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Dynamics of Rotating Non-Linear
Thin-Walled Composite Beams: Analysis
of Modeling Uncertainties
In this article a non-linear model for dynamic analysis of rotating thin-walled composite
beams is introduced. The theory is deduced in the context of classic variational
principles and the finite element method is employed to discretize and furnish a numerical
approximation to the motion equations. The model considers shear flexibility as well
as non-linear inertial terms, Coriolis’ effects, among others. The clamping stiffness of
the beam to the rotating hub is modeled through a set of spring factors. The model
serves as a mean deterministic basis to the studies of stochastic dynamics, which are the
objective of the present article. Uncertainties should be considered in order to improve the
predictability of a given modeling scheme. In a rotating structural system, uncertainties are
present due to a number of facts, namely, loads, material properties, etc. In this study the
uncertainties are incorporated in the beam-to-hub connection (i.e. the connection angle
and the springs) and the rotating velocity. The probability density functions of the uncertain
parameters are derived employing the Maximum Entropy Principle. Different numerical
studies are conducted to show the main characteristics of the uncertainty propagation in
the dynamics of rotating composite beams.
Keywords: non-linear beams, dynamics, uncertainties, stochastic modeling, rotating
composite beams

Introduction

Rotating beams play an important role in the modeling of
engineering structures such as turbine blades, airplane propellers and
robot manipulators, among others. This subject has been investigated
with different levels of intensity and depth, at least, over the last four
decades. A historical revision about generally rotating beams can
be found in the works of Rao (1987) and Chung and Yoo (2002).
In these papers, many epoch-making works are listed as well as
recent investigations about rotating beams made of isotropic metallic
materials and even composite materials. Simo and Vu-Quoc (1986,
1987) showed that the appropriate consideration of non-linear strain-
displacement relationships plays an important role in the correct
modeling of the geometric stiffening of flexible beams. It is important
to mention that the geometric stiffening has a remarkable effect on the
dynamics of rotating and non-rotating beams. Moreover in rotating
beams the geometric stiffening is not only due to non-linear strain-
displacement relations but also due to centrifugal and Coriolis’ effects
(Simo and Vu-Quoc (1987) and Trindade and Sampaio (2002)).

In order to improve the predictability of structural models,
different types of mechanical hypotheses have been introduced in the
mathematical formulation in the context of deterministic behavior.
However, many parameters involved in the formulation, such as
modulus of elasticity, density, forces, geometrical measures can be
uncertain due to a number of facts such as material production, system
construction, system operation and so on. Under these circumstances
the quantification of the uncertainty introduced in the mechanics of
composite structures plays a crucial role. Many articles addressing
uncertainty topics in beam structures were published. Cheng and Xiao
(2007) studied the stochastic dynamics of beams subjected to axial
loads. Lin (2001) as well as Hosseini and Khadem (2007) studied
the reliability of rotating beams with uncertain material properties,
uncertain geometric parameters and random rotating speed. Ritto et
al. (2008) studied the effect of uncertainty on the boundary conditions
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of Timoshenko beams.
There are many papers devoted to dynamic analysis of composite

beams, for both rotating and non-rotating conditions, and in some
papers, several aspects of uncertainty were tackled. Saravia et al.
(2011) analyzed the non-linear dynamics of a rotating thin-walled
composite beam. In their paper, the method of multiple scales was
employed to obtain the equations with which evaluate the steady
responses and their stability. Zibdeh and Abu-Hilal (2003) studied
the dynamics of composite beams subjected to random moving loads.
Chen and Chen (2001) evaluated the effect of flexure-torsion coupling
in the dynamics of rotating composite beams subjected to non-
stationary random excitation. Li et al. (2005) analyzed the stochastic
response of an axially loaded thin-walled beam with closed cross-
section. Murugan et al. (2008) analyzed the aeroelastic response of
helicopter blades with random material properties.

