM) 
using throw-off elements. It is shown that the obtained coupling loss factors compare very 
well with the analytical expressions that may be derived for this simple right-angle 
connection case. By using the SEM approach, the coupling loss factors can be obtained for 
arbitrary frame structure connections, thus facilitating the analysis via SEA. 
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Introduction 

Structures such as aerospace frame structures are subjected to 
various forms of dynamic loads, including mid and high frequency 
excitations. Given the necessity of preventing undesirable vibration 
and noise levels, there is a growing need for analysis methods that 
are able to predict the vibration levels and energy flow paths at mid 
and high frequencies.  

At low frequencies, Finite Element Analysis (FEA) can be used 
with confidence. At high frequencies, the characteristic wavelength 
of the propagating vibrational waves become much smaller than the 
overall dimensions of the structure and a very fine mesh is necessary 
in FEA thus yielding very large models. Furthermore, the variance 
of the dynamic responses due to the uncertainty of the physical 
parameters caused by manufacturing tolerances, environmental 
changes, etc. makes the deterministic response prediction 
superfluous.1 

For a number of years, research efforts have been undertaken to 
find an alternative frame of analysis for medium and high frequency 
ranges. One of these approaches is the Statistical Energy Analysis 
(SEA), which was first presented in the early 60´s (Lyon and 
DeJong, 1995). In SEA, the structure is divided into a set of 
subsystems that interact through energy exchange. SEA aims at 
predicting the vibrational energy level in each subsystem. Once 
computed, these energies can be used to estimate the acceleration 
and stress levels. Coupling loss factors are of key importance for 
efficient SEA modeling. A number of published works deal with the 
estimation of coupling loss factors. A recent work by Maxit and 
Guyader (2001a and 2001b) presents an FEA-based method for the 
estimation of these factors. Their approximation is based on the use 
of a dual formulation and FEA modal information, but it is still 
limited by the accuracy of the interpolation functions. 

In this paper, a review of the Statistical Energy Analysis is 
given, followed by the sensitivity analysis of the Coupling Loss 
Factor (CLF) presented by Stimpson and Lalor. These simplified 
formulations are used for obtaining the CLFs. A review of the 
Spectral Element Method is given. This method is used for the 
calculation of the energies in the one-dimensional wave-guides 
using a proposed model of an L-beam structure (Ahmida and 
Arruda, 1999; Ahmida and Arruda, 2001). The obtained CLFs are 
then verified, compared with analytically calculated ones and used 
in the modeling of a T-beam structure via SEA. 
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Review of SEA 

The fundamental equation used in SEA is the power balance 
equation between different coupled subsystems. For a subsystem i 
connected to many subsystems j, with j varying, the power balance 
equation may be written as 
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where i
inP  is the power input to the subsystem from external 

excitation, i
dissP  is the power dissipated within subsystem i by the 

internal damping and ij
couplP  is the net power transferred from 

subsystem i to subsystem j through dynamic coupling. All the power 
components mentioned before are time-averaged quantities, and the 
structure is considered under steady-state conditions. The internal 
dissipated power is usually calculated as 
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where ω is the central frequency of the chosen constant percentage 
band (usually an octave or 1/3 octave), ηi is the internal loss factor, 
and Ei is the time-averaged total energy stored in subsystem i. 

 

One of the expressions adopted for the calculation of ij
coupP  is 

given by Lyon and DeJong (1995), 
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where ni is the modal density of subsystem i, and ηij is the coupling 
loss factor between subsystems i and j. Some theoretical estimates 
are available to determine the ηij factors for beams assembled at a 
right angle, so-called ‘L-beam’ structures. They are given as 
functions of the transmission coefficients between two subsystems. 
For beam networks, the coupling loss factors may be calculated as 
(Cremer et al., 1988), 
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where ci is the group velocity of the wave in beam i, Li is the length 
of beam i, and τij is the transmission coefficient across the joint 
relating the incident waves in subsystem i to the transmitted waves 
in subsystem j. The coefficients for each wave type may be 
calculated via the following expressions, 
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where β=cB/cL with cB being the sound speed of the flexural waves, 
cL the speed of longitudinal waves, τBB the transmission coefficient 
between incident flexural waves and transmitted flexural waves, τBL 
the transmission coefficient between incident flexural waves and 
transmitted longitudinal waves, and τLL the transmission coefficient 
between incident longitudinal waves and transmitted longitudinal 
waves. Cremer et al. (1988) derived theoretical expressions for the 
calculation of the transmission and reflection coefficients τij for 
beams connected at a right angle. 