The purpose of the present paper is to analyze the stochastic
dynamics of rotating thin-walled composite beams that have uncertain
parameters, and to investigate the propagation of the uncertainty in
the dynamic model. A shear deformable linear model of composite
thin-walled beams developed by Piovan and Cortínez (2007) is here
extended in order to incorporate large rotations and arbitrary axial
deformations as well as uncertainty. The uncertainty in the data
is considered to be in the connection between the beam and the
hub, the elastic connection given by two springs and the orientation
beam-hub given by an angle, and in the motion of the beam, which
will be described later. The Maximum Entropy Principle (MEP) is
employed to construct the probability density function of the model
(Soize, 2001), but since no information about correlation of the
uncertain parameters is known the MEP says the parameters are
uncorrelated. Then a probabilistic model is constructed with the
available information for each of the random parameters, since they
are independent, using again the Maximum Entropy Principle. With
the probabilistic model of the data the propagation of uncertainty
is carried out by means of the Monte Carlo method. Although
the type of structural member in consideration has the main source
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of uncertainty in the material properties and the distribution of the
reinforcement fibers, the present study is focused on the analysis of
uncertainty propagation due to parameters such as stiffness angles,
accelerations, velocities, etc. The propagation of the uncertainty in
the material properties and laminate features will be part of future
research.

Nomenclature

A ,L ,V = beam domains: area, length and volume
Āi j , D̄i j = shell elastic properties
E∗,G∗ = elasticity moduli of the material
J(•) = elastic or mass beam properties
kv,kθ = spring stiffness at hub-to-beam connection
O j = reference center of the frames
Mi j,Ni j = shell forces
u,v = longitudinal and lateral displacement of the bar
Vi = generic random variable
F = force vector
P j = material point
U = displacement vector
[C] = damping matrix
[K], [KG] = elastic and geometric stiffness matrices
[M], [G] = mass and gyroscopic matrices

Greek Symbols

α = clamping angle
ψ = prescribed rotation of the whole beam
ρ = material density
θ = rotation parameter of the cross-section

Mathematical Model

In Fig. 1 one can see a sketch of a rotating beam undergoing
arbitrary in-plane rotations, where {OB : xyz}, {OR : xRyRzR} and
{OG : xGyGzG} are the local beam frame, rotating frame and inertial
fixed frame, respectively. The rotation of the beam is characterized
by means of a prescribed rotation ψ(t) around the zG-axis. α is
the angle that identifies the deviation of the beam axis with respect
to the radial direction in the point of the beam-to-hub connection.
The cross-section has a doubly symmetric closed contour constructed
with layered fiber-reinforced plastic laminates whose mechanics is
measured according to the intrinsic frame {OC : xsn}, as shown in
Fig. 2.

Figure 1. Reference frames of the rotating beam.

Figure 2. Reference frames of the cross-section.

In order to simplify the model and to concentrate in the stochastic
study, the constitutive equations of the composite stacking sequences
will be constrained to the cases of especially orthotropic laminates
and/or symmetric balanced laminates. With this stacking sequences
the possible elastic-constitutive couplings between in-plane (i.e in
the plane of rotation) and out-of-plane and/or twisting motions are
consistently canceled or, at least, constrained to a negligible amount.
The shear strains across the thickness of the wall are neglected as a
common assumption in the context of thin-walled modeling. Under
these circumstances the stress-strain equations can be reduced to the
following form:


Nxx
Nxs
Mxx
Mxs

=


Ā11 . . .

. Ā66 . .

. . D̄11 .

. . . D̄66



ε̄xx
γ̄xs
κ̄xx
κ̄xs

 (1)

In Eq. (1) Nxx and Nxs are membrane forces whereas Mxx and Mxs
are shell moments defined according to Eq. (2). On the other hand,
ε̄xx, γ̄xs, κ̄xx and κ̄xs are shell strains and shell curvatures.

{Nxx,Nxs}=
ˆ

e

{σxx,σxs}dn,

{Mxx,Mxs}=
ˆ

e

n{σxx,σxs}dn,
(2)

The coefficients Ā11, Ā66, D̄11 and D̄66 are modified elastic
coefficients of the shell, re-defined according to Piovan and Cortínez
(2007). According to the configuration selected, one can prove
(Cortínez and Piovan, 2002) that, for closed cross-sections, the
expressions of the effective longitudinal (E∗) and transversal (G∗)
elasticity moduli can be written in terms of the laminate elastic
coefficients as:

E∗ =
Ā11

e
=

12D̄11

e3 , G∗ =
Ā66

e
(3)

In Eq. (2) and Eq. (3) e is the thickness of the wall, which is
assumed constant and deterministic in this paper.

For a beam rotating around the ZG-axis, the position vector of a
generic point P, of the beam domain, with respect to the inertial frame
PG(Px|G,Py|G) and with respect to the rotating frame PR(Px|R,Py|R)
may be written as:

PG = [TG]PR,
PR = [TR] (U+XB)+R,

(4)
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where:

[TR] =

[
cosα −sinα
sinα cosα

]
,

[TG] =

[
cosψ (t) −sinψ (t)
sinψ (t) cosψ (t)

]
,

U =

{
ux
uy

}
,XB =

{
x
y

}
,R =

{
R0
0

}
,

(5)

In Eq. (5), ux and uy are the displacements of a generic point of
the deformed configuration measured with respect to the local frame
{OD : xyz}, that is:

ux (x,y, t) = u (x, t)− yθ (x, t)
uy (x,y, t) = v (x, t)

. (6)

The variables u, v and θ are the extensional displacement, lateral
displacement and bending rotation of the cross-section, respectively.
As one can easily see, Eq. (6) is describing a typical shear-deformable,
or Timoshenko’s formulation.

According to the nomenclature of thin-walled beams, the
coordinates of a point in the cross-sectional plane, let’s say B(y,z),
can be defined in the intrinsic frame {OC : xsn} as:

y (s,n) = Y (s)−n
dZ (s)

ds
,z (s,n) = Z (s)+ n

dY (s)
ds

, (7)

where Y (s) and Z(s) are the coordinates of the middle line of the shell
contour.

Taking into account the definition of the Lagrangian strain tensor
and the Eq. (6), one can obtain the relevant components of the strain
tensor as:

εxx = u′− yθ′+ 1
2

[
(u′− yθ′)2 + v′2

]
γxy = (v′−θ)− [θ (u′− yθ′)]

. (8)

For convenience in the algebraic handling, the strain components
of Eq. (8) should be transformed and described in the intrinsic frame
{A : xsn}, that is, εxx and γxs, which can be written in the following
form:

S = ([DL]+ n [BL])SL +
(
[DNL]+ n [BNL]+ n2 [BNL2]

)
SNL (9)

with

S = {εxx,γxs}T , SL = {u′,θ′,v′−θ}T ,
SNL =

{
u′2,v′2,θ′2,u′θ′,θ′θ,u′θ

}T

[DL] =

[
1 −Y 0
0 0 dZ/ds

]
, [BL] =

[
0 dZ/ds 0
0 0 0

]
,

[DNL] =

[
1/2 1/2 1/2Y 2 −Y 0 0
0 0 0 0 Y dZ/ds −dZ/ds

]
,

[BNL] =

[
0 0 −Y dZ/ds dZ/ds 0 0
0 0 0 0 (dZ/ds)

2 0

]
,

[BNL2] =

[
0 0 1/2 (dZ/ds)

2 0 0 0
0 0 0 0 0 0

]
.

(10)

The velocity vector of a generic point can be obtained from (4) in
the following form:

dPG

dt
= ṖG = ψ̇ [TG2]PR +[TG] [TR] U̇ (11)

where:

[TG2] =

[
−sinψ (t) −cosψ (t)
cosψ (t) sinψ (t)

]
(12)

In Eqs. (8), (11) and in the following paragraphs, dots and
apostrophes identify derivatives with respect to time and space (i.e.
x), respectively.

Now the total potential energy (composed of strain energy and
energy stored by root stiffness) and the kinetic energy of a composite
rotating beam can be described as:

UD =
1
2

ˆ

V

ST [EM ]SdV +
kv

2
v2 (0, t)+

kθ
2
θ2 (0, t) ,

UK =
1
2

ˆ

V

ρṖG · ṖGdV ,
(13)

where [EM ] = diag [E∗,G∗], whereas E∗, G∗ and ρ are the Young’s
modulus, shear modulus and material density, respectively. E∗ and
G∗ are given in Eq. (3). In order to account for the effective shear
stress distribution according to a first-order-shear beam formulation,
the shear modulus can be affected by the factor κ, which is a class
of Timoshenko’s shear coefficient that can be consistently calculated,
for composite beams, following the methodology given by Piovan and
Cortínez (2005) or Cortínez and Piovan (2002).

Now, substituting Eqs. (8) and (11) into Eq. (13), one obtains:

UD =
1
2

ˆ

L

[
JE

11u′2 + JE
22θ
′2 + JG

11
(
v′−θ

)2
]

dx+

1
2

ˆ

L

[
JE

11

(
u′3 + u′v′2

)
−3JE

22u′θ′2
]

dx−

1
2

ˆ

L

[
2JG

11
(
v′−θ

)
u′θ+ JG

22θ
2θ′2

]
dx+

1
2

ˆ

L

[
JE

11
4

(
u′2 + v′2

)2
+

JE
33θ
′4

4

]
dx+

1
2

ˆ

L

[
JE

22θ
′2

2

(
3u′2 + v′2

)
+ JG

11u′2θ′2
]

dx+

1
2

[
kvv2 (0, t)+ kθθ

2 (0, t)
]