The coupling loss factors (CLF) can also be estimated, either 
numerically or experimentally, by the Power Injection Method, PIM 
(Lyon and DeJong, 1995). This method aims at estimating the CLFs 
and the internal loss factors by means of measurements of the power 
input into the subsystems and of the total vibrational energy of the 
different subsystems involved. It is based on the identification of the 
energy matrix, which is related to the input power through the 
relation, 

 
{ } [ ]{ }EP ηω=  (6) 

 
where [ ]η  is the loss factor matrix which contains the internal and 
coupling loss factors. The PIM can be used with confidence for a 
small number of subsystems but, for a larger number of subsystems, 
the energy matrix could be numerically ill conditioned. This is 
usually related to the strength of the coupling between the 
subsystems.  

Some strategies have been used to minimize the errors 
associated with the calculation of the CLFs using PIM. The 
technique used in this paper was proposed by Stimpson and Lalor 
(1991). Observing the sensitivity of the CLFs computed from the 
PIM matrix of two connected subsystems, they observed that the 
variation in jiη  is a function of ijE , iiη and jjη , but it is 

independent of jiE . Furthermore, observing that the PIM matrix is 

dominated by the diagonal terms, they derived the following 
approximate expressions for the CLFs, 
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where ijE is the energy of subsystem i when power is input into 

subsystem j. When Eq. (7) is used, it is not necessary to solve the 
linear system of equations and, thus, the condition number of the 
PIM energy matrix is not relevant. This expression is used in this 
paper for the estimation of the different CLFs for frame structures 
where beam members are connected at a right-angle. 
 
 
 

Due to the problems mentioned above concerning the FEA at 
mid and high frequencies, the use of the Spectral Element Method 
(SEM) for the computation of the energy distribution is suggested in 
the present paper. Originally proposed by Doyle (1997), the method 
is formulated in the frequency domain, and presents many 
advantages relative to FEA for solving vibration problems 
efficiently at higher frequencies. It can be shown that a spectral 
element is equivalent to an infinite number of equivalent finite 
elements and the solution it yields is exact within the framework of 
the theory being used, e.g., Bernoulli-Euler or Timoshenko for 
beams. The other advantage is that it is straightforward to 
incorporate infinite (the so-called ‘throw-off’) elements. The major 
drawback of SEM is that there are no general two- or three-
dimensional elements available so far. Plate elements have been 
proposed for particular cases of periodic structures (Lee et al., 
1999). 

The example problem used in this paper is a ‘T-beam’ (two 
beams joined at a right angle) which have been used as a Round-
Robin example (Cuschieri et al., 1996). After a brief review of the 
SEM, an L-beam SEM model is built and used to compute coupling 
loss factors. 

Review of the Spectral Element Method 

The main advantage of the Spectral Element Method is that the 
element dynamic stiffness is computed from the exact analytical 
solution in the frequency domain. Two different types of elements 
can be used in this method: 2-noded and throw-off. The latter is an 
infinite element which can be used to model long structural 
elements that are nearly anechoic. A spectral frame element consists 
of a combination of a bar (traction) element, a shaft (torsion) 
element and a beam (flexure) element. For the T-beam example only 
vibrations in the plane that contains the two beams will be 
considered. Therefore, torsion was not included, although it is 
straightforward to assemble a frame element including all six 
degrees of freedom per node.  

Thus, the spectral elements used here obey the following 
equations of motion for bar and beam elements, respectively, 
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where EA is the axial stiffness, EI is the bending stiffness, u, φ, and 
v are the axial, rotational, and flexural displacements, respectively, 
GAκ  is the shear stiffness, ρA and ρI are the corresponding inertia 
terms, and κ  is a geometrical constant that depends on the shape of 
the cross-section, i.e. for rectangular cross-section κ =5/6 (Craig, 
1981). Spectral analysis presents a solution of the form, 
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where k is the wave number. For the bar, the equations of motion 
have a two-coefficient solution, 

 
)(),(ˆ xLikikx eexu −−− += BAω  (11) 

 



Estimation of the SEA Coupling Loss Factors by Means of … 

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyright  2003 by ABCM      July-September  2003, Vol. XXV, No. 3 / 261 

After the application of boundary conditions to a uniform wave-
guide of finite length L with loads applied only to both ends, the 
system of equations for the bar element are given by, 
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or in the reduced form, 
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where Lk̂  is the dynamic stiffness matrix for the bar element, F̂  is 

the complex amplitude vector of the applied force, û  is the vector 

of complex amplitudes of the node displacements and Lk  is the 

wave number, defined as 
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In throw-off elements, waves propagate in one direction only. 