,

(14)
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UK =
1
2

ˆ

L

Jρ11

[
u̇2 + v̇2 + 2ψ̇ (v̇ (u+ x+R0Cα))

]
dx+

1
2

ˆ

L

Jρ11

[
ψ̇2
(

u2 + v2
)
−2ψ̇u̇ (v+R0Sα)

]
dx+

1
2

ˆ

L

Jρ11

[
ψ̇2
(

2ux+ x2 +R2
0

)]
dx+

1
2

ˆ

L

Jρ11

[
2ψ̇2 ((u+ x)R0Cα− vR0Sα)

]
dx+

1
2

ˆ

L

Jρ22

[
θ̇2 + 2θ̇ψ̇+

(
1+θ2

)
ψ̇2
]

dx,

(15)

where for simplification purposes, Cα = cosα and Sα = sinα and:

{
JE ,JG,Jρ

}
=

ˆ

A

{E∗,G∗,ρ}gT gdsdn, g =
{

1,y,y2
}T

. (16)

In order to calculate the elastic and inertial properties of the cross-
section, one should employ in Eq. (16) the definitions given in Eq. (7).
For more details, the interested reader should see Cortínez and Piovan
(2002).

The non-linear equations of motion can be derived by means of
the Hamilton’s principle, i.e.:

δ

t2ˆ

t1

(UK −UDR)dt = 0, (17)

where UDR is the reduced strain energy derived from Eq. (14) in which
the double underlined terms are assumed negligible as in other papers
devoted to study rotating beam made of isotropic materials (Trindade
and Sampaio, 2002). This viewpoint is consistently discussed in a
study of the geometric stiffening effect in flexible beams carried out
by Mayo et al. (2004). If all underlined terms of Eq. (14) are removed,
a linear formulation is obtained.

Finite Element Discretization

Computational models can be constructed through the
discretization of the Eq. (17) by an appropriate scheme. The
discretization is carried out using a 2-node finite element with three
kinematic variables at each node. Lagrange linear shape functions
(Nu), cubic shape functions (Nv) and quadratic shape functions (Nθ)
are employed for axial displacements, lateral displacements and
bending rotations, respectively, i.e:

u = Nuqe,
v = Nvqe,
θ = Nθqe,

(18)

where:

qe = {u1,v1,θ1,u2,v2,θ2}T ,
Nu = {1−ξ ,0,0,ξ ,0,0} ,

Nv =

{
0, 1+β(1−ξ)−3ξ2+2ξ3

1+β , [
2+β−(4+β)ξ+2ξ2]ξLe

2(1+β) ,

0, βξ+3ξ2−2ξ3

1+β , [
−β+(β−2)ξ+2ξ2]ξLe

2(1+β)

}
,

Nθ =
{

0, 6ξ(ξ−1)
Le(1+β)

, [
1+β−(4+β)ξ+3ξ2]

1+β ,

0,− 6ξ(ξ−1)
Le(1+β)

, (−2+β+3ξ)ξ
1+β

}
,

(19)

Le is the length of the generic element, ξ and β are defined as:

ξ =
x

Le
, β =

12JE
22

L2
eJG

11
. (20)

The shape functions of Nv and Nθ (that correspond to a
Timoshenko’s beam theory or to a typical first-order shear deformable
beam theory) are thoroughly introduced in the works of Przemieniecki
(1968) and Bathe (1982). On the one hand, the interpolating functions
give a consistent integration of the equations of a shear-deformable
isotropic beam, as one can see in the aforementioned references. On
the other hand, it was shown that they can be useful also for shear-
deformable composite beams (Piovan and Cortínez, 2007). In both
cases, avoiding the shear-locking effect. Moreover, Nv and Nθ can
also be employed to approximate the solution of a Bernoulli-Euler
beam equation, because the interpolating functions may be reduced to
cubic and quadratic Hermite’s polynomials, if the condition of infinite
shear stiffness (or β→ 0) is invoked (Przemieniecki, 1968).

Now, substituting Eq. (18) in Eqs. (14) and (15), after performing
the conventional steps of variational calculus in Eq. (17) one gets the
equation for a single finite element in the following form:

[Me] q̈e− ψ̇ [Ge] q̇e +([Ke]+ [Kg (qe)])qe−(
ψ̇2 [Me]+ ψ̈ [Ge]

)
qe = ψ̇

2fA− ψ̈fT ,
(21)

where

[Me] =

ˆ 1

0

[
Jρ11

(
NT

u Nu +NT
v Nv

)
+ Jρ22NT

θNθ
]

Ledξ , (22)

[Ge] = 2
ˆ 1

0

[
Jρ11

(
NT

u Nv−NT
v Nu

)]
Ledξ , (23)

[Ke] =

ˆ 1

0

[
JE

11N′Tu N′u + JE
22N′TθN′θ

] 1
Le

dξ+
ˆ 1

0

[
JG

11

(
N′Tv −LeNT

θ

)(
N′v−LeNθ

)] 1
Le

dξ
, (24)
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[Kg] =

ˆ 1

0

JE
11

2L2
e

[
3N′Tu N′uqeN′u +N′Tu N′vqeN′v

]
dξ+

ˆ 1

0

JE
11

2L2
e

[
N′Tv N′uqeN′v +N′Tv N′vqeN′u

]
dξ+

ˆ 1

0

3JE
22

2L2
e

[
N′Tu N′θqeN′θ+N′TθN′uqeN′θ

]
dξ+

ˆ 1

0

3JE
22

2L2
e

[
N′TθN′θqeN′u

]
dξ−

ˆ 1

0

JG
11

2Le

[
N′Tu Nθqe

(
N′v−LeNθ

)]
dξ−

ˆ 1

0

JG
11

2Le

[
N′Tu

(
N′v−LeNθ

)
qeNθ

]
dξ−

ˆ 1

0

JG
11

2Le

[
NT
θN′uqe

(
N′v−LeNθ

)]
dξ−

ˆ 1

0

JG
11

2Le

[
+NT

θ

(
N′v−LeNθ

)
qeN′u

]
dξ−

ˆ 1

0

JG
11

2Le

[(
N′Tv −LeNT

θ

)
NθqeN′u

]
dξ−

ˆ 1

0

JG
11

2Le

[(
N′Tv −LeNT

θ

)
N′uqeNθ

]
dξ ,

(25)

fA =

ˆ 1

0

[
Jρ11NT

u (Leξ+R0Cα)− Jρ11NT
v R0Sα

]
Ledξ , (26)

fT =

ˆ 1

0

[
Jρ11NT

v (Leξ+R0Cα)
]

Ledξ+
ˆ 1

0

[
Jρ11NT

u R0Sα+ Jρ22NT
θ

]
Ledξ .

(27)

After the assembling process one gets the following expression:

[M] Q̈+[C] Q̇+([K]+ [KG (Q)]+ [KD])Q = F, (28)

where [M] is the global mass matrix, [C] is the global gyroscopic
matrix, [K] is the global elastic stiffness matrix, [KG] is the global
geometric stiffness matrix, [KD] corresponds to the stiffness induced
by the rotation of the beam and F is the global vector of dynamical
forces. One may notice that [KD] is not symmetric due to the presence
of the term proportional to the angular acceleration ψ̈.

The matrix [C] can be modified in order to account for "a
posteriori" structural damping, i.e.:

[C] = [G]+ [CRD] . (29)

In the previous equation, [G] is the global gyroscopic matrix,
whereas [CRD] is the system proportional damping matrix, which is
calculated as:

[CRD] = η1 [M]+η2 [K] . (30)

The coefficients η1 and η2 can be computed from modal damping
coefficients (namely, ξ1 and ξ2, from experiments) for the first and
second frequencies according to the common methodology presented
in the bibliography, related to finite element procedures (Bathe, 1982)

and vibration analysis (Meirovitch, 1997). Remember that [M] is
the global mass matrix and [K] is the global elastic stiffness matrix.
The Matlab Odesuite is employed to numerically simulate the finite
element model, for this reason Eq. (28) is represented in the following
form:

[A]
dW
dt

+[B]W = D, (31)

where:

[A] =
[

[C] [M]
[M] [0]

]
,

[B] =
[

[K]+ [KG (Q)]+ [KD] [0]
[0] − [M]

]
,

W =

{
Q
Q̇

}
, D =

{
F
0

}
.

(32)

Equation (31) is subjected to the initial condition W = W0.