Thus, its dynamic stiffness matrix can easily be obtained by 
eliminating the term B in Eq. (11), which represents the reflected 
waves. Hence, the one-term dynamic stiffness for the single-node 
infinite element is given by, 
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For the Timoshenko beam element, the four-coefficient exact 

solution is given by, 
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where R1 and R2 are defined as the amplitude ratios and k1, k2 as the 
wave numbers, all defined as, 
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with the constants defined as 
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In the same manner as for the rod element, the throw-off beam 

element can be obtained by setting C=D=0. 
These solutions can be written in terms of the nodal 

displacements, and a relation between the applied shear forces and 
moments and the nodal degrees of freedom can be established as, 
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where { } [ ]T2211 M̂V̂M̂V̂F̂ =  is the force vector and Bk̂  is the 

dynamic stiffness matrix. It is symmetric and complex for damped 
systems. The individual elements of this matrix can be found in 
Doyle (1997). An internal loss factor η can be included in all these 
wave numbers, to account for damping, by using a complex Young 
modulus E(1+iη). Only one element is needed between any two 
discontinuities, independent of its length. This plays the role of 
making the number of these elements in a 3-D structure relatively 
small. Thus, the response at different nodal degrees of freedom can 
be recovered with less computational cost by solving this system of 
equations at each frequency. These responses are then used to 
predict the total energy of a given structural element, for a certain 
wave type (longitudinal or flexural). 

SEM Model of the L-beam 

The L-beam consists of two semi-infinite beams, beam 1 and 
beam 2, connected at a right angle. The SEM model uses two 2-
noded and two throw-off spectral elements, as shown in Fig. 1. The 
throw-off elements are used in order to have no reflections at the 
free ends of the structure. The two beams have the following 
properties: A=0.01x0.01m2, E=2.62x109N/m2, ρ=1280Kg/m3 and 
L=100m for each of the 2-node elements. 
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Figure 1. (a) SEM model for the right angle beam; (b) power input in 
different subsystems. 

 
Four subsystems are considered in this model: two for the 

longitudinal waves and another two for the flexural waves in the x-y 
plane. The power is input into one subsystem independently, say 

1
inP , and the total energy is calculated using SEM, then the power is 

input into another subsystem and the energies are again calculated. 
A frequency range from 1Hz to 5kHz was analyzed using 1/3-octave 
bands. For each frequency band, the mean square energy values 
were computed over 50 frequency lines. The CLFs were calculated 
using the analytical expressions of Eq. (4) and compared with those 
calculated through Eq. (7). The resulting CLFs are shown in Fig. 2. 
Note that the CLFs are defined as follows: 
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ηB1B2 : CLF between flexural waves incident at beam 1 and 
flexural waves transmitted to beam 2. 
ηB1L2 : CLF between flexural waves incident at beam 1 and 
longitudinal waves transmitted to beam 2. 
ηL1B2 : CLF between longitudinal waves incident at beam 1 and 
flexural waves transmitted to beam 2. 
ηL1L2 : CLF between longitudinal waves incident at beam 1 and 
longitudinal waves transmitted to beam 2. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Coupling loss factors for the T-beam structure.                       
*  CLF obtained via SEM using the simplified expressions of Stimpson 
& Lalor,    ----o----  CLF obtained analytically via Cremer’s expressions. 

 
(d) 

Figure 2. (Continued). 

 
A good agreement can be observed between the CLFs obtained 

by the proposed methodology and the CLFs obtained analytically. It 
is also observed that the estimations improve with frequency. It 
should be noted that, differently from what would happen when 
modeling with FEA, the SEM model will not deteriorate as 
frequency increases (provided the theory used still holds). It should 
also be noted that if the PIM had been used directly to compute the 
CLFs the results would be poorer when compared to those obtained 
using Eq. (7) due to the ill-conditioning of the linear system of 
equations of PIM method. 