Probabilistic Model

In this article the Maximum Entropy Principle (MEP) is employed
in order to construct the probabilistic model for the uncertain
parameters. Three parameters related to the beam-to-hub connection
will be chosen as uncertain: the springs stiffness (kv and kθ) at
the hub, the connection angle α. Also three parameters connected
with the rotational angle ψ will be considered uncertain. These
parameters characterize the angular acceleration of the angular
velocity. Depending on the type of rotating law associated with angle
ψ one or two kinematic parameters are introduced. The stiffnesses
will be considered unbounded positive random variables and the two
angles bounded random variables. The random variables V1, V2, and
V3, related to constructive aspects, as well as random variables V4,
V5 and V6, related to the kinematics, are introduced to construct the
probability models. The random variables V1 and V2 identify the hub
stiffnessess kv and kθ , V3 is associated with the connection angle α,
whereas random variable V4 identifies the parameter of a rotation rule
with constant acceleration/deceleration segments, and finally random
variables V5 and V6 identify time and opening angle parameters of
a rotation law with smooth variation. Depending on the type of
rotational law involved a probabilistic model with four (V1, V2, V3 and
V4) or five (V1, V2, V3, V5 and V6) random variables will be employed.
The available information to prepare the probabilistic model is that
the mean value of each random variable is known, i.e. E (Vi) = V i,
and that each random parameter is considered positive. Then, using
the MEP and the information that the random variables Vi, i = 1, ...,6
are supposed to be positive, the MEP gives the result that they must
be independent. Consequently, the probability density function for
random variables V1 and V2, using the MEP, leads to (Ritto et al.,
2008; Soize, 2001):

pVi (vi) = 1]0,∞] (vi)

(
δ−2

Vi

)δ−2
Vi

V iΓ
(
δ−2

Vi

) ( vi

V i

)δ−2
Vi
−1
×

×exp

(
− vi

δ2
Vi

V i

)
,Vi =

{
kv, i = 1
kθ , i = 2

(33)
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where δVi and V i, i = 1,2 are the dispersion parameter and the mean
value of the random variable Vi. 1]0,∞] (vi) is the support function of
the random variable and Γ (ζ) =

´
∞

0 tζ−1e−tdt is the gamma function
defined for ζ > 0. The dispersion parameters δV1 and δV2 are confined
in the range

]
0,
√

1/3
]
. This is due to V1 and V2 must be random

variables of second order. Since V3 and V4 and V5 and V6 are bounded
the MEP says they are distributed uniformly. Thus, the distribution of
random variables Vi, i = 3, ...,6 can be written in the following generic
form:

pVi (vi) = 1[LVi ,UVi ]
(vi)

1
2
√

3V iδVi

, i = 3, ...,6 (34)

where 1[LVi ,UVi ]
(vi) is the generic support function, whereas LVi and

UVi are the lower and upper limits of the random variable Vi. Once
again δVi and V i are the dispersion parameter and the mean value of
the random variable Vi, i = 3, ...,6.

The Matlab function gamrnd
(

1/δ2
Vi

,δ2
Vi

V i

)
can be

used to generate the realizations of the random variables
V1, and V2, according to Eq. (33), whereas the function
unifrnd

(
V i
(
1−δVi

√
3
)

,V i
(
1+δVi

√
3
))

can be used to generate
realizations for the random variables V 3, V 4, V 5 and V 6.

Then, employing Eq. (33) and Eq. (34) into the finite element
model given in Eq. (28) and then in Eqs. (31)-(32), the stochastic
finite element model is finally written as:

[Ā]
dW̄
dt

+[B̄]W̄ = D̄, (35)

with:

[Ā] =
[

[C̄] [M̄]
[M̄] [0̄]

]
,

[B̄] =
[

[K̄]+ [K̄G (Q̄)]+ [K̄D] [0̄]
[0̄] − [M̄]

]
,

W̄ =

{
Q̄
˙̄Q

}
, D̄ =

{
F̄
0

}
.

(36)

where, the bar over the vectors and matrices identifies the random
coefficient. Thus, the stiffness matrix [K̄] is random due to the
presence of random variables V1 and V2, whereas matrix [K̄D] is
random due to random variables V3 and V4 (or V5 and V6 depending on
the case). The matrix [C̄] is random due to V4 (or V5 and V6) and due
to the random characteristics of [K̄]. The geometric stiffness matrix
[K̄G (Q̄)] is random due to the random nature of the displacements Q̄.
The force vector F̄ is random due to random variables V3 and V4 (or
V5 and V6).

The Monte Carlo method is used to simulate the stochastic
dynamics, which implies the integration of a deterministic system for
each realization of random variables Vi, i = 1, ...,6. Recall that the
probabilistic model can be of four or five random variables depending
on the rotation rule selected. In order to control the quality of the
simulation process within a prescribed level of approximation, the
mean-square convergence of the stochastic response Q̄ has to be
evaluated. The convergence is calculated appealing to the following
function:

conv (NMS) =

√√√√ 1
NMS

NMS

∑
j=1

ˆ t1

t0

∥∥Q̄ j (t)
∥∥2 dt (37)

where NMS is the number of Monte Carlo samplings.

Numerical Studies

For the numerical studies a composite box-beam with rectangular
cross-section is employed. The measures of the cross-section are
such that Ly = 3Lz = 3 cm and the wall-thickness is en = 2 mm.
The beam is constructed with graphite fiber reinforced epoxy resin
AS4/3501, whose material properties are: E1 = 144 GPa, E2 =
9.65 GPa, G12 = 4.14 GPa, G13 = 4.14 GPa, G23 = 3.45 GPa,
ν12 = 0.3; ν13 = 0.3; ν23 = 0.5; ρ = 1389 kg/m3. The considered
laminate schemes are {0/0/0/0}, {0/90/90/0} and {45/-45/-45/45}.
For qualitative comparison purposes the configuration of the rotating
beam and the hub radius is restricted to L+R0 = 1.2 m with R0/L ∈
[0.2,1.0].

In the following examples, models of 20 finite elements are
employed to perform the deterministic calculations of each realization
in the Monte Carlo Method. It was shown (Piovan, 2003) that with the
interpolation functions of Eq. (19) in the finite elements, it is needed
a mesh of no more than 20 elements in order to achieve a precision of
99% in the first six natural frequencies. Another important topic is to
ensure the convergence of the Monte Carlo simulation in the sense of
the norm given by Eq. (37). A convergence analysis was performed
for a given set of dispersion parameters, and it was verified that the
approximation converges for NMS = 400 for a prescribed precision
of 99%, although in some cases even with NMS = 200 it is possible
to reach the prescribed precision. In Fig. 3 it is possible to see an
example of the convergence in the sense of the mean-square.

0 50 100 150 200 250 300 350 400

5

5.2

5.4

5.6

5.8

6

6.2

6.4
x 10

−7

N
MS

c
o
n
v
(
N

M
S
)

Figure 3. Convergence in the mean-square sense .

Among many studies that can be performed in rotating beams
with uncertain properties, the present analysis of uncertainty in
rotating beam dynamics is focused on the transient vibrations
according to given rules in the positioning angle and how the
uncertainties propagate to the response.
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The first case corresponds to a beam that rotates following the
rule:

ψ̇ =


At, ∀t ∈ [0,2)

A(4− t), ∀t ∈ [2,4]
0, ∀t > 4

(38)

where A = V4 is a uniform random variable. In Fig. 4 one can see
the tip lateral displacement of a rotating beam constructed with the
stacking sequence {0/0/0/0}, with R0/L = 0.2 and the following
mean values in the random parameters: V 1 = V 2 = 102max ([Kii]),
V 3 = 0.1 rad and A = V 4 = 5.0 rad/s2. The stochastic simulation
was performed with 400 samplings and a coefficient of variation
δVi =σVi /V i = 0.05, i = 1, ...,4. Clearly,σVi is the standard deviation
of Vi, i = 1, ...,4. In Fig. 5 one can see the same response of the
previous figure but for coefficient of variation δVi = 0.1. In both
figures, the upper and lower bounds of the 98% confidence interval
are shown.
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Figure 4. Tip displacement history for a composite beam that rotates
according to Eq. (38), for δVi = 0.05 in all variables.

Other studies were carried out by analyzing the propagation of
uncertainty due to the aforementioned random variables, but one by
one separately. For example in Fig. 6(a) one can see the influence
of only the random variable V3 (i.e. clamping angle α), whereas
in Fig. 6(b) one can see the influence of solely the random variable
V4 (i.e. the speed of the positioning angle). In both cases the same
variation coefficient δ = 0.05 was employed. It is noticeable that the
propagation of the uncertainty due to the positioning angle parameter
is the most relevant and the uncertainty due to the stiffness parameters
at the beam-to-hub connection is not quite relevant.

The previous analysis was done for a rotating beam with a step-
wise acceleration, which depending on the case could have a high
oscillatory response, with high stress gradients that could eventually
lead to failure. Other type of rotation rules can avoid high oscillatory
response if the acceleration, velocity and position angle can vary
smoothly like in the following rule:
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Figure 5. Tip displacement history for a composite beam that rotates
according to Eq. (38), for δVi = 0.1 in all variables.