The CLFs obtained via the proposed methodology are then used 
in the SEA modeling of a T-shaped beam structure. This T-beam 
was used in a Round-Robin survey. It was constructed at the Naval 
Surface Warfare Center in Bethesda, Maryland, under the 
supervision of Dr. R. P. Szwerc. A complete description of the 
structure is given by Cuschieri et al. (1996) and is shown in Fig. 3 
for clearance. The energy levels in the three beams of the structure 
calculated via SEA are shown in the following figures. Energy 
levels are calculated using the CLFs obtained via the proposed 
methodology and compared to those calculated via the analytical 
expressions given by Cremer et al. (1988). A frequency range from 
1Hz to 5kHz is analyzed using a 1/3-octave scale with 50 frequency 
lines per band. 
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Material: Lexan
E=2.62x109 N/m2

ν=0.25
η=0.01
A=0.0317x0.054 m2

I=1.43x10-7 m4

LA=0.779 m
LB=1.0827 m
LC=0.9303 m

 
Figure 3. T-beam structure. 
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(a) 

 
(b) 

 
(c) 

Figure 4. Energy levels in the T-beam; (a) Leg-A, (b) Leg-B, (c) Leg-C:    
  calculated with CLFs obtained using SEM/S&L, ------  calculated with 
analytical CLFs. 

 
It can be observed that the energy levels in the three legs of the 

T-beam predicted with SEA using the CLFs obtained via SEM/S&L 
compare very well with those obtained using analytical CLFs. It 
should also be noted that the differences decrease with frequency, as 
expected when using SEA. 

 
 
 
 

Conclusions 

Good SEA models require a reliable estimation of the coupling 
loss factors (CLFs). A methodology for computing CLFs based on 
the Spectral Elements Method (SEM) is proposed in this paper. 
Provided the underlying structural theory holds, the SEM has no 
high frequency limitations, as it utilizes exact interpolation 
functions. Analytical expressions for the CLFs can be found in the 
literature for beam structures connected at a right angle. Thus, the 
proposed methodology is applied to a right-angle beam and 
compared to the analytically obtained factors. The CLFs obtained 
numerically compare very well with the analytically obtained ones. 
Frame elements, which consist of a combined rod, shaft and beam 
element, can be used to obtain CLFs for different wave types 
propagating in 3-D frame-type structures. This allows the 
application of the proposed SEM-based methodology to frame-type 
beams joined at any arbitrary angles. The use of other types of 
spectral elements (such as plate elements) would permit obtaining 
the CLFs for other types of strucutral coupling such as plate-plate 
and plate-beam coupling. This will be feasible when more general, 
two-dimensional SEM elements become available. 

Acknowledgements 

The authors would like to thank FAPESP (Fundação de Amparo 
à Pesquisa do Estado de São Paulo) and CNPq (Conselho Nacional 
de Desenvolvimento Científico e Tecnológico) for the financial 
support. 

References 

Lee, U., Kim, J., and Leung, A. Y. T., 1999. “The Spectral Element 
Method in Structural Dynamics”. The Shock and Vibration Digest, 32(6), 
451-465. 

Lyon, R. H. and DeJong, R. G., 1995. “Theory and Applications of 
Statistical Energy Analysis”. Butter-worth-Heinemann, 2nd edition. 

Maxit, L. and Guyader, J. L., 2001(a). “Estimation of Coupling Loss 
Factors Using a Dual Formulation and FEM Modal Information, part I: 
Theory”. Journal of Sound and Vibration 239 (5), 907-930. 

Maxit, L. and Guyader, J. L., 2001(b). “Estimation of Coupling Loss 
Factors Using a Dual Formulation and FEM Modal Information, part II: 
Numerical Applications”. Journal of Sound and Vibration 239 (5), 931-948. 

Ahmida, K. M., and Arruda, J. R. F., 1999. “Spectral Element Modeling 
of the Power Flow in a T-beam Structure: a Computational Experiment”, 
ASME Paper DETC99/VIB-8113, Proceedings of the 17th Biennial 
Conference on Mechanical Vibration and Noise, ASME Design Engineering 
Technical Conference, Las Vegas, September 12-15, CR-ROM, 7pp. 

Ahmida, K. M. and Arruda, J. R. F., 2001. “Spectral Element-Based 
Prediction of Active Power Flow in Timoshenko Beams”, International, 
Journal of Solids and Structures, V38, No. 10-13, pp. 1669-1679. 

Cremer, L., Heckl, M., Ungar, E. E., 1988. Structure-Borne Sound. 
Springer Verlag, 2nd edition. 

Stimpson, G. and Lalor, N., 1991. Practical Noise Modelling of a Car 
Body Structures Using Energy Flow Analysis. Proc. Internoise, pp. 1233-
1236. 

Doyle, J. F., 1997. Wave Propagation in Structures. Springer-Verlag, 
New York, NY. 

Cuschieri, J. M., Castagnet, E., E., LeFevre, T. A., Wilcox, T. E., 1996. 
SEA Modeling of the T-Beam. Proc. Noise-Con96, Bellevue, pp. 467-472. 

Craig, R. R 1981. Structural Dynamics. John Wiley, New York, NY, USA. 
 