ψ̇ (t) =
ψ0π

2T0

[
sin
(
πt
T0

)
− 1

2
sin
(

2πt
T0

)]
(39)

In Eq. (39), two possible sources of uncertainties can be taken into
account. The first can be identified as the spread angle ψ0, and the
second can be recognized as the positioning time T0. These sources
of uncertainty are here considered with random variables V5 and V6
having uniform distribution. Also, random variables V5 and V6 are
independent and not correlated. Then, the probabilistic model for this
case has in common with the previous study the random variables V1,
V2 and V3.

In Fig. 7 one can see the stochastic transient response of
composite beam with the same features of the previous study for
variation coefficient δ = 0.02 in all random variables, i.e. V1, V2,
V3, V5 and V6. The mean values of the random variables V5 and V6 are
V 5 = 2.0 sec and V 6 = 2.0 rad. In Fig. 8 the stochastic response for a
variation coefficient δ = 0.05 is shown. In both figures the upper and
lower bounds of the 95% confidence interval are included.

As well as in the previous example with the step-wise acceleration
rule, in the case of Eq. (39) the influence of different random variables
in the propagation of the uncertain response was evaluated. Thus, in
Fig. 9(a) one can see the influence of only random variable V3 for
a variation coefficient δV3 = 0.05; on the other hand, in Fig. 9(b) one
can see the uncertainty propagation related to random variables V5 and
V6, also with a variation coefficient δV5 = δV6 = 0.05. In both cases
the 95% confidence interval was included. The difference between
the cases are remarkable. A comparison between Fig. 9 and Fig. 8(a)
implies that the uncertainty in the response can propagate more due
to kinematic parameters (actually, V5 and V6) than due to geometric
parameters (actually, V3 or V1 and V2).

Conclusions

In this paper some aspects related to the uncertain dynamics
of rotating composite non-linear beams have been addressed. The
present study has been restricted within the context of the elastic

618 / Vol. XXXIV, Special Issue 2, 2012 ABCM



Dynamics of Rotating Non-Linear Thin-Walled Composite Beams: Analysis of Modeling Uncertainties

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, s [sec]

t
ip

la
t
e
r
a
l
d
is

p
la

c
e
m

e
n
t
,
v
/
L

[
m

]

Deterministic model
Upper bound
Lower bound
Mean stochastic model

x 10
-4

N
o
r
m

a
li
z
e
d

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−4

Time, t [sec]

N
o
r
m

a
li
z
e
d
 t
ip

 l
a
te

r
a
l 
d
is

p
la

c
e
m

e
n
t,
 v

/L

 

 

Deterministic model
Upper bound
Lower bound
Mean stochastic model

(b)
Figure 6. Tip displacement history for a composite beam that rotates
following Eq. (38), for δVi = 0.05 (a) only in random variable V3, (b) only in
random variable V4.

behavior of a composite structure. The effect of the uncertain
parameters such as beam-to-hub connection stiffness, angle of
clamping and positioning angle (speed and/or acceleration) has been
studied. From the different studies carried out some points should be
remarked:

• The propagation of uncertainty in the tip displacement of the
transient response, due to stiffness parameters kv and kθ , is very
small.

• The propagation of uncertainty due to the random variable
associated with the angle of the beam-to-hub connection is more
important than the influence of the uncertainty in the stiffness
parameters.

• The propagation of uncertainties due to the random variables
associated with the positioning angle (as well as angular velocity
and/or acceleration) is quite remarkable.

• The propagation of uncertainty in the transient response due to
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Figure 7. Tip displacement history for a composite beam that rotates
following Eq. (39), for δVi = 0.02 in all variables.

the clamping parameters altogether is small in comparison to the
uncertainty propagation associated with the positioning angle
(velocity, acceleration) parameters.

Other features of the model itself can be subjected to uncertainty,
as for example the orientation of the reinforcing fibers or the
uncertainty of material constituents (elasticity modulus, material
density, etc.). On the one hand, many of these parameters can be
treated as random variables, although there is an uncertainty related
to the model and in this context a more sophisticated analysis tool
should be employed, for example the non-parametric probabilistic
approach. On the other hand, the material properties along the
beam can vary due to uncertainties in the composite fabrics and the
construction process; that leads to a stochastic field, then Markov-
chain and Monte Carlo method should be taken into consideration to
face at this particular problem. However, these topics are the matter
of ongoing works.
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